Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation
2.2. Experimental Design
2.3. Data Recorded
2.3.1. Growth Traits and Salt Resistance Index Percentage
2.3.2. Total Chlorophyll Content (SPAD Unit)
2.3.3. Proline Content (mg/g as Dry Weight)
2.4. Volatile Oil Percentage
Gas Chromatography-Mass Spectrometry (GC-MS) of Volatile Oil
2.5. Statistical Analysis
3. Results
3.1. Plant Height (cm)
3.2. Total Dry Weight per Plant (g)
3.3. Salt Resistance Index Percentage (SRI%)
3.4. Total Chlorophyll Content (SPAD)
3.5. Proline Content (mg/g as Dry Weight)
3.6. Volatile Oil Percentage
Volatile Oil Constituents Identified by CG/MS
4. Discussion
4.1. Effect of Salinity Stress
4.2. Effect of Amino Acids
4.3. Effect of Combination between Amino Acids and Salinity Stress
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clark, A.M. Natural products as a resource for new drugs. Pharm. Res. 1996, 13, 1133–1141. [Google Scholar] [CrossRef]
- Al-Dalain, S.; Al-Fraihat, A.H.; Al Kassabeh, E. Effect of aromatic plant essential oils on oxidative stability of sunflower oil during heating and storage. Pak. J. Nutr. 2011, 10, 864–870. [Google Scholar]
- Mizrahi, I.; Juarez, M.; Bandoni, A. The essential oil of Rosmarinus officinalis growing in Argentina. J. Essent. Oil Res. 1991, 3, 11–15. [Google Scholar] [CrossRef]
- Lee, C.-J.; Chen, L.-G.; Chang, T.-L.; Ke, W.-M.; Lo, Y.-F.; Wang, C.-C. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 2011, 124, 833–841. [Google Scholar] [CrossRef]
- Benincá, J.P.; Dalmarco, J.B.; Pizzolatti, M.G.; Fröde, T.S. Analysis of the anti-inflammatory properties of Rosmarinus officinalis L. in mice. Food Chem. 2011, 124, 468–475. [Google Scholar] [CrossRef]
- Al-Fraihat, A.H.; Al-dalain, S.Y.; Al-Rawashdeh, Z.B.; Abu-Darwish, M.S.; Al-Tabbal, J.A. Effect of organic and biofertilizers on growth, herb yield and volatile oil of marjoram plant grown in Ajloun region, Jordan. J. Med. Plants Res. 2011, 5, 2822–2833. [Google Scholar]
- Shaw, D.J. World Food Summit, 1996. In World Food Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 347–360. [Google Scholar]
- Yeo, A. Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 1998, 49, 915–929. [Google Scholar] [CrossRef]
- Grattan, S.; Grieve, C. Salinity–mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Carvajal, M.; Martinez, V.; Cerda, A. Influence of magnesium and salinity on tomato plants grown in hydroponic culture. J. Plant Nutr. 1999, 22, 177–190. [Google Scholar] [CrossRef]
- Abdelkader, M.; Hassan, H.; Elboraie, E. Using proline treatments to promote growth and productivity of Rosmarinus officinalis L. plant grown under soil salinity conditions. Middle East J. Appl. Sci. 2019, 9, 700–710. [Google Scholar]
