Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends
Abstract
:1. Introduction
2. Herbs
3. Flowers
4. Roots and Rhizomes
5. Fruits and Seeds
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Škrovánková, S.; Mišurcová, L.; Machů, L. Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants. Adv. Food Nutr. Res. 2012, 67, 75–139. [Google Scholar]
- Akinyemi, O.; Oyowole, S.O.; Jimoh, K.A. Medicinal Plants and Sustainable Human Health: A Review. Hortic. Int. J. 2018, 2, 194–195. [Google Scholar]
- Kong, D.-X.; Li, X.-J.; Tang, G.-Y.; Zhang, H.-Y. How Many Traditional Chinese Medicine Components Have Been Recognized by Modern Western Medicine? A Chemoinformatic Analysis and Implications for Finding Multicomponent Drugs. ChemMedChem 2008, 3, 233–236. [Google Scholar] [CrossRef]
- Leaman, D.J. Sustainable Wild Collection of Medicinal and Aromatic Plants: Development of an International Standard. In Medicinal and Aromatic Plants; Bogers, R.J., Craker, L.E., Lange, D., Eds.; Springer: Dordrecht, Netherlands, 2006; pp. 97–107. [Google Scholar]
- Zhou, L.G.; Wu, J.Y. Development and Application of Medicinal Plant Tissue Cultures for Production of Drugs and Herbal Medicinals in China. Nat. Prod. Rep. 2006, 23, 789–810. [Google Scholar] [CrossRef]
- Xego, S.; Kambizi, L.; Nchu, F. Threatened Medicinal Plants of South Africa: Case of the Family Hyacinthaceae. Afr. J. Tradit. Complem. 2016, 13, 169–180. [Google Scholar] [CrossRef]
- Zobayed, S. Medicinal Components. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 245–250. [Google Scholar]
- Hsieh, H.-J.; Lin, C.-C. Intelligent Medicinal Plant Factory. In Proceedings of the 2019 Prognostics and System Health Management Conference (PHM-Paris), Paris, France, 2–5 May 2019; pp. 239–243. [Google Scholar]
- Mankga, L.T.; Yessoufou, K.; Moteetee, A.M.; Daru, B.H.; van der Bank, M. Efficacy of the Core DNA Barcodes in Identifying Processed and Poorly Conserved Plant Materials Commonly used in South African Traditional Medicine. Zookeys 2013, 365, 215–233. [Google Scholar] [CrossRef]
- Li, X.W.; Chen, Y.N.; Lai, Y.F.; Yang, Q.; Hu, H.; Wang, Y.T. Sustainable Utilization of Traditional Chinese Medicine Resources: Systematic Evaluation on Different Production Modes. Evid.-Based Compl. Alt. 2015, 2015, 218901. [Google Scholar] [CrossRef] [Green Version]
- Heuberger, H.; Bauer, R.; Friedl, F.; Heubl, G.; Hummelsberger, J.; Nogel, R.; Seidenberger, R.; Torres-Londono, P. Cultivation and Breeding of Chinese Medicinal Plants in Germany. Planta Med. 2010, 76, 1956–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dajic-Stevanovic, Z.; Pljevljakusic, D. Challenges and Decision Making in Cultivation of Medicinal and Aromatic Plants. In Medicinal and Aromatic Plants of the World: Scientific, Production, Commercial and Utilization Aspects; Máthé, A., Ed.; Springer: Dortrecht, The Netherlands, 2015; pp. 145–164. [Google Scholar]
- Schippmann, U.; Leaman, D.; Cunningham, A.B. A Comparison of Cultivation and Wild Collection of Medicinal and Aromatic Plants Under Sustainability Aspects. In Medicinal and Aromatic Plants; Bogers, R.J., Craker, L.E., Lange, D., Eds.; Springer: Dortrecht, The Netherlands, 2006; pp. 75–95. [Google Scholar]
- Bruni, R.; Sacchetti, G. Factors Affecting Polyphenol Biosynthesis in Wild and Field Grown St. John’s Wort (Hypericum perforatum L. Hypericaceae/Guttiferae). Molecules 2009, 14, 682–725. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.F.; Wu, S.X.; Wang, Y.; Shang, X.H.; Dai, S.J. Soil nutrient factors related to salidroside production of Rhodiola sachalinensis distributed in Chang Bai Mountain. Environ. Exp. Bot. 2004, 52, 267–276. [Google Scholar] [CrossRef]
- Ncube, B.; Finnie, J.F.; Van Staden, J. Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S Afr. J. Bot. 2011, 77, 547. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.P.; Yang, L.M.; Zhang, L.X.; Liu, C.J.; Han, M. Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J. Ginseng. Res. 2016, 40, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Gericke, W.F. Hydroponics–Crop Production in Liquid Culture Media. Science 1937, 85, 177–178. [Google Scholar] [CrossRef]
- Sengupta, A.; Banerjee, H. Soil-less Culture in Modern Agriculture. World J. Sci. Technol. 2012, 2, 103–108. [Google Scholar]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques-Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Iqbal, K.; Aziem, S.; Mahato, P.; Negi, A.K. A Review on the Science of Growing Crops Without Soil (Soilless Culture)—A Novel Alternative for Growing Crops. Int. J. Agric. Crop Sci. 2014, 7, 833–842. [Google Scholar]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Macwan, J.; Pandya, D.; Pandya, H.; Mankad, A. Review on Soilless Method of Cultivation: Hydroponics. Int. J. Recent Sci. Res. 2020, 11, 37122–37127. [Google Scholar]
- Waiba, K.M.; Sharma, P.; Sharma, A.; Chadha, S.; Kaur, M. Soil-less Vegetable Cultivation: A Review. J. Pharmacogn. Phytochem. 2020, 9, 631–636. [Google Scholar]
- Hasan, M.; Sabir, N.; Singh, A.K.; Singh, M.C.; Patel, N.; Khanna, M.; Rai, T.; Pragnya, P. Hydroponics Technology for Horticultural Crops; Indian Agricultural Research Institute: Delhi, India, 2018. [Google Scholar]
- Yoshimatsu, K. Innovative Cultivation: Hydroponics of Medicinal Plants in the Closed-Type Cultivation Facilities. J. Tradit. Med. 2012, 29, 30–34. [Google Scholar]
- Surendran, U.; Chandran, C.; Joseph, E.J. Hydroponic Cultivation of Mentha spicata and Comparison of Biochemical and Antioxidant Activities with Soil-Grown Plants. Acta Physiol. Plant. 2017, 39, 26. [Google Scholar] [CrossRef]
- Duan, J.-X.; Duan, Q.-X.; Zhang, S.-F.; Cao, Y.-M.; Yang, C.-D.; Cai, X.-D. Morphological, Physiological, Anatomical and Histochemical Responses of Micropropagated Plants of Trichosanthes Kirilowii to Hydroponic and Soil Conditions during Acclimatization. Plant Cell Tissue Organ Cult. 2020, 142, 177–186. [Google Scholar] [CrossRef]
- Afreen, F.; Zobayed, S.M.A.; Kozai, T. Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiol. Bioch. 2005, 43, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Souret, F.F.; Weathers, P.J. The Growth of Saffron (Crocus sativus L.) in Aeroponics and Hydroponics. J. Herbs Spices Med. Plants 2000, 7, 25–35. [Google Scholar] [CrossRef]
- Maggini, R.K.C.; Guidi, L.; Pardossi, A.; Raffaelli, A. Growing Medicinal Plants in Hydroponic Culture. Acta Hortic. 2012, 952, 697–704. [Google Scholar] [CrossRef]
- Strzemski, M.; Dresler, S.; Sowa, I.; Czubacka, A.; Agacka-Mołdoch, M.; Płachno, B.J.; Granica, S.; Feldo, M.; Wójciak-Kosior, M. The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material. Molecules 2020, 25, 146. [Google Scholar] [CrossRef] [Green Version]
- Hayden, A.L. Aeroponic and Hydroponic Systems for Medicinal Herb, Rhizome, and Root Crops. Hortscience 2006, 41, 536–538. [Google Scholar] [CrossRef] [Green Version]
- Máthé, Á. Botanical Aspects of Medicinal and Aromatic Plants. In Medicinal and Aromatic Plants of the World: Scientific, Production, Commercial and Utilization Aspects; Máthé, Á., Ed.; Springer: Dordrecht, Netherlands, 2015; pp. 13–33. [Google Scholar]
- Erere, A.; Adeniyi, V.; Adekiya, A.; Abiodun, J.; Abolusoro, S.; Aremu, C.; Olugbenga, O.; Oriade, O.; Olayiwola, I.; Oladokun, A.; et al. Hydroponics Research Trends: A Review and Bibliometric Analysis (2008–2018). Nat. Volatiles Essent. Oils 2021, 8, 3240–3251. [Google Scholar]
- Ferguson, S.D.; Saliga, R.P.; Omaye, S.T. Investigating the Effects of Hydroponic Media on Quality of Greenhouse Grown Leafy Greens. Int. J. Agric. Ext. 2014, 2, 227–234. [Google Scholar]
