Exploring the Relationship between Genomic Variation and Phenotype in Ornamental Pomegranate: A Study of Single and Double-Petal Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Collection of the Morphological Parameters of Six Varieties
2.3. Sample Collection, Library Establishment, and Genome Re-Sequencing
2.4. Data Filtering and Mapping
2.5. Detection of the Single Nucleotide Polymorphisms, Insertions and Deletions, Structural Variation, and Copy Number Variation Polymorphisms
2.6. Data Processing and Bioinformatics Analysis
3. Results
3.1. Flower Morphological Parameters for the Two Types of Varieties
3.2. Quality Evaluation and Mapping of the Sequencing Data
3.3. Basic Analysis of the Four Variation Types
3.4. Annotation Analysis of the Single Nucleotide Polymorphisms
3.5. Annotation Analysis of the Insertions and Deletions
3.6. Annotation Analysis of the Structural Variations
3.7. Annotation Analysis of the Copy Number Variations
3.8. Variation Analysis between the Single- and Double-Petal Varieties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patil, P.G.; Jamma, S.M.; Singh, N.V.; Bohra, A.; Parashuram, S.; Injal, A.S.; Gargade, V.A.; Chakranarayan, M.G.; Salutgi, U.D.; Dhinesh, B.K.; et al. Assessment of genetic diversity and population structure in pomegranate (Punica granatum L.) using hypervariable SSR markers. Physiol. Mol. Biol. Plants 2020, 26, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, A.; Frabboni, L.; Mazzeo, A.; Ferrara, G.; Disciglio, G. Comparative evaluation of yield and fruit physico-chemical characteristics of five commercial cultivars of pomegranate grown in southeastern Italy in two consecutive years. Horticulturae 2022, 8, 497. [Google Scholar] [CrossRef]
- Giancaspro, A.; Mazzeo, A.; Giove, S.L.; Zito, D.; Marcotuli, A.; Gallotta, P.; Colasuonno, D.; Nigro, A.; Blanco, M.; Aradhya, A.; et al. Exploiting DNA-based molecular tools to assess genetic diversity in pomegranate (Punica granatum L.) selections and cultivars. Fruits 2017, 72, 292–305. [Google Scholar] [CrossRef]
- Ferrara, G.; Porfido, C.; Terzano, R.; Sarkhosh, A.; Mazzeo, A. A Study on the Characteristics of Buds and Flowers in Pomegranate: Differences among Cultivars. Horticulturae 2023, 9, 117. [Google Scholar] [CrossRef]
- Jing, D.; Chen, W.; Hu, R.; Zhang, Y.; Xia, Y.; Wang, S.; He, Q.; Guo, Q.; Liang, G. An integrative analysis of transcriptome, proteome and hormones reveals key differentially expressed genes and metabolic pathways involved in flower development in Loquat. Int. J. Mol. Sci. 2020, 21, 5107. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, P.; Yadav, N.R.; Yadav, R.C. MYB transcription factor genes as regulators for plant responses: An overview. Physiol. Mol. Biol. Plants 2013, 19, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Han, J.; Deng, X.; Tan, S.; Li, L.; Li, L.; Zhou, J.; Peng, H.; Yang, G.; He, G.; et al. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon. Sci. Rep. 2016, 6, 21623. [Google Scholar] [CrossRef] [Green Version]
- Coen, E.S.; Meyerowitz, E.M. The war of the whorls: Genetic interactions controlling flower development. Nature 1991, 353, 31–37. [Google Scholar] [CrossRef]
- Kim, S.; Koh, J.; Yoo, M.J.; Kong, H.; Hu, Y.; Ma, H.; Soltis, P.S.; Soltis, D.E. Expression of floral MADS-box genes in basal angiosperms: Implications for the evolution of floral regulators. Plant J. 2005, 43, 724–744. [Google Scholar] [CrossRef]
- Favaro, R.; Pinyopich, A.; Battaglia, R.; Kooiker, M.; Borghi, L.; Ditta, G.; Yanofsky, M.F.; Kater, M.M.; Colombo, L. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 2003, 15, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
- Smaczniak, C.; Immink, R.G.; Muioj, M.; Blanvillain, R.; Busscher, M.; Busscher-Lange, J.; Dinh, Q.D.; Liu, S.; Westphal, A.H.; Boeren, S.; et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl. Acad. Sci. USA 2012, 109, 1560–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Oyant, L.H.; Ruttink, T.; Hamama, L. A high-quality genome sequence of Rosa chinensis to elucidate ornamental traits. Nat. Plants 2018, 4, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.Z.; Lin, C.P.; Cheng, T.C.; Huang, Y.W.; Tsai, Y.J.; Cheng, S.Y.; Chen, Y.W.; Lee, C.P.; Chung, W.C.; Chang, B.C.; et al. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ 2016, 4, e2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Alexander, L.W. Genome-wide association studies for inflorescence type and remontancy in Hydrangea macrophylla. Hortic. Res. 2020, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Mariette, S.; Wong Jun Tai, F.; Roch, G.; Barre, A.; Chague, A.; Decroocq, S.; Groppi, A.; Laizet, Y.; Lambert, P.; Tricon, D.; et al. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). New Phytol. 2016, 209, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Y.; Jin, X.; Liu, L.; Dai, X.; Liu, Y.; Zhao, L.; Zheng, P.; Wang, X.; Liu, Y.; et al. Floral transcriptomes reveal gene networks in pineapple floral growth and fruit development. Commun. Biol. 2020, 3, 500. [Google Scholar] [CrossRef]
- Fan, L.; Chen, M.; Dong, B.; Wang, N.; Yu, Q.; Wang, X.; Xuan, L.; Wang, Y.; Zhang, S.; Shen, Y. Transcriptomic analysis of flower bud differentiation in Magnolia sinostellata. Genes 2018, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.F. Studies on the Cultivar Classifieation of Punica granatum L. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, June 2007. [Google Scholar]
- Yuan