- Zahir, Z.; Malik, M.; Arshad, M. Improving crop yields by the application of an auxin precursor L-tryptophan. Pak. J. Biol. Sci. 2000, 3, 133–135. [Google Scholar]
- Rai, V. Role of amino acids in plant responses to stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Omer, E.; Said-Al-Ahl, H.; El-Gendy, A.; Shaban, K.A.; Hussein, M. Effect of amino acids application on production, volatile oil and chemical composition of chamomile cultivated in saline soil at sinai. J. Appl. Sci. Res. 2013, 9, 3006–3021. [Google Scholar]
- El-Kassas, H.; Abdalla, K.S.; Ahmed, S. Enhancing salt tolerance of wheat plant (triticum aestivum L.) by application of proline, ascorbic acid, arginine, glutamine and glutathione. J. Environ. Sci. Ain Shams 2020, 36, 43–80. [Google Scholar] [CrossRef]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Guenther, G. The essential oils VIII. Robert ED Nastrand Comp. Inc. Tor. N. Y. Lond. 1961, 1, 569. [Google Scholar]
- Mannu, A.; Melito, S.; Petretto, G.L.; Manconi, P.; Pintore, G.M.; Chessa, M. Geographical variation of the chemical composition in essential oils extracted from Sardinian Salvia verbenaca. Nat. Prod. Res. 2021, 36, 367–370. [Google Scholar] [CrossRef]
- Boyd, C.; Petersen, S.; Gilbert, W.; Rodgers, R.; Fuhlendorf, S.; Larsen, R.; Wolfe, D.; Jensen, K.; Gonzales, P.; Nenneman, M. Analytical Software. 2009. Statistics 9. Tallahassee, Florida, USA. In Evaluation of Methods Used to Improve Grasslands as Ring-Necked Pheasant (Phasianus colchicus) Brood Habitat; South Dakota State University ProQuest Dissertations Publishing: Brookings, SD, USA, 2018; Volume 72, p. 82. [Google Scholar]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef]
- Liu, J.-H.; Inoue, H.; Moriguchi, T. Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environ. Exp. Bot. 2008, 62, 28–35. [Google Scholar] [CrossRef]
- Hendawy, S.; Khalid, K.A. Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. J. Appl. Sci. Res 2005, 1, 147–155. [Google Scholar]
- Jaleel, C.A.; Sankar, B.; Sridharan, R.; Panneerselvam, R. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol. 2008, 32, 79–83. [Google Scholar]
- Said-Al Ahl, H.; Mahmoud, A.A. Effect of zinc and/or iron foliar application on growth and essential oil of sweet basil (Ocimum basilicum L.) under salt stress. Ozean J. Appl. Sci. 2010, 3, 97–111. [Google Scholar]
- Helaly, M.; Farouk, S.; Arafa, S.A.; Amhimmid, N. Inducing salinity tolerance of rosemary (Rosmarinus officinalis L.) plants by a chitosan or zeolite application. Asian J. Adv. Agric. Res. 2018, 5, 1–20. [Google Scholar] [CrossRef]
- Nassar, A.S.; Meawad, A.; Abdelkader, M. Effect of salinity and lithoit on growth, yield components and chemical constituents of cluster bean (Cyamopsis tetragonoloba, Taub.). Zagazig J. Agric. Res. 2018, 45, 1913–1924. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Awad, A.; Gendy, A.; Abdelkader, M. Effect of proline foliar spray on growth and productivity of sweet basil (Ocimum basilicum, L.) plant under salinity stress conditions. Zagazig J. Agric. Res. 2019, 46, 1877–1889. [Google Scholar] [CrossRef]