- Li, Q.S.; Li, X.Q.; Tang, B.; Gu, M.M. Growth Responses and Root Characteristics of Lettuce Grown in Aeroponics, Hydroponics, and Substrate Culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, A.; Baldi, A.; Tesi, R. Growing Spinach in a Floating System with Different Volumes of Aerated or Non Aerated Nutrient Solution. Adv. Hortic. Sci. 2011, 25, 21–25. [Google Scholar]
- Parkell, N.B.; Hochmuth, R.C.; Laughlin, W.L. Leafy Greens in Hydroponics and Protected Culture for Florida. EDIS 2016, 2016, 7. [Google Scholar] [CrossRef]
- Caralde, R.A.; Salas, R.A. Effects of Novel Organic Nutrient Solution on Yield and Quality of Pakchoi [Brassica rapa ssp. chinensis (L.) Hanelt] under Aggregate Hydroponic System. Acta Hortic. 2015, 1088, 477–480. [Google Scholar] [CrossRef]
- Hanafiah, N.H.M.; Samsuri, S.; Yusup, S.; Amran, N.A. Effects of Nutrients on the Growth of Pak-Choi (Brassica chinensis L.) Seedlings in a Hydroponic System. Platf. A J. Sci. Technol. 2019, 2, 23–31. [Google Scholar]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Gupta, A.; Prasad, R. A Review on Herbs, Spices and Functional Food used in Diseases. Int. J. Res. Rev. 2017, 4, 103–108. [Google Scholar]
- Hayden, A.; Brigham, L.; Giacomelli, G. Aeroponic Cultivation of Ginger (Zingiber officinale) Rhizomes. Acta Hortic. 2004, 659, 397–402. [Google Scholar] [CrossRef]
- Maggini, R.; Kiferle, C.; Pardossi, A. Hydroponic Production of Medicinal Plants. In Medicinal Plants: Antioxidant Properties, Traditional Uses and Conservation Strategies; Pereira, D.A.M., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 91–116. [Google Scholar]
- Kim, S.J.; Bok, K.J.; Lam, V.P.; Park, J.S. Response of Nutrient Solution and Photosynthetic Photon Flux Density for Growth and Accumulation of Antioxidant in Agastache rugosa under hydroponic Culture Systems. Prot. Hortic. Plant Fact. 2017, 26, 249–257. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.E.; Bok, G.J.; Kanth, B.K.; Lam, V.P.; Park, J.S. High Electrical Conductivity of Nutrient Solution and Application of Methyl Jasmonate Promote Phenylpropanoid Production in Hydroponically Grown Agastache rugosa. Hortic. Sci. Technol. 2018, 36, 841–852. [Google Scholar]
- Lam, V.P.; Kim, S.J.; Park, J.S. Optimizing the Electrical Conductivity of a Nutrient Solution for Plant Growth and Bioactive Compounds of Agastache rugosa in a Plant Factory. Agronomy 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Lam, V.P.; Kim, S.J.; Bok, G.J.; Lee, J.W.; Park, J.S. The Effects of Root Temperature on Growth, Physiology, and Accumulation of Bioactive Compounds of Agastache rugosa. Agriculture 2020, 10, 162. [Google Scholar] [CrossRef]
- Lam, V.P.; Lee, M.H.; Park, J.S. Optimization of Indole-3-Acetic Acid Concentration in a Nutrient Solution for Increasing Bioactive Compound Accumulation and Production of Agastache rugosa in a Plant Factory. Agriculture 2020, 10, 343. [Google Scholar] [CrossRef]
- Cervantes, J. Marijuana Horticulture: The Indoor/Outdoor Medical Grower’s Bible; Van Patten: Vancouver, Canada, 2006. [Google Scholar]
- Rahmoune, B.; Morsli, A.; Khelifi-Slaoui, M.; Khelifi, L.; Strueh, A.; Erban, A.; Kopka, J.; Prell, J.; van Dongen, J.T. Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. J. Plant Interact. 2017, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bafort, F.; Kohnen, S.; Maron, E.; Bouhadada, A.; Ancion, N.; Crutzen, N.; Jijakli, M.H. The Agro-Economic Feasibility of Growing the Medicinal Plant Euphorbia peplus in a Modified Vertical Hydroponic Shipping Container. Horticulturae 2022, 8, 256. [Google Scholar] [CrossRef]
- Vimolmangkang, S.; Sitthithaworn, W.; Vannavanich, D.; Keattikunpairoj, S.; Chittasupho, C. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique. J. Nat. Med. 2010, 64, 31–35. [Google Scholar] [CrossRef]
- Ignatius, A.; Arunbabu, V.; Neethu, J.; Ramasamy, E.V. Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ. Sci. Pollut. R 2014, 21, 13007–13016. [Google Scholar] [CrossRef] [PubMed]
- Olfati, J.A.; Khasmakhi-Sabet, S.A.; Shabani, H. Nutrient Solutions on Yield and Quality of Basil and Cress. Int. J. Veg. Sci. 2012, 18, 298–304. [Google Scholar] [CrossRef]
- Sakurai, M.; Sato, S.; Fukushima, T.; Konishi, T. Characteristics of Morus alba L. Cultured by in-Room Hydroponics. Am. J. Plant Sci. 2022, 13, 91–108. [Google Scholar] [CrossRef]
- Economakis, C.; Skaltsa, H.; Demetzos, C.; Sokovic, M.; Thanos, C.A. Effect of phosphorus concentration of the nutrient solution on the volatile constituents of leaves and bracts of Origanum dictamnus. J. Agric. Food Chem. 2002, 50, 6276–6280. [Google Scholar] [CrossRef]
- Economaks, C.; Karioti, A.; Skaltsa, H.; Perdetzoglou, D.; Demetzos, C. Effect of solution conductivity on the volatile constituents of Origanum dictamnus L. in nutrient film culture. J. Agric. Food Chem. 2005, 53, 1656–1660. [Google Scholar] [CrossRef]
- Dorais, M.; Papadopoulos, A.P.; Luo, X.; Leonhart, S.; Gosselin, A.; Pedneault, K.; Angers, P.; Gaudreau, L. Soilless Greenhouse Production of Medicinal Plants in North Eastern Canada. Acta Hortic. 2001, 554, 297–304. [Google Scholar] [CrossRef]
- Dorais, M.; Ménard, C.; Gosselin, A.; Léonhart, S.; Gaudreau, L.; Desrochers, L.; Martel, M.; Vézina, L.P.; Purcell, M.; Carpentier, E. Influence of Supplemental Lighting on the Production of Medicinal Plants, Spinach and Alfalfa for the Nutraceutical and Pharmaceutical Sectors. Acta Hortic. 2006, 711, 43–50. [Google Scholar] [CrossRef]
- Saito, K.; Ikeda, M. The Function of Roots of Tea Plant (Camellia sinensis) Cultured by a Novel Form of Hydroponics and Soil Acidification. Am. J. Plant Sci. 2012, 3, 646–648. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Furue, K.; Kametani, H.; Ikeda, M. Roots of Hydroponically Grown Tea (Camellia sinensis) Plants as a Source of a Unique Amino Acid, Theanine. Am. J. Exp. Agric. 2014, 4, 125–129. [Google Scholar] [CrossRef]
- Bailey, R. The Effect of Elicitor Stimulation on Cannabinoid Production by Industrial Hemp (Cannabis sativa) Varieties in a Hydroponic System; Middle Tennessee State University: Murfreesboro, TN, USA, 2019. [Google Scholar]
- Punja, Z.K.; Rodriguez, G. Fusarium and Pythium species infecting roots of hydroponically grown marijuana (Cannabis sativa L.) plants. Can. J. Plant Pathol. 2018, 40, 498–513. [Google Scholar] [CrossRef] [Green Version]
- Yep, B.; Gale, N.V.; Zheng, Y.B. Aquaponic and Hydroponic Solutions Modulate NaCl-Induced Stress in Drug-Type Cannabis sativa L. Front. Plant Sci. 2020, 11, 1169. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Liu, Z.J. Camptothecin production in Camptotheca acuminata cultured hydroponically and with nitrogen enrichments. Can. J. Plant Sci. 2005, 85, 447–452. [Google Scholar] [CrossRef]
- Prasad, A.; Pragadheesh, V.S.; Mathur, A.; Srivastava, N.K.; Singh, M.; Mathur, A.K. Growth and centelloside production in hydroponically established medicinal plant-Centella asiatica (L.). Ind. Crop Prod. 2012, 35, 309–312. [Google Scholar] [CrossRef]
- Dass, S.M.; Chai, T.-T.; Wong, F.-C. Investigation on the Effects of Hydroponic-Planting versus Soil-Planting Using Plectranthus amboinicus as a Plant Model. J. Trop. Life Sci. 2022, 12, 53–61. [Google Scholar]
- Hazeri, N.; Valizadeh, J.; Shakeri, A.; Rajabpour, M. Evaluation of Essential Oil and Mineral Composition of Coriander (Coriandrum sativum L.) Among Growth Conditions of Hydroponic, Field and Greenhouse. J. Essent. Oil Bear. Plants 2012, 15, 949–954. [Google Scholar] [CrossRef]
- Gong, J.; Li, F.; Sun, W.; Tang, J.; Yi, Y. Effects of Endophytic Fungi on the Seedling Growth Characteristics of Dendrobium nobile under Nutritional Deficiency. J. Yunnan Agric. Univ. 2019, 34, 110–115. [Google Scholar]
- Zhang, Y.; Ji, R.; Li, H.; Liu, J.; Yuan, H. Effects of Exogenous Substances on Root Growth of Ephedra sinica Stapf Seedlings under Salt Stress. For. Ecol. Sci. 2020, 35, 320–324. [Google Scholar]
- Skrypnik, L.; Feduraev, P.; Styran, T.; Golovin, A.; Katserov, D.; Nebreeva, S.; Maslennikov, P. Biomass, Phenolic Compounds, Essential Oil Content, and Antioxidant Properties of Hyssop (Hyssopus officinalis L.) Grown in Hydroponics as Affected by Treatment Type and Selenium Concentration. Horticulturae 2022, 8, 1037. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Huang, S.-L.; Zhou, J.-M.; Xia, G.-H.; Huang, Y.-J. The Morphological Change of Offorested Trees under Salt Stress and Selection of Salt-Resistant Trees. Acta Agric. Univ. Jianxiensis 2008, 30, 833–838. [Google Scholar]
- Song, T.; Peng, F.; Tan, Z.-Y. Effect of Precursors on the Content of Stachydrine Hydrochloride in the Hydroponic Herba Leonuri. Cent. South Pharm. 2012, 10, 814–817. [Google Scholar]
- Peng, K.J.; Luo, C.L.; Chen, Y.H.; Wang, G.P.; Li, X.D.; Shen, Z.G. Cadmium and Other Metal Uptake by Lobelia chinensis and Solanum nigrum from Contaminated Soils. B Environ. Contam. Tox 2009, 83, 260–264. [Google Scholar] [CrossRef]
- Silva, T.C.; Bertolucci, S.K.V.; Carvalho, A.A.; Tostes, W.N.; Alvarenga, I.C.A.; Pacheco, F.V.; de Assis, R.M.A.; Honorato, A.D.; Pinto, J.E.B.P. Macroelement omission in hydroponic systems changes plant growth and chemical composition of Melissa officinalis L. essential oil. J. Appl. Res. Med. Aroma. 2021, 24, 100297. [Google Scholar] [CrossRef]
- Ronga, D.; Pellati, F.; Brighenti, V.; Laudicella, K.; Laviano, L.; Fedailaine, M.; Benvenuti, S.; Pecchioni, N.; Francia, E. Testing the influence of digestate from biogas on growth and volatile compounds of basil (Ocimum basilicum L.) and peppermint (Mentha x piperita L.) in hydroponics. J. Appl. Res. Med. Aroma. 2018, 11, 18–26. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali-Sodi, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Cent. Eur. J. Biol. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Pannico, A.; De Pascale, S.; Rouphael, Y. Morpho-Physiological Responses and Secondary Metabolites Modulation by Preharvest Factors of Three Hydroponically Grown Genovese Basil Cultivars. Front. Plant Sci. 2021, 12, 671026. [Google Scholar] [CrossRef]
- Yao, X.; Ji, J.; Yue, J.; Xie, T.; Deng, N.; Shi, S.; Jiang, Z.; Chang, E. Reactive Oxygen Metabolism and Related Gene Expression in Platycladus orientalis under Salt Stress. Acta Bot. Boreali Occident. Sin. 2017, 37, 105–114. [Google Scholar]
- Yao, X.-M.; Chang, E.-M.; Ji, J.; Yue, J.-Y.; Xie, T.-T.; Deng, N.; Shi, S.-Q.; Jiang, Z.-P. Reactive Oxygen Metabolism and Its Related Gene Expression in Platycladus orientalis under H2O2 Stress and Regulated by ABA. For. Res. 2017, 30, 624–632. [Google Scholar]
- Yang, G.; Liu, W.; Fan, B.; Pei, B.; Yang, X. Effects of Root-Cutting on Antioxidant Enzyme System and Osmotic Adjustment Substances of Platycladus orientalis. J. Henan Agric. Sci. 2017, 46, 92–96. [Google Scholar]
- Radman, S.; Fabek, S.; Žutić, I.; Benko, B.; Toth, N. Stinging Nettle Cultivation in Floating Hydropon. Contemp. Agric. 2014, 63, 624–632. [Google Scholar]
- Radman, S.; Javornik, M.; Žutić, I.; Opačić, N.; Benko, B. Impact of different nutrient solution composition on stinging nettle growth and mineral content. In Proceedings of the VIII South-Eastern Europe Symposium on Vegetables and Potatoes 1320, Ohrid, North Macedonia, 24–26 September 2021; pp. 157–166. [Google Scholar]
- Bhattacharya, N. Hydroponics: Producing Plants In-Vitro on Artificial Support Medium. Int. J. Sci. Eng. Res. 2017, 8, 224–229. [Google Scholar]
- Crosby, G.W.; Craker, L.E. Development of Soilless Culture Methods for Production of Moringa (Moringa oleifera Lam.) Root and Leaf Biomass. Acta Hortic. 2007, 756, 139–146. [Google Scholar] [CrossRef]
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.H.; Farhangi, M. Nutrient Use in Vertical Farming: Optimal Electrical Conductivity of Nutrient Solution for Growth of Lettuce and Basil in Hydroponic Cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Mollafilabi, A.; Hassan, Z.R.K.; Aroiee, H.; Sadrabadi, H.R.; Jahedi, P.S.; Taghi, E.M. Effect of Optimizing Nitrogen and Potassium Application in Johnson Nutrient Solution on Essential Oil Content of Peppermint in Hydroponics Culture. Acta Hortic. 2010, 853, 157–160. [Google Scholar] [CrossRef]
- Managa, L.R.; du Toit, E.S.; Prinsloo, G. Variations in the Leaf Metabolite Profile between Hydroponic and Field Grown Moringa oleifera Lam. Genotypes. Biochem. Syst. Ecol. 2021, 97, 104302. [Google Scholar] [CrossRef]
- Managa, L.R.; du Toit, E.S.; Prinsloo, G. NMR-Based Metabolomic Analyses to Identify the Effect of Harvesting Frequencies on the Leaf Metabolite Profile of a Moringa oleifera Cultivar Grown in an Open Hydroponic System. Molecules 2021, 26, 2298. [Google Scholar] [CrossRef]
- Aliniaeifard, S.; Rezaei-Nejad, A.H.; Seifi-Kalhor, M.; Sahhlaei, A.; Aliniaeifard, A. Comparison of Soil and Perlite (with Nutrient Solution Supply) Growing Media for Cultivation of Lemon Verbena (Lippia citriodora var. ‘verbena’). Med. Aromat. Plant Sci. Biotechnol. 2011, 5, 30–33. [Google Scholar]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Propagation of Elite Cannabis sativa L. for the Production of Δ9-Tetrahydrocannabinol (THC) using Biotechnological Tools. In Medicinal Plant Biotechnology; Arora, R., Ed.; C.A.B.I.: Cambridge, MA, USA, 2011; pp. 98–114. [Google Scholar]
- Kalousek, P.; Schreiber, P.; Vyhnanek, T.; Trojan, V.; Adamcova, D.; Vaverkova, M.D. Effect of Landfill Leachate on the Growth Parameters in Two Selected Varieties of Fiber Hemp. Int. J. Environ. Res. 2020, 14, 155–163. [Google Scholar] [CrossRef]
- Malik, M.; Velechovsky, J.; Praus, L.; Janatova, A.; Kahankova, Z.; Kloucek, P.; Tlustos, P. Amino Acid Supplementation as a Biostimulant in Medical Cannabis (Cannabis sativa L.) Plant Nutrition. Front. Plant Sci. 2022, 13, 868350. [Google Scholar] [CrossRef]
- Yep, B.; Gale, N.V.; Zheng, Y.B. Comparing hydroponic and aquaponic rootzones on the growth of two drug-type Cannabis sativa L. cultivars during the flowering stage. Ind. Crop. Prod. 2020, 157, 112881. [Google Scholar] [CrossRef]
- Vaillant, N.; Monnet, F.; Hitmi, A.; Sallanon, H.; Coudret, A. Comparative study of responses in four Datura species to a zinc stress. Chemosphere 2005, 59, 1005–1013. [Google Scholar] [CrossRef]
- Zantanta, N.; Kambizi, L.; Etsassala, N.G.E.R.; Nchu, F. Comparing Crop Yield, Secondary Metabolite Contents, and Antifungal Activity of Extracts of Helichrysum odoratissimum Cultivated in Aquaponic, Hydroponic, and Field Systems. Plants 2022, 11, 2696. [Google Scholar] [CrossRef]
- Zeljkovic, S.C.; Aucique-Perez, C.E.; Štefelová, N.; De Diego, N. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem 2022, 375, 131845. [Google Scholar] [CrossRef]
- Sellar, A.D.W. Effects of Gibberellic Acid on Datura Species. Datura stramonium var. tatula (L.) Torr; University of Glasgow: Glasgow, UK, 1964. [Google Scholar]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 7th ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Kozai, T.; Niu, G. Role of the Plant Factory with Artificial Lighting (PFAL) in Urban Areas. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagi, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 7–34. [Google Scholar]
- Kubota, C. North America. In Plant Factory, 2nd ed.; Kozai, T., Niu, G., Takagi, M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 69–73. [Google Scholar]