- Aktsoglou, D.-C.; Kasampalis, D.S.; Sarrou, E.; Tsouvaltzis, P.; Chatzopoulou, P.; Martens, S.; Siomos, A.S. Improvement of the quality in hydroponically grown fresh aromatic herbs by inducing mild salinity stress is species-specific. Folia Hortic. 2021, 33, 265–274. [Google Scholar] [CrossRef]
- El-Ghamry, A.M.; Abd El-Hai, K.M.; Ghoneem, K.M. Amino and humic acids promote growth, yield and disease resistance of faba bean cultivated in clayey soil. Aust. J. Basic Appl. Sci 2009, 3, 731–739. [Google Scholar]
- Hanci, F. The Effect of L-Tryptophan and Melatonin on Seed Germination of Some Cool Season Vegetable Species under Salinity Stress. Düzce Üniversitesi Bilim Ve Teknol. Derg. 2019, 7, 1879–1891. [Google Scholar] [CrossRef]
- Sugawara, S.; Hishiyama, S.; Jikumaru, Y.; Hanada, A.; Nishimura, T.; Koshiba, T.; Zhao, Y.; Kamiya, Y.; Kasahara, H. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 5430–5435. [Google Scholar] [CrossRef] [Green Version]
- Gendy, A.S.; Nosir, W.S. Improving productivity and chemical constituents of Roselle plant (Hibiscus sabdariffa L.) as affected by phenylalanine, L-tryptophan and peptone acids foliar application. Middle East J. Agric. 2016, 5, 701–708. [Google Scholar]
- Kowalczyk, K.; Zielony, T.; Gajewski, M. Effect of Aminoplant and Asahi on yield and quality of lettuce grown on rockwool. In Proceedings of the Conference of Biostimulators in Modern Agriculture, Warsaw, Poland, 7–8 February 2008; pp. 7–8. [Google Scholar]
- Butt, M.; Ayyub, C.; Amjad, M.; Ahmad, R. Proline application enhances the growth of chili by improving physiological and biochemical attributes under salt stress. Pak. J. Agric. Sci. 2016, 53, 43–49. [Google Scholar]
- Rao, S.; Qayyum, A.; Razzaq, A.; Ahmad, M.; Mahmood, I.; Sher, A. Role of foliar application of salicylic acid and l-tryptophan in drought tolerance of maize. J. Anim. Plant Sci. 2012, 22, 768–772. [Google Scholar]
- A EL-Shennawy, O.; G El-Torky, M.; E El-Mokadem, H.; I Abass, B. Effect of NaCl and Phenylalanine on the Production of some Secondary Metabolites in In Vitro Cultures of Mentha longifolia. Alex. Sci. Exch. J. 2017, 38, 577–587. [Google Scholar]
Physical Analysis | Soil Texture | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | Sandy | |||||||||
22.37 | 7.93 | 69.70 | ||||||||||
Chemical analysis | ||||||||||||
pH | EC (dsm−1) | Soluble cations (m.mol/L) | Soluble anions (m.mol/L) | Available (ppm) | ||||||||
Ca++ | Mg++ | Na+ | Zn++ | Mo++ | Cl− | HCO3− | SO4− | N | P | K | ||