- Sakamoto, Y.; Nakashima, T.; Okano, K. Growth and Quality of Chrysanthemum (Dendranthema grandiflora) Grown under Various Types of Hydroponic Systems. Environ. Control. Biol. 1998, 36, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Asker, H.M. Hydroponic Technology for Lily Flowers and Bulbs Production Using Rainwater and Some Common Nutrient Solutions. Afr. J. Biotechnol. 2015, 14, 2307–2313. [Google Scholar]
- Huett, D.O. Production and Quality of Sim Carnations Grown Hydroponically in Rockwool Substrate with Nutrient Solutions Containing Different Levels of Calcium, Potassium and Ammonium-Nitrogen. Aust. J. Exp. Agric. 1994, 34, 691–697. [Google Scholar] [CrossRef]
- Sarmah, R.; Bora, S.; Sarmah, R. Quality Blooming of Marigold in Hydroponics. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1792–1799. [Google Scholar] [CrossRef]
- Sonneveld, C.; Baas, R.; Nijssen, H.M.C.; de Hoog, J. Salt tolerance of flower crops grown in soilless culture. J. Plant Nutr. 1999, 22, 1033–1048. [Google Scholar] [CrossRef]
- Wahome, P.K.; Oseni, T.O.; Masarirambi, M.T.; Shongwe, V.D. Effects of Different Hydroponics Systems and Growing Media on the Vegetative Growth, Yield and Cut Flower Quality of Gypsophila (Gypsophila paniculata L.). World J. Agric. Sci. 2011, 7, 692–698. [Google Scholar]
- Chrysargyris, A.; Tzionis, A.; Xylia, P.; Nicola, S.; Tzortzakis, N. Physiochemical properties of petunia edible flowers grown under saline conditions and their postharvest performance under modified atmosphere packaging and ethanol application. J. Sci. Food Agric. 2019, 99, 3644–3652. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Tzionis, A.; Xylia, P.; Tzortzakis, N. Effects of Salinity on Tagetes Growth, Physiology, and Shelf Life of Edible Flowers Stored in Passive Modified Atmosphere Packaging or Treated With Ethanol. Front. Plant Sci. 2018, 9, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menegaes, J.F.; Fiorin, T.T.; Backes, F.A.; Lidório, H.F.; Franzen, F.d.; Zini, P.B.; Sousa, N.A. Germination and Production of Edible Flowers of Nasturtium in Hydroponic Cultivation. Braz. J. Dev. 2020, 6, 13381–13394. [Google Scholar] [CrossRef]
- Melo, E.F.R.Q.; dos Santos, O.S. Growth and production of nasturtium flowers in three hydroponic solutions. Hortic. Bras. 2011, 29, 584–589. [Google Scholar] [CrossRef] [Green Version]
- Shubhashree, M.N.; Shantha, T.R.; Ramarao, V.; Reddy, M.P.; Venkateshwarlu, G. A Review on the Therapeutic Uses of Flowers as Depicted in Classical Texts of Ayurveda and Siddha. J. Res. Educ. Indian Med. 2015, 21, 1–14. [Google Scholar]
- Reddy, P.M.; Kavya, B.; Ramarao, V.; Shantha, T.R.; Kumar, K.R.; Venkateshwarlu, G.; Rahmathulla, K. Theraputic uses of Flowers—Leads from Traditional System of Medicine. Int. J. Herb. Med. 2015, 3, 12–20. [Google Scholar]
- Sharma, Y.; Hegde, R.V.; Venugopal, C.K. Health and Nutrition from Ornamentals. Int. J. Res. Ayurveda Pharm. 2011, 2, 375–382. [Google Scholar]
- Gill, R.K. Nutrient Management for Growing Dandelion (Taraxacum officinale L.) in Nutrient Film and Deep Flow Hydroponics; University of Arkansas: Fayetteville, AR, USA, 2015. [Google Scholar]
- Karimi, M.; Ahmadi, N.; Ebrahimi, M. Red LED light promotes biomass, flowering and secondary metabolites accumulation in hydroponically grown Hypericum perforatum L. (cv. Topas). Ind. Crop. Prod. 2022, 175, 114239. [Google Scholar] [CrossRef]
- Murch, S.J.; Rupasinghe, H.P.V.; Saxena, P.K. An in vitro and hydroponic growing system for hypericin, pseudohypericin, and hyperforin production of St. John’s wort (Hypericum perforatum CV new stem). Planta Med. 2002, 68, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, I.C.A.; Boldrin, P.F.; Pacheco, F.V.; Silva, S.T.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Effects on growth, essential oil content and composition of the volatile fraction of Achillea millefolium L. cultivated in hydroponic systems deficient in macro- and microelements. Sci. Hortic. 2015, 197, 329–338. [Google Scholar] [CrossRef]
- Pedneault, K.; Léonhart, S.; Gosselin, A.; Papadopoulos, A.P.; Dorais, M.; Angers, P. Variations in Concentration of Active Compounds in Four Hydroponically-and Field-Grown Medicinal Plant Species. Acta Hortic. 2002, 580, 255–262. [Google Scholar] [CrossRef]
- Pedneault, K.; Dorais, M.; Léonhart, S.; Angers, P.; Gosselin, A. Time-Course Accumulation of Flavonoids in Hydroponically Grown Achillea millefolium L. Can. J. Plant Sci. 2014, 94, 383–395. [Google Scholar] [CrossRef]
- Stewart, C.L.; Lovett-Doust, L. Effect of phosphorus treatment on growth and yield in the medicinal herb Calendula officinalis L. (Standard Pacific) under hydroponic cultivation. Can. J. Plant Sci. 2003, 83, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Harrathi, J.; Hosni, K.; Karray-Bouraoui, N.; Attia, H.; Marzouk, B.; Magne, C.; Lachaal, M. Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol. Plant. 2012, 34, 129–137. [Google Scholar] [CrossRef]
- Karray-Bouraoui, N.; Harbaoui, F.; Rabhi, M.; Jallali, I.; Ksouri, R.; Attia, H.; Msilini, N.; Lachaal, M. Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol. Plant 2011, 33, 1435–1444. [Google Scholar] [CrossRef]
- Azad, H.N.; Kafilzadeh, F. Physiological Responses to Mercury Stress in the Hydroponic Cultures of Safflower (Carthamus tinctorius L.) Plants. J. Biodivers. Environ. Sci. 2012, 2, 12–20. [Google Scholar]
- Gautam, S.; Bhagyawant, S.S.; Srivastava, N. Antioxidant Responses and Isoenzyme Activity of Hydroponically Grown Safflower Seedlings under Copper Stress. Indian J. Plant Physiol. 2018, 23, 342–351. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Alsadon, A.; Ibrahim, A.; El-Mahrouk, M. Effects of Growing Substrate, Mode of Nutrient Supply, and Saffron Corm Size on Flowering, Growth, Photosynthetic Competence, and Cormlet Formation in Hydroponics. Horttechnology 2022, 32, 234–240. [Google Scholar] [CrossRef]
- Schroeder, F.-G.; Lozoya, D.R.; Ruser, P. Hydroponic Forcing of Saffron (Crocus sativus L.). Acta Hortic. 2020, 1273, 281–288. [Google Scholar] [CrossRef]
- Ai, P.H.; Liu, X.Q.; Li, Z.A.; Kang, D.R.; Khan, M.A.; Li, H.; Shi, M.K.; Wang, Z.C. Comparison of chrysanthemum flowers grown under hydroponic and soil-based systems: Yield and transcriptome analysis. Bmc. Plant Biol. 2021, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gontier, E.; Clement, A.; Tran, T.L.M.; Gravot, A.; Lievre, K.; Guckert, A.; Bourgaud, F. Hydroponic combined with natural or forced root permeabilization: A promising technique for plant secondary metabolite production. Plant Sci. 2002, 163, 723–732. [Google Scholar] [CrossRef]
- Jousse, C.; Vu, T.D.; Tran, T.L.M.; Al Balkhi, M.H.; Molinie, R.; Boitel-Conti, M.; Pilard, S.; Mathiron, D.; Hehn, A.; Bourgaud, F.; et al. Tropane Alkaloid Profiling of Hydroponic Datura innoxia Mill. Plants Inoculated with Agrobacterium rhizogenes. Phytochem. Anal. 2010, 21, 118–127. [Google Scholar] [CrossRef]
- Vu, T.D.; Jousse, C.; Pawlicki-Jullian, N.; Schiltz, S.; Nguyen, T.K.O.; Tran, T.L.M.; Bouquet, L.A.; Hehn, A.; Boitel-Conti, M.; Moussaron, J.; et al. Datura innoxia plants hydroponically-inoculated with Agrobacterium rhizogenes display an enhanced growth and alkaloid metabolism. Plant Sci. 2018, 277, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Husakova, L.; Graziani, G.; Patocka, J.; Vydra, M.; Rouphael, Y. Nickel uptake in hydroponics and elemental profile in relation to cultivation reveal variability in three Hypericum species. Plant Physiol. Bioch. 2022, 185, 357–367. [Google Scholar] [CrossRef]
- Gao, W.; He, D.X.; Zheng, J.F.; Li, Y. Effects of light intensity and LED spectrum on the medicinal component accumulation of hydroponic Hypericum perforatum L. under controlled environments. Int. J. Agr. Biol. Eng. 2022, 15, 63–69. [Google Scholar] [CrossRef]
- Paponov, M.; Antonyan, M.; Slimestad, R.; Paponov, I.A. Decoupling of Plant Growth and Accumulation of Biologically Active Compounds in Leaves, Roots, and Root Exudates of Hypericum perforatum L. by the Combination of Jasmonate and Far-Red Lighting. Biomolecules 2021, 11, 1283. [Google Scholar] [CrossRef]
- He, W.J.; Yan, K.; Zhang, Y.; Bian, L.X.; Mei, H.M.; Han, G.X. Contrasting photosynthesis, photoinhibition and oxidative damage in honeysuckle (Lonicera japonica Thunb.) under iso-osmotic salt and drought stresses. Environ. Exp. Bot. 2021, 182, 104313. [Google Scholar] [CrossRef]
- Yan, K.; Bian, L.X.; He, W.J.; Han, G.X.; Zhang, Z.S.; Sun, Z.; Liang, L.K.; Jia, H.X.; Wang, G.M. Phytohormone signaling pathway for eliciting leaf phenolic synthesis in honeysuckle (Lonicera japonica Thunb.) under coastal saline environment. Ind. Crop. Prod. 2020, 157, 112929. [Google Scholar] [CrossRef]
- Yu, M.M.; Chen, Y.H.; Zhu, Z.B.; Liu, L.; Zhang, L.X.; Guo, Q.S. Effect of phosphorus supply on plant productivity, photosynthetic efficiency and bioactive-component production in Prunella vulgaris L. under hydroponic condition. J. Plant Nutr. 2016, 39, 1672–1680. [Google Scholar] [CrossRef]
- Tian, J.; Pang, Y.; Zhao, Z. Comparative Transcriptome Analysis of Sophora japonica (L.) Roots Reveals Key Pathways and Genes in Response to PEG-Induced Drought Stress under Different Nitrogen Conditions. Forests 2021, 12, 650. [Google Scholar] [CrossRef]
- Townsend, A.M. The Search for Salt Tolerant Trees. Arboric. J. 1989, 13, 67–73. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Maggini, R.; Incrocci, L.; Pardossi, A.; Tzortzakis, N. Copper Tolerance and Accumulation on Pelargonium graveolens L’Her. Grown in Hydroponic Culture. Plants 2021, 10, 1663. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, M.V.; López-Córcoles, H.; Alonso, G.L. Effect of the Hydroponic Growing of Forced Crocus sativus L. on the Saffron Quality. Acta Hortic. 2017, 1184, 287–292. [Google Scholar] [CrossRef]
- Zobayed, S.; Saxena, P.K. Production of St. John’s wort plants under controlled environment for maximizing biomass and secondary metabolites. Vitr. Cell. Dev. Biol. Plant 2004, 40, 108–114. [Google Scholar] [CrossRef]
- Moslemi, F.S.; Vaziri, A.; Sharifi, G.; Gharechahi, J. The Effect of Salt Stress on some Secondary Metabolites of Saffron. J. Plant Res. 2021, 34, 263–274. [Google Scholar]
- Sorooshzadeh, A.; Tabibzadeh, Z. Effect of Copper in Hydroponic Solution on Leaves and Roots of Saffron (Crocus sativus L.). Acta Hortic. 2015, 1062, 83–88. [Google Scholar] [CrossRef]
- Giurgiu, R.M.; Morar, G.; Dumitraș, A.; Vlăsceanu, G.; Dune, A.; Schroeder, F.-G. A Study of the Cultivation of Medicinal Plants in Hydroponic and Aeroponic Technologies in a Protected Environment. Acta Hortic. 2017, 1170, 671–678. [Google Scholar] [CrossRef]
- Briskin, D.P.; Leroy, A.; Gawienowski, M. Influence of nitrogen on the production of hypericins by St. John’s wort. Plant Physiol. Bioch. 2000, 38, 413–420. [Google Scholar] [CrossRef]
- Yan, K.; Cui, M.X.; Zhao, S.J.; Chen, X.B.; Tang, X.L. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.). Front. Plant Sci. 2016, 7, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollafilabi, A.; Koocheki, A.; Moeinerad, H.; Kooshki, L. Effect of Plant Density and Weight of Corm on Yield and Yield Components of Saffron (Crocus sativus L.) under Soil, Hydroponic and Plastic Tunnel Cultivation. Acta Hortic. 2013, 997, 51–58. [Google Scholar] [CrossRef]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Gresta, F.; Napoli, E.; Ceravolo, G.; Santonoceto, C.; Strano, T.; Ruberto, G. Stigmas Yield and Volatile Compounds of Saffron (Crocus sativus) in a Late Sowing under Greenhouse with Two Nitrogen Rates. Acta Hortic. 2017, 1184, 293–300. [Google Scholar] [CrossRef]
- Geilfus, C.-M. Controlled Environment Horticulture: Improving Quality of Vegetables and Medicinal Plants; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Kitaya, Y.; Hirai, H.; Wei, X.; Islam, A.F.M.S.; Yamamoto, M. Growth of sweetpotato cultured in the newly designed hydroponic system for space farming. Adv Space Res 2008, 41, 730–735. [Google Scholar] [CrossRef]
- Mackowiak, C.L.; Wheeler, R.M.; Stutte, G.W.; Yorio, N.C.; Ruffe, L.M. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.). Hortscience 1998, 33, 650–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortley, D.G.; Bonsi, C.K.; Loretan, P.A.; Morris, C.E.; Hill, W.A.; Ogbuehi, C.R. Evaluation of Sweet-Potato Genotypes for Adaptability to Hydroponic Systems. Crop. Sci. 1991, 31, 845–847. [Google Scholar] [CrossRef]
- Sakamoto, M.; Suzuki, T. Effect of Pot Volume on the Growth of Sweetpotato Cultivated in the New Hydroponic System. Sustain. Agric. Res. 2018, 7, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Suzuki, T. Effect of Nutrient Solution Concentration on the Growth of Hydroponic Sweetpotato. Agronomy 2020, 10, 1708. [Google Scholar] [CrossRef]
- Ritter, E.; Angulo, B.; Riga, P.; Herran, C.; Relloso, J.; San Jose, M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 2001, 44, 127–135. [Google Scholar] [CrossRef]
- Eguchi, T.; Yoshida, S. A Cultivation Method to Ensure Tuberous Root Formation in Sweetpotatoes (Ipomoea batatas (L.) Lam.). Environ. Control. Biol. 2004, 42, 259–266. [Google Scholar] [CrossRef]
- Pandey, R.; Jain, V.; Sing, K.P. Hydroponics Agriculture: Its Status, Scope and Limitations. Indian Agric. Res. Inst. 2009, 20, 20–29. [Google Scholar]
- Ahmadi, F.; Samadi, A.; Sepehr, E.; Rahimi, A.; Shabala, S. Optimizing hydroponic culture media and NO3−/NH4+ ratio for improving essential oil compositions of purple coneflower (Echinacea purpurea L.). Sci. Rep. 2021, 11, 8009. [Google Scholar] [CrossRef]
- Lux, A.; Vaculik, M.; Martinka, M.; Liskova, D.; Kulkarni, M.G.; Stirk, W.A.; Van Staden, J. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea. Ann. Bot. 2011, 107, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.B.; Dixon, M.; Saxena, P.K. Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia. Planta Med. 2006, 72, 1407–1414. [Google Scholar] [CrossRef]
- Sato, S.; Ikeda, H.; Furukawa, H.; Murata, Y.; Tomoda, M. The effects of nutrient solution concentration on inorganic and glycyrrhizin contents of Glycyrrhiza glabra Linn. Yakugaku Zasshi 2004, 124, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Ou, X.H.; Li, S.P.; Liao, P.R.; Cui, X.M.; Zheng, B.L.; Yang, Y.; Liu, D.H.; Zheng, Y. The transcriptome variations of Panax notoginseng roots treated with different forms of nitrogen fertilizers. BMC Genom. 2019, 20, 965. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. A Novel HPLC-Assisted Method for Investigation of the Fe2+-Chelating Activity of Flavonoids and Plant Extracts. Molecules 2014, 19, 18296–18316. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei, S.J. Effects of Cultivation Systems on the Growth, and Essential Oil Content and Composition of Valerian. J. Herbs Spices Med. Plants 2008, 14, 54–65. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Bai, Z.Q.; Zhang, X.J.; Wang, S.L. An Intelligent Hydroponic Device for Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. J. Sens. 2021, 2021, 4967954. [Google Scholar] [CrossRef]
- Kakutani, K.; Ozaki, K.; Watanabe, H.; Tomoda, K. Preparation of Licorice Seedling by Node Culture and Glycyrrhizin Production by Several Nutricultures Using the Seedling. Nat. Med. 1997, 51, 447–451. [Google Scholar]