7.85 | 0.68 | 1.80 | 0.95 | 0.30 | 1.10 | 1.32 | 3.04 | 1.12 | 0.84 | 127 | 46 | 51 |
Treatments | The First Season (2019/2020) | The Second Season (2020/2021) | |||
---|---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | ||
Soil salinity levels (ds/m) | |||||
1.17 | 50.23 | 52.79 | 48.68 | 48.08 | |
3.34 | 44.74 | 47.42 | 43.19 | 43.92 | |
6.51 | 38.93 | 39.08 | 37.13 | 38.08 | |
9.68 | 26.51 | 28.84 | 28.33 | 27.88 | |
LSD 5% | 0.41 | 0.63 | 0.46 | 0.16 | |
Amino acid types | |||||
Control | 36.42 | 36.93 | 35.06 | 35.84 | |
Trp. | 38.21 | 40.91 | 38.50 | 37.68 | |
Gln. | 42.26 | 44.27 | 40.72 | 41.21 | |
(Trp. + Gln. *) | 43.53 | 46.03 | 43.06 | 43.23 | |
LSD 5% | 0.41 | 0.59 | 0.34 | 0.27 | |
The combination between soil salinity levels and amino acid types | |||||
Control | 46.40 | 47.73 | 44.60 | 46.00 | |
1.17 | Trp. | 47.27 | 51.20 | 48.03 | 46.33 |
Gln. | 52.77 | 54.70 | 50.00 | 48.50 | |
(Trp. + Gln.) | 54.47 | 57.53 | 52.10 | 51.50 | |
Control | 40.37 | 42.63 | 38.07 | 40.30 | |
3.34 | Trp. | 42.40 | 45.90 | 43.27 | 41.60 |
Gln. | 47.80 | 50.23 | 44.67 | 45.63 | |
(Trp. + Gln.) | 48.40 | 50.90 | 46.77 | 48.13 | |
Control | 35.20 | 32.77 | 33.33 | 34.30 | |
6.51 | Trp. | 38.30 | 39.47 | 35.60 | 36.07 |
Gln. | 40.40 | 41.30 | 38.80 | 40.40 | |
(Trp. + Gln.) | 41.83 | 42.80 | 40.77 | 41.53 | |
Control | 23.70 | 24.57 | 24.23 | 22.77 | |
9.68 | Trp. | 24.87 | 27.07 | 27.10 | 26.70 |
Gln. | 28.07 | 30.83 | 29.40 | 30.30 | |
(Trp. + Gln.) | 29.40 | 32.90 | 32.60 | 31.73 | |
LSD 5% | 0.82 | 1.19 | 0.74 | 0.49 |
Treatments | The First Season (2019/2020) | The Second Season (2020/2021) | |||
---|---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | ||
Soil salinity levels (ds/m) | |||||
1.17 | 38.68 | 38.75 | 36.76 | 37.31 | |
4.34 | 32.66 | 33.22 | 31.77 | 30.95 | |
6.51 | 28.76 | 28.16 | 27.87 | 26.39 | |
9.68 | 24.43 | 26.77 | 24.13 | 25.82 | |
LSD 5% | 0.38 | 0.42 | 0.41 | 0.37 | |
Amino acid types | |||||
Control | 26.19 | 26.91 | 25.08 | 24.68 | |
Trp. | 29.59 | 30.34 | 27.66 | 27.94 | |
Gln. | 33.49 | 33.55 | 32.52 | 33.04 | |
(Trp. + Gln. *) | 35.26 | 36.09 | 35.26 | 34.80 | |
LSD 5% | 0.35 | 0.32 | 0.36 | 0.37 | |
The combination between soil salinity levels and amino acid types | |||||
Control | 34.70 | 34.80 | 32.43 | 33.63 | |
1.17 | Trp. | 38.40 | 37.07 | 35.23 | 36.43 |
Gln. | 40.13 | 40.70 | 38.70 | 39.17 | |
(Trp. + Gln.) | 41.50 | 42.43 | 40.67 | 40.00 | |
Control | 26.70 | 27.67 | 24.93 | 23.57 | |
3.34 | Trp. | 29.83 | 31.40 | 29.03 | 28.13 |
Gln. | 36.00 | 34.30 | 34.70 | 35.30 | |
(Trp. + Gln.) | 38.10 | 39.50 | 38.40 | 36.80 | |
Control | 22.17 | 22.83 | 21.90 | 21.13 | |
6.51 | Trp. | 26.97 | 26.83 | 23.53 | 22.43 |
Gln. | 31.90 | 30.83 | 31.73 | 30.07 | |
(Trp. + Gln.) | 34.00 | 32.13 | 34.30 | 31.93 | |
Control | 21.20 | 22.33 | 21.07 | 20.40 | |