- Wei, H.; Manivannan, A.; Chen, Y.; Jeong, B.R. Effect of Different Cultivation Systems on the Accumulation of Nutrients and Phytochemicals in Ligularia fischeri. Hortic. Plant J. 2018, 4, 24–29. [Google Scholar] [CrossRef]
- Thakur, K.; Partap, M.; Kumar, D.; Warghat, A.R. Enhancement of picrosides content in Picrorhiza kurroa Royle ex Benth. mediated through nutrient feeding approach under aeroponic and hydroponic system. Ind. Crop. Prod. 2019, 133, 160–167. [Google Scholar] [CrossRef]
- Nose, M.; Tsutsui, R.; Hisaka, S.; Akiyama, H.; Inui, T.; Kawano, N.; Hayashi, S.; Hishida, A.; Fuchino, H.; Kudo, T.; et al. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems III: Anti-allergic effects of hot water extracts on IgE-mediated immediate hypersensitivity in mice. J. Nat. Med. 2020, 74, 463–466. [Google Scholar]
- Nose, M.; Yamanaka, K.; Hisaka, S.; Inui, T.; Kawano, N.; Hayashi, S.; Hishida, A.; Fuchino, H.; Kawahara, N.; Yoshimatsu, K. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic-field hybrid cultivation systems II: Comparison of serum concentration of glycyrrhetinic acid serum concentration in mice. J. Nat. Med. 2019, 73, 661–666. [Google Scholar] [CrossRef]
- Akiyama, H.; Nose, M.; Ohtsuki, N.; Hisaka, S.; Takiguchi, H.; Tada, A.; Sugimoto, N.; Fuchino, H.; Inui, T.; Kawano, N.; et al. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems. J. Nat. Med. 2017, 71, 265–271. [Google Scholar] [CrossRef] [PubMed]
- von Bieberstein, P.; Xu, Y.M.; Gunatilaka, A.A.L.; Gruener, R. Biomass Production and Withaferin A Synthesis by Withania somnifera Grown in Aeroponics and Hydroponics. Hortscience 2014, 49, 1506–1509. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Guo, X.-R.; Yang, N.; Zhang, Y.; Tang, Z.-H.; Wang, H.-Z. Physiological Mechanisms in Astragalus membranaceus Seedlings Responding to Cadmium Stress. Bull. Bot. Res. 2019, 39, 497–504. [Google Scholar]
- Tan, Y.; Liang, Z.-S.; Wang, W.-L.; Duan, Q.-M. Effect of Nitrogen, Phosphorus and Potassium Stress on Root Vigor and Hydraulic Conductance of Astragalus membranaceus Seedling. Chin. J. Eco Agric. 2007, 15, 69–72. [Google Scholar]
- Huang, W.L.; Jiao, J.; Ru, M.; Bai, Z.Q.; Yuan, H.L.; Bao, Z.A.; Liang, Z.S. Localization and Speciation of Chromium in Coptis chinensis Franch. using Synchrotron Radiation X-ray Technology and Laser Ablation ICP-MS. Sci. Rep. 2018, 8, 8603. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.L.; Bai, Z.Q.; Jiao, J.; Yuan, H.L.; Bao, Z.A.; Chen, S.N.; Ding, M.H.; Liang, Z.S. Distribution and chemical forms of cadmium in Coptis chinensis Franch. determined by laser ablation ICP-MS, cell fractionation, and sequential extraction. Ecotoxicol. Environ. Safe 2019, 171, 894–903. [Google Scholar] [CrossRef]
- Montanari, M.; Degl’Innocenti, E.; Maggini, R.; Pacifici, S.; Pardossi, A.; Guidi, L. Effect of nitrate fertilization and saline stress on the contents of active constituents of Echinacea angustifolia DC. Food Chem. 2008, 107, 1461–1466. [Google Scholar] [CrossRef]
- Hou, J.L.; Li, W.D.; Zheng, Q.Y.; Wang, W.Q.; Xiao, B.; Xing, D. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 2010, 38, 160–168. [Google Scholar] [CrossRef]
- Jiang, M.; Ma, M.; Luo, J.C.; Wu, Q. Salt accumulation and secretion patterns of Glycyrrhiza uralensis in saline habitats. Flora 2019, 259, 151449. [Google Scholar] [CrossRef]
- Dimitrova, V.; Georgieva, T.; Markovska, Y. Influence of Salt Stress on some Physiological Characteristics of Two Lycium Varieties Grown Ex Vitro in Hydroponics. In Proceedings of the Youth Scientific Conference “Kliment’s Days”, Sofia, Bulgaria, 19–20 November 2015; pp. 141–148. [Google Scholar]
- Dimitrova, V.; Georgieva, T.; Geneva, M.; Markovska, Y. Determination of Total Antioxidant Capacity in Two Lycium Species Grown Ex Vitro at High Salinity in Hydroponic. In Proceedings of the Youth Scientific Conference “Kliment’s Days”, Sofia, Bulgaria, 17–18 November 2016; pp. 176–185. [Google Scholar]
- Ou, X.H.; Cui, X.M.; Zhu, D.W.; Guo, L.P.; Liu, D.H.; Yang, Y. Lowering Nitrogen and Increasing Potassium Application Level Can Improve the Yield and Quality of Panax notoginseng. Front. Plant Sci. 2020, 11, 595095. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Kaufman, P.B.; Chang, S.C.; Warber, S.; Bolling, S.; Vardapetyan, H. Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Rep. 2006, 25, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Connell, S.L.; Al-Hamdani, S.H. Selected physiological responses of kudzu to different chromium concentrations. Can. J. Plant Sci. 2001, 81, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.-D.; Wu, Z.-W.; Yuan, Z.-Y.; Chen, H.-G.; Wu, K.; Jia, X.-C. Effect of Foreign Ferulic Acid at Different Levels on the Growth of Rehmannia glutinosa under Water Culture Condition. J. Henan Agric. Univ. 2009, 43, 25–29. [Google Scholar]
- Wu, Z.-W.; Wang, M.-D.; Liu, L.-Y.; Chen, H.-G.; Jia, X.-C. Phenolic Compounds Accumulation in Continuously Cropped Rehmannia glutinosa soil and their Effects on R. glutinosa growth. Chin. J. Ecol. 2009, 28, 660–664. [Google Scholar]
- Zhao, G.M.; Shi, Q.M.; Han, Y.; Li, S.H.; Wang, C.H. The Physiological and Biochemical Responses of a Medicinal Plant (Salvia miltiorrhiza L.) to Stress Caused by Various Concentrations of NaCl. PLoS ONE 2014, 9, e89624. [Google Scholar]
- Minami, M.; Yomo, T.; Hasegawa, C.; Ohe, C.; Ashida, K.; Sugino, M. Production of Medicinal Plants by Soilless Culture System. I. Studies of Morphological Characteristics and Saikosaponins Content in Bupleurum falcatum Cultivated by Ebb & Flood System. Yakugaku Zasshi 1995, 115, 832–842. [Google Scholar]
- Sawada, H.; Saito, T.; Kudo, Y.; Ono, T.; Yoshimatsu, K. Hydroponics System and Hydroponics Method. Japanese Patent JP2012100573A, 9 November 2010. [Google Scholar]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Saini, S. Nutrients for Hydroponic Systems in Fruit Crops. In Urban Horticulture—Necessity of the Future; Solankey, S.S., Akhtar, S., Maldonado, A.I.L., Rodriguez-Fuentes, H., Contreras, J.A.V., Reyes, J.M.M., Eds.; IntechOpen: London, UK, 2020; pp. 1–11. [Google Scholar]
- de Miranda, F.R.; da Silva, V.B.; dos Santos, F.S.R.; Rossetti, A.G.; da Silva, C.D.B. Production of strawberry cultivars in closed hydroponic systems and coconut fibre substrate. Rev. Cienc. Agron. 2014, 45, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.E.F.; Frye, R.F. Effects of Herbal Supplements on Drug Glucuronidation. Review of Clinical, Animal, and In Vitro Studies. Planta Med. 2011, 77, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.P.; Liu, X.Y.; Li, Z.G.; Qi, A.R.; Yao, P.; Zhou, Z.Y.; Dong, T.N.T.X.; Tsim, K.W.K. A Review of Dietary Ziziphus jujuba Fruit (Jujube): Developing Health Food Supplements for Brain Protection. Evid.-Based Complement. Altern. Med. 2017, 2017, 3019568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Chen, R.H.; Wang, Y.F.; Wu, C.Y.; Huang, J. Genome-Wide Identification of WRKY Transcription Factors in Chinese jujube (Ziziphus jujuba Mill.) and Their Involvement in Fruit Developing, Ripening, and Abiotic Stress. Genes 2019, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Sellami, H.K.; Napolitano, A.; Masullo, M.; Smiti, S.; Piacente, S.; Pizza, C. Influence of growing conditions on metabolite profile of Ammi visnaga umbels with special reference to bioactive furanochromones and pyranocoumarins. Phytochemistry 2013, 95, 197–206. [Google Scholar] [CrossRef]
- Vilasboa, J.; da Costa, C.T.; Matsuura, H.N.; Fett-Neto, A.G. Rooting of cuttings of Passiflora suberosa, a medicinal passion fruit species: Characterization and modulation by external biochemical factors. Isr. J. Plant Sci. 2020, 67, 40–51. [Google Scholar] [CrossRef]