9.68 | Trp. | 23.17 | 26.07 | 22.83 | 24.77 |
Gln. | 25.93 | 28.37 | 24.93 | 27.63 | |
(Trp. + Gln.) | 27.43 | 30.30 | 27.67 | 30.47 | |
LSD 5% | 0.71 | 0.70 | 0.74 | 0.73 |
Treatments | The First Season (2019/2020) | The Second Season (2020/2021) | |||
---|---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | ||
Soil salinity levels (ds/m) | |||||
1.17 | 111.48 | 111.36 | 113.34 | 110.95 | |
3.34 | 94.11 | 95.46 | 97.94 | 92.04 | |
6.51 | 82.88 | 80.93 | 85.92 | 78.49 | |
9.68 | 70.41 | 76.93 | 74.38 | 76.78 | |
LSD 5% | 1.03 | 0.98 | 1.33 | 0.78 | |
Amino acid types | |||||
Control | 75.48 | 77.33 | 77.34 | 73.40 | |
Trp. | 85.28 | 87.19 | 85.28 | 83.10 | |
Gln. | 96.52 | 96.43 | 100.25 | 98.26 | |
(Trp. + Gln. *) | 101.61 | 103.72 | 108.71 | 103.50 | |
LSD 5% | 1.01 | 0.96 | 1.12 | 1.13 | |
The combination between soil salinity levels and amino acid types | |||||
Control | 100.0 | 100.00 | 100.00 | 100.00 | |
1.17 | Trp. | 110.66 | 106.52 | 108.64 | 108.35 |
Gln. | 115.66 | 116.98 | 119.32 | 116.48 | |
(Trp. + Gln.) | 119.66 | 121.95 | 125.39 | 118.95 | |
Control | 76.94 | 79.52 | 76.87 | 70.09 | |
3.34 | Trp. | 85.97 | 90.23 | 89.51 | 83.65 |
Gln. | 103.75 | 98.58 | 106.99 | 104.98 | |
(Trp. + Gln.) | 109.79 | 113.51 | 118.40 | 109.43 | |
Control | 63.88 | 65.61 | 67.53 | 62.85 | |
6.51 | Trp. | 77.71 | 77.12 | 72.56 | 66.71 |
Gln. | 91.93 | 88.63 | 97.84 | 89.40 | |
(Trp. + Gln.) | 97.98 | 92.35 | 105.76 | 94.98 | |
Control | 61.09 | 64.20 | 64.95 | 60.67 | |
9.68 | Trp. | 66.77 | 74.91 | 70.40 | 73.67 |
Gln. | 74.74 | 81.53 | 76.87 | 82.16 | |
(Trp. + Gln.) | 79.06 | 87.09 | 85.30 | 90.64 | |
LSD 5% | 2.03 | 1.93 | 2.34 | 2.11 |
Treatments | The First Season (2019/2020) | The Second Season (2020/2021) | |||
---|---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | ||
Soil salinity levels ds/m) | |||||
1.17 | 47.50 | 47.83 | 46.17 | 46.08 | |
3.34 | 43.25 | 42.08 | 42.67 | 44.92 | |
6.51 | 41.83 | 39.83 | 39.50 | 38.67 | |
9.68 | 39.17 | 37.08 | 37.58 | 37.08 | |
LSD 5% | 0.67 | 0.64 | 0.76 | 0.51 | |
Amino acid types | |||||
Control | 39.08 | 37.58 | 38.42 | 38.58 | |
Trp. | 40.58 | 39.67 | 38.58 | 39.00 | |
Gln. | 45.25 | 44.08 | 43.50 | 44.33 | |
(Trp. + Gln. *) | 46.83 | 45.50 | 45.42 | 44.83 | |
LSD 5% | 0.49 | 0.51 | 0.58 | 0.59 | |
The combination between soil salinity levels and amino acid types | |||||
Control | 44.33 | 43.33 | 42.67 | 43.00 | |
1.17 | Trp. | 45.67 | 46.67 | 44.67 | 43.33 |
Gln. | 48.33 | 50.67 | 47.67 | 49.33 | |
(Trp. + Gln.) | 51.67 | 50.67 | 49.67 | 48.67 | |
Control | 39.33 | 38.33 | 39.67 | 41.33 | |
3.34 | Trp. | 40.67 | 39.33 | 39.00 | 42.33 |
Gln. | 45.33 | 44.33 | 45.33 | 48.33 | |
(Trp. + Gln.) | 47.67 | 46.33 | 46.67 | 47.67 | |
Control | 37.33 | 35.00 | 36.67 | 35.33 | |