- Ahmed, H.S.; Moawad, A.S.; AbouZid, S.F.; Owis, A.I. Salicylic acid increases flavonolignans accumulation in the fruits of hydroponically cultured Silybum marianum. Saudi Pharm. J. 2020, 28, 593–598. [Google Scholar] [CrossRef]
- Avramaki, E.; Chatzissavvidis, C.; Papadakis, I. Effects of Different Ion Sources on Mineral Concentration in Gardenia (Gardenia jasminoides Ellis) Plants. J. Biol. Res. 2006, 6, 227–230. [Google Scholar]
- Kosola, K.R.; Workmaster, B.A.A.; Spada, P.A. Inoculation of cranberry (Vaccinium macrocarpon) with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx. New Phytol. 2007, 176, 184–196. [Google Scholar] [CrossRef]
- Khattab, S.; Yap, Y.K.; El Sherif, F. Salicylic Acid Foliar Spray Enhanced Silybum marianum Growth and Yield, as Well as Its Chemical Constituents and Chalcone Synthase Gene Activity. Horticulturae 2022, 8, 556. [Google Scholar] [CrossRef]
- Attia, F.; Ibrahim, H.; Cadet, A.; Garcia, M. Evaluation of Leaf, Must and Wine Cation Contents and of Must and Wines Acidity of Five Red Wine Grape Cultivars (Vitis vinifera L.) Grafted onto 3309 Couderc and Grown Hydroponically. Acta Hortic. 2004, 652, 255–263. [Google Scholar] [CrossRef]
- Attia, F.; Garcia, F.; Garcia, M.; Besnard, E.; Lamaze, T. Effect of Rootstock on Organic Acids in Leaves and Berries and on Must and Wine Acidity of Two Red Wine Grape Cultivars ‘Malbec’ and ‘Négrette’ (Vitis vinifera L.) Grown Hydroponically. Acta Hortic. 2007, 754, 473–482. [Google Scholar] [CrossRef]
- Kim, J.; Lea-Cox, J.D.; Chappell, M.; van Iersel, M.W. Wireless Sensors Networks for Optimization of Irrigation, Production, and Profit in Ornamental Production. Acta Hortic. 2014, 1037, 643–649. [Google Scholar]
- Balant, M.; Gras, A.; Ruz, M.; Valles, J.; Vitales, D.; Garnatje, T. Traditional uses of Cannabis: An analysis of the CANNUSE database. J. Ethnopharmacol. 2021, 279, 114362. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.T.; Chen, T.T. Chinese Medical Herbology and Pharmacology; Art of Medicne Press: City of Industry, CA, USA, 2004. [Google Scholar]
- Ostapczuk, K.; Apori, S.O.; Estrada, G.; Tian, F.R. Hemp Growth Factors and Extraction Methods Effect on Antimicrobial Activity of Hemp Seed Oil: A Systematic Review. Separations 2021, 8, 183. [Google Scholar] [CrossRef]
- Brand, E.J.; Zhao, Z.Z. Cannabis in Chinese Medicine: Are Some Traditional Indications Referenced in Ancient Literature Related to Cannabinoids? Front. Pharmacol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torabi, M.; Mokhtarzadeh, A.; Mahlooji, M. The Role of Hydroponics Technique as a Standard Methodology in Various Aspects of Plant Biology Researches. In Hydroponics—A Standard Methodology for Plant Biological Researches; Asao, T., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 113–134. [Google Scholar]
- Ikeda, H.; Koohakan, P.; Jaenaksorn, T. Problems and Countermeasures in the Re-Use of the Nutrient Solution in Soilless Production. Acta Hortic. 2002, 578, 213–219. [Google Scholar] [CrossRef]
- Yang, X. Encyclopedic Reference of Traditional Chinese Medicine; Springer: Berlin, Germany, 2003. [Google Scholar]
- Baker, J.R. The Old Woman and Her Gifts: Pharmacological Bases of the Chumash Use of Datura. Curare 1994, 17, 253–276. [Google Scholar]
- Soni, P.; Siddiqui, A.A.; Dwivedi, J.; Soni, V. Pharmacological Properties of Datura stramonium L. as a Potential Medicinal Tree: An Overview. Asian Pac. J. Trop. Biomed. 2012, 2, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Kadam, S.D.; Chavhan, S.A.; Shinde, S.A.; Sapkal, P.N. Pharmacognostic Review on Datura. Int. J. Pharmacogn. Chin. Med. 2018, 10, 171. [Google Scholar] [CrossRef]
- Gaire, B.P.; Subedi, L. A Review on the Pharmacological and Toxicological Aspects of Datura stramonium L. J. Integr. Med. 2013, 11, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Lyles, J.T.; Kim, A.; Nelson, K.; Bullard-Roberts, A.L.; Hajdari, A.; Mustafa, B.; Quave, C.L. The Chemical and Antibacterial Evaluation of St. John’s Wort Oil Macerates Used in Kosovar Traditional Medicine. Front. Microbiol. 2017, 8, 1639. [Google Scholar] [CrossRef] [Green Version]
- Porzel, A.; Farag, M.A.; Mulbradt, J.; Wessjohann, L.A. Metabolite profiling and fingerprinting of Hypericum species: A comparison of MS and NMR metabolomics. Metabolomics 2014, 10, 574–588. [Google Scholar] [CrossRef]
- Zobayed, S.M.A.; Afreen, F.; Goto, E.; Kozai, T. Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum. Ann. Bot. 2006, 98, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Benis, K.; Ferrão, P. Commercial farming within the urban built environment—Taking stock of an evolving field in northern countries. Glob. Food Secur. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Papadopoulos, I.I.; Chatiztheodoridis, F.; Papadopoulos, C.; Tarelidis, V.; Gianneli, C. Evaluation of Hydroponic Production of Vegetables and Ornamental Pot-Plants in a Heated Greenhouse in Western Macedonia, Greece. Am. J. Agric. Biol. Sci. 2008, 3, 559–565. [Google Scholar]
- Volenzo, T.; Odiyo, J. Integrating endemic medicinal plants into the global value chains: The ecological degradation challenges and opportunities. Heliyon 2020, 6, e04970. [Google Scholar] [CrossRef]
Hydroponic System | Plant Species | References |
---|---|---|
Liquid Culture Methods | ||
Deep Flow Technique | Agastache rugosa Kuntze | [46,47,48,49,50] |
Cannabis sativa L. | [51] | |
Datura stramonium L. | [52] | |
Euphorbia peplus L. | [53] | |
Mentha spicata L. | [27,54] | |
Mentha arvensis var. piperascens Malinv. ex Holmes (synonym of Mentha canadensis L.) | [54] | |
Nutrient Film Technique | Atropa belladonna L. | [26] |
Cannabis sativa L. | [51] | |
Plectranthus amboinicus (Lour.) Spreng. | [55] | |
Datura stramonium L. | [52] | |
Lepidium sativum L. | [56] | |
Mentha × piperita L. | [33] | |
Morus alba L. ‘Ichinose’ | [57] | |
Nepeta cataria L. | [33] | |
Origanum dictamnus L. | [58,59] | |
Ocimum basilicum L. | [56] | |
Scutellaria lateriflora L. | [33] | |
Urtica dioica L. | [33] | |
Floating Technique | Artemisia vulgaris L. | [60,61] |
Camellia sinensis (L.) Kuntze ‘Yabukita’ | [62,63] | |
Cannabis sativa L. | [51] | |
Cannabis sativa L. ‘Cherry’, ‘Cherry Blossom’, and ‘Canda’ | [64] | |
Cannabis sativa L. ‘Pennywise’ | [65] | |
Cannabis sativa L. type-II chemovar ‘Nordle’ and type-I chemovar ‘Sensi Star’ | [66] | |
Camptotheca acuminata Decne. | [67] | |
Centella asiatica (L.) Urb. | [68] | |
Plectranthus amboinicus (Lour.) Spreng. | [69] | |
Coriandrum sativum L. | [70] | |
Dendrobium nobile Lindl. | [71] | |
Ephedra sinica Stapf | [72] | |
Hyssopus officinalis L. ‘Lekar’ | [73] | |
Ilex purpurea Hassk. (synonym of Ilex chinensis Sims) | [74] | |
Leonurus japonicus Houtt. | [75] | |
Lobelia chinensis Lour. | [76] | |
Melissa officinalis L. | [77] | |
Mentha × piperita L. | [78] | |
Ocimum basilicum L. | [31] | |
Ocimum basilicum L. ‘Genovese’ | [78,79] | |
Ocimum basilicum L. ‘Eleonora’, ‘Aroma 2′, and ‘Italiano Classico’ | [80] | |
Ocimum basilicum L. ‘Superbo’ and ‘Dark Opal’ | [79] | |
Platycladus orientalis (L.) Franco | [81,82,83] | |
Solanum nigrum Acerbi ex Dunal | [76] | |
Stellaria media (L.) Vill. | [60,61] | |
Urtica dioica L. | [84,85] | |
Capillary Action Technique | Aloe vera (L.) Burm.f. | [86] |
Cannabis sativa L. | [51] | |
Cannabis sativa L. | [51] | |
Ebb and Flow Technique | Mentha × piperita L. | [33] |
Moringa oleifera Lam. ‘PK1’ and Malawi’ | [87] | |
Nepeta cataria L. | [33] | |
Ocimum basilicum L. ‘Emily’ | [88] | |
Scutellaria lateriflora L. | [33] | |
Urtica dioica L. | [33] | |
Solid Culture Methods | ||
Grow Bag Technique | Cannabis sativa L. | [51] |