6.51 | Trp. | 39.33 | 37.00 | 36.33 | 34.67 |
Gln. | 45.00 | 42.67 | 41.33 | 41.33 | |
(Trp. + Gln.) | 45.67 | 44.67 | 43.67 | 43.33 | |
Control | 35.33 | 33.67 | 34.67 | 34.67 | |
9.68 | Trp. | 36.67 | 35.67 | 34.33 | 35.67 |
Gln. | 42.33 | 38.67 | 39.67 | 38.33 | |
(Trp. + Gln.) | 42.33 | 40.33 | 41.67 | 39.67 | |
LSD 5% | 1.08 | 1.09 | 1.26 | 1.14 |
Treatments | The First Season (2019/2020) | The Second Season (2020/2021) | |||
---|---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | ||
Soil salinity levels (ds/m) | |||||
1.17 | 3.64 | 3.73 | 3.58 | 3.58 | |
3.34 | 4.18 | 4.18 | 3.92 | 4.13 | |
6.51 | 4.50 | 4.67 | 4.74 | 4.66 | |
9.68 | 6.35 | 6.35 | 7.25 | 7.19 | |
LSD 5% | 0.07 | 0.08 | 0.11 | 0.12 | |
Amino acid types | |||||
Control | 3.75 | 3.56 | 4.12 | 3.94 | |
Trp. | 4.17 | 4.33 | 4.60 | 4.70 | |
Gln. | 5.27 | 5.41 | 5.29 | 5.32 | |
(Trp. + Gln. *) | 5.50 | 5.63 | 5.48 | 5.61 | |
LSD 5% | 0.09 | 0.07 | 0.08 | 0.09 | |
The combination between soil salinity levels and amino acid types | |||||
Control | 3.27 | 3.13 | 3.23 | 3.07 | |
1.17 | Trp. | 3.37 | 3.50 | 3.53 | 3.33 |
Gln. | 3.83 | 4.03 | 3.73 | 3.80 | |
(Trp. + Gln.) | 4.13 | 4.27 | 3.83 | 4.13 | |
3.34 | Control | 3.53 | 3.30 | 3.47 | 3.33 |
Trp. | 3.37 | 3.83 | 3.80 | 4.03 | |
Gln. | 4.87 | 4.73 | 4.13 | 4.57 | |
(Trp. + Gln.) | 7.97 | 4.83 | 4.27 | 4.60 | |
Control | 3.73 | 3.57 | 3.73 | 3.70 | |
6.51 | Trp. | 3.73 | 4.17 | 4.30 | 4.43 |
Gln. | 5.20 | 5.33 | 5.33 | 5.13 | |
(Trp. + Gln.) | 5.33 | 5.60 | 5.60 | 5.37 | |
Control | 4.47 | 4.23 | 6.03 | 5.67 | |
9.68 | Trp. | 6.20 | 5.80 | 6.77 | 7.00 |
Gln. | 7.17 | 7.53 | 7.97 | 7.77 | |
(Trp. + Gln.) | 7.57 | 7.83 | 8.23 | 8.33 | |
LSD 5% | 0.17 | 0.15 | 0.18 | 0.19 |
Treatments | The First Season (2019/2020) | The Second Season (2020/2021) | |||
---|---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | ||
Soil salinity levels (ds/m) | |||||
1.17 | 1.08 | 1.12 | 1.12 | 1.14 | |
3.34 | 1.21 | 1.21 | 1.19 | 1.19 | |
6.51 | 1.23 | 1.25 | 1.22 | 1.22 | |
9.68 | 1.15 | 1.13 | 1.15 | 1.16 | |
LSD 5% | 0.006 | 0.006 | 0.009 | 0.007 | |
Amino acid types | |||||
Control | 1.13 | 1.13 | 1.12 | 1.13 | |
Trp. | 1.16 | 1.16 | 1.15 | 1.16 | |
Gln. | 1.19 | 1.19 | 1.19 | 1.20 | |
(Trp. + Gln. *) | 1.19 | 1.22 | 1.21 | 1.22 | |
LSD 5% | 0.008 | 0.006 | 0.006 | 0.007 | |
The combination between soil salinity levels and amino acid types | |||||
Control | 1.04 | 1.08 | 1.08 | 1.09 | |
1.17 | Trp. | 1.08 | 1.11 | 1.11 | 1.13 |
Gln. | 1.10 | 1.15 | 1.14 | 1.16 | |
(Trp. + Gln.) | 1.11 | 1.16 | 1.14 | 1.19 | |
3.34 | Control | 1.16 | 1.16 | 1.17 | 1.14 |
Trp. | 1.22 | 1.19 | 1.16 | 1.18 | |
Gln. | 1.22 | 1.23 | 1.19 | 1.22 | |
(Trp. + Gln.) | 1.24 | 1.26 | 1.23 | 1.23 | |
Control | 1.20 | 1.21 | 1.18 | 1.18 | |
6.51 | Trp. | 1.20 | 1.23 | 1.19 | 1.20 |
Gln. | 1.24 | 1.26 | 1.23 | 1.24 | |
(Trp. + Gln.) | 1.28 | 1.29 | 1.26 | 1.26 | |
Control | 1.12 | 1.08 | 1.07 | 1.10 | |
9.68 | Trp. | 1.16 | 1.11 | 1.13 | 1.13 |
Gln. | 1.19 | 1.14 | 1.19 | 1.19 | |
(Trp. + Gln.) | 1.30 | 1.18 | 1.20 | 1.21 | |
LSD 5% | 0.015 | 0.012 | 0.014 | 0.015 |
Soil Salinity (ds/m) | ||||||||
---|---|---|---|---|---|---|---|---|
Compound | 1.17 (Control) | 9.68 | ||||||
Control | Trp. * | Gln. | (Trp. + Gln.) | Control | Trp. * | Gln. | (Trp. + Gln.) | |
γ-Terpinene | 0.98 | 0.75 | 1.01 | 0.86 | 0.77 | 0.68 | 0.71 | 0.73 |
α-Pinene | 14.88 | 15.12 | 15.01 | 16.62 | 15.22 | 16.73 | 14.62 | 13.24 |
β-Pinene | 3.51 | 2.42 | 2.88 | 3.47 | 2.94 | 1.88 | 4.01 | 3.41 |
β-Myrcene | 0.35 | 0.42 | 0.61 | 0.43 | 0.51 | 0.48 | 0.57 | 0.39 |
Camphene | 4.25 | 4.32 | 4.05 | 3.86 | 3.52 | 4.71 | 3.52 | 4.36 |
Linalool | 0.89 | 1.01 | 0.90 | 1.03 | 0.89 | 0.76 | 0.95 | 0.88 |
Terpinolene | 0.76 | 0.75 | 0.81 | 0.64 | 0.79 | 0.81 | 0.73 | 0.71 |
Pinocarvone | 0.01 | 0.05 | 0.04 | 0.01 | 0.07 | 0.12 | 0.13 | 0.08 |
ρ-cymene | 1.13 | 1.09 | 1.01 | 1.07 | 1.07 | 1.11 | 1.01 | 1.06 |
Thuja2,4-Diene | 0.41 | 0.41 | 0.43 | 0.51 | 0.53 | 0.48 | 0.43 | 0.51 |
Camphor | 36.52 | 38.25 | 40.15 | 37.12 | 37.11 | 34.95 | 39.01 | 40.21 |
Eucalyptol | 11.21 | 10.03 | 9.07 | 9.48 | 11.02 | 12.47 | 10.95 | 10.55 |
δ-2-Carene | 0.72 | 0.68 | 0.72 | 0.78 | 0.81 | 0.73 | 0.81 | 0.91 |
Thymol | 0.43 | 0.41 | 0.39 | 0.47 | 0.51 | 0.47 | 0.46 | 0.37 |
Verbenone | 6.87 | 6.54 | 6.57 | 7.12 | 6.97 | 6.05 | 5.79 | 5.97 |
α-Humulene | 0.21 | 0.24 | 0.28 | 0.19 | 0.31 | 0.34 | 0.37 | 0.27 |
Bornyl acetate | 0.91 | 1.07 | 0.89 | 0.43 | 0.98 | 0.97 | 0.96 | 0.75 |
D-Verbenone | 15.14 | 15.23 | 14.28 | 15.02 | 13.74 | 14.65 | 14.09 | 13.99 |
Identified compounds | 99.18 | 98.70 | 98.89 | 99.11 | 98.30 | 98.39 | 99.12 | 98.39 |
Unidentified compounds | 0.82 | 1.30 | 1.11 | 0.89 | 1.70 | 1.61 | 0.88 | 1.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Fraihat, A.H.; Al-Dalain, S.Y.; Zatimeh, A.A.; Haddad, M.A. Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids. Horticulturae 2023, 9, 252. https://doi.org/10.3390/horticulturae9020252
Al-Fraihat AH, Al-Dalain SY, Zatimeh AA, Haddad MA. Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids. Horticulturae. 2023; 9(2):252. https://doi.org/10.3390/horticulturae9020252
Chicago/Turabian StyleAl-Fraihat, Ahmad H., Sati Y. Al-Dalain, Ahmad A. Zatimeh, and Moawiya A. Haddad. 2023. "Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids" Horticulturae 9, no. 2: 252. https://doi.org/10.3390/horticulturae9020252
APA StyleAl-Fraihat, A. H., Al-Dalain, S. Y., Zatimeh, A. A., & Haddad, M. A. (2023). Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids. Horticulturae, 9(2), 252. https://doi.org/10.3390/horticulturae9020252