Mentha × piperita L. | [89] | |
Moringa oleifera Lam. ‘PK1’ and Malawi’ | [90,91] | |
Pot Technique | Aloysia citrodora Paláu ‘Verbena’ | [92] |
Cannabis sativa L. | [51,93] | |
Cannabis sativa L. ‘Bialobrzeskie’ and ‘Monoica’ | [94] | |
Cannabis sativa L. ‘McLove’ | [95] | |
Cannabis sativa L. type-II chemovar ‘Nordle’ | [96] | |
Datura stramonium L. | [97] | |
Helichrysum odoratissimum Sweet | [98] | |
Mentha arvensis L. | [99] | |
Mentha × piperita L. | [99] | |
Mentha spicata L. | [99] | |
Ocimum basilicum L. ‘Chádek červená’, ‘Litra’, and ‘Mánes’ | [99] | |
Trough Technique | Cannabis sativa L. | [51] |
Datura stramonium L. | [100] |
Hydroponic System | Plant Species | References |
---|---|---|
Liquid Culture Methods | ||
Deep Flow Technique | Chrysanthemum × morifolium (Ramat.) Hemsl. ‘Syuho-no-chikara’ | [104] |
Taraxacum officinale F.H.Wigg. | [117] | |
Nutrient Film Technique | Crocus sativus L. | [30] |
Datura stramonium L. | [52] | |
Hypericum perforatum L. ‘Topas’ | [118] | |
Hypericum perforatum L. ‘New Stem’ | [119] | |
Taraxacum officinale F.H.Wigg. | [117] | |
Floating Technique | Achillea millefolium L. | [60,61,120,121,122] |
Borago officinalis L. | [61,122] | |
Calendula officinalis L. | [60,61,123] | |
Carthamus tinctorius L. | [124,125] | |
Carthamus tinctorius L. ‘Zarghan-Fars’ | [126] | |
Carthamus tinctorius L. ‘PBNS-12′ | [127] | |
Crocus sativus L. | [128,129] | |
Chrysanthemum × morifolium (Ramat.) Hemsl. ‘Wuyuanhuang’ | [130] | |
Datura innoxia Mill. | [131,132,133] | |
Datura stramonium L. | [52] | |
Hypericum olympicum L. | [134] | |
Hypericum orientale L. | [134] | |
Hypericum perforatum L. | [61,134,135,136] | |
Lonicera japonica Thunb. | [137,138] | |
Prunella vulgaris L. | [139] | |
Sophora japonica L. (synonymous with Styphnolobium japonicum (L.) Schott) | [74,140,141] | |
Tanacetum parthenium Sch.Bip. | [60,61,121] | |
Taraxacum officinale F.H.Wigg. | [60,61,121] | |
Capillary Action Technique | Chrysanthemum × morifolium (Ramat.) Hemsl. ‘Syuho-no-chikara’ | [104] |
Pelargonium graveolens L’Hér. | [142] | |
Ebb and Flow Technique | Crocus sativus L. | [128,143] |
Hypericum perforatum L. ‘New Stem’ | [144] | |
Solid Culture Methods | ||
Pot Technique | Calendula officinalis L. | [123] |
Crocus sativus L. | [145,146] | |
Datura innoxia Mill. | [97] | |
Datura metel L. | [97] | |
Datura sanguinea (now known as Brugmansia sanguinea (Ruiz & Pav.) D.Don) | [97] | |
Datura stramonium L. | [97] | |
Hypericum perforatum L. | [147] | |
Hypericum perforatum L. ‘Topas’ | [148] | |
Lavandula angustifolia Mill. | [147] | |
Lonicera japonica Thunb. | [149] | |
Sophora japonica (synonymous with Styphnolobium japonicum (L.) Schott) | [141] | |
Thymus vulgaris L. | [147] | |
Trough Technique | Crocus sativus L. | [150] |
Datura stramonium L. | [100] |
Hydroponic System | Plant Species | References |
---|---|---|
Liquid Culture Methods | ||
Deep Flow Technique | Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao (synonym of Astragalus mongholicus Bunge) | [169] |
Echinacea purpurea (L.) Moench | [164] | |
Echinacea angustifolia DC. | [164] | |
Glycyrrhiza glabra L. | [170] | |
Glycyrrhiza uralensis Fisch. | [29] | |
Ligularia fischeri Turcz. | [171] | |
Picrorhiza kurroa Royle ex Benth. | [172] | |
Taraxacum officinale F.H.Wigg. | [117] | |
Nutrient Film Technique | Anemopsis californica (Nutt.) Hook. & Arn. | [33] |
Arctium lappa L. | [33] | |
Atropa belladonna L. | [26] | |
Coptis japonica Makino | [26] | |
Morus alba L. ‘Ichinose’ | [57] | |
Glycyrrhiza uralensis Fisch. | [26] | |
Glycyrrhiza uralensis Fisch. ‘GuIV1’ | [173,174] | |
Glycyrrhiza uralensis Fisch. ‘GuIV1’ and ‘GuIV2’ | [175] | |
Taraxacum officinale F.H.Wigg. | [117] | |
Urtica dioica L. | [33] | |
Withania somnifera (L.) Dunal | [176] | |
Zingiber officinale Roscoe | [33] | |
Floating Technique | Astragalus membranaceus Fisch. ex Bunge (synonymous with Astragalus mongholicus Bunge) | [177,178] |
Carlina acaulis L. | [32] | |
Coptis chinensis Franch. | [179,180] | |
Echinacea angustifolia DC. | [31,181] | |
Glycyrrhiza uralensis Fisch. | [182,183] | |
Inula helenium L. | [60,61,121] | |
Ligularia fischeri Turcz. | [171] | |
Lycium chinense Mill. | [184,185] | |
Merwilla plumbea (Lindl.) Speta | [163] | |
Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng | [166,186] | |
Pueraria montana (Lour.) Merr. | [187] | |
Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep | [188] | |
Rehmannia glutinosa (Gaertn.) DC. | [189,190] | |
Salvia miltiorrhiza Bunge | [191] | |
Taraxacum officinale F.H.Wigg. | [60,61,121] | |
Trichosanthes kirilowii Maxim. | [28] | |
Urtica dioica L. | [84,85] | |
Valeriana officinalis L. | [60,61,168] | |
Ebb and Flow Technique | Anemopsis californica (Nutt.) Hook. & Arn. | [33] |
Arctium lappa Willd. | [33] | |
Bupleurum falcatum L. | [192] | |
Urtica dioica L. | [33] | |
Zingiber officinale Roscoe | [33] | |
Solid Culture Methods | ||
Pot Technique | Echinacea purpurea (L.) Moench | [162,164] |
Echinacea angustifolia DC. | [164] | |
Glycyrrhiza glabra L. | [165] | |
Merwilla plumbea (Lindl.) Speta | [163] | |
Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng | [166] | |
Scutellaria baicalensis Georgi | [167] | |
Valeriana officinalis L. | [168] |
Hydroponic System | Plant Species | References |
---|---|---|
Liquid Culture Methods | ||
Deep Flow Technique | Cannabis sativa L. | [51] |
Nutrient Film Technique | Cannabis sativa L. | [51] |
Silybum marianum (L.) Gaertn. | [202] | |
Floating Technique | Ammi visnaga (L.) Lam. (synonym of Visnaga daucoides Gaertn.) | [200] |
Cannabis Sativa | [51] | |
Cannabis sativa L. ‘Cherry’, ‘Cherry Blossom’, and ‘Canda’ | [64] | |
Cannabis sativa L. ‘Pennywise’ | [65] | |
Cannabis sativa L. type-II chemovar ‘Nordle’ and type-I chemovar ‘Sensi Star’ | [66] | |
Gardenia jasminoides J.Ellis | [203] | |
Ligustrum lucidum W.T.Aiton | [74] | |
Lycium chinense Mill. | [184,185] | |
Lycium barbarum Mill. | [184,185] | |
Morus alba L. ‘Ichinose’ | [57] | |
Passiflora suberosa L. | [201] | |
Platycladus orientalis (L.) Franco | [81,82,83] | |
Trichosanthes kirilowii Maxim. | [28] | |
Vaccinium macrocarpon Aiton ‘Stevens’ | [204] | |
Ziziphus jujuba Mill. | [74,199] | |
Capillary Action Technique | Cannabis sativa L. | [51] |
Ebb and Flow Technique | Cannabis sativa L. | [51] |
Solid Culture Methods | ||
Grow Bag Technique | Cannabis sativa L. | [51] |
Pot Technique | Cannabis sativa L. | [51,93] |
Cannabis sativa L. ‘Bialobrzeskie’ and ‘Monoica’ | [94] | |
Cannabis sativa L. ‘McLove’ | [95] | |
Cannabis sativa L. type-II chemovar ‘Nordle’ | [96] | |
Silybum marianum (L.) Gaertn. | [205] | |
Vitis vinifera L. ‘Malbec’ and ‘Négrette’ | [206,207] | |
Vitis vinifera L. ‘Fer Servadou’, ‘Tannat’, and ‘Duras’ | [206] | |
Trough Technique | Cannabis sativa L. | [51] |
Gardenia jasminoides J.Ellis ‘Heaven Scent’ | [208] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atherton, H.R.; Li, P. Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends. Horticulturae 2023, 9, 349. https://doi.org/10.3390/horticulturae9030349
Atherton HR, Li P. Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends. Horticulturae. 2023; 9(3):349. https://doi.org/10.3390/horticulturae9030349
Chicago/Turabian StyleAtherton, Hallam R., and Pomin Li. 2023. "Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends" Horticulturae 9, no. 3: 349. https://doi.org/10.3390/horticulturae9030349
APA StyleAtherton, H. R., & Li, P. (2023). Hydroponic Cultivation of Medicinal Plants—Plant Organs and Hydroponic Systems: Techniques and Trends. Horticulturae, 9(3), 349. https://doi.org/10.3390/horticulturae9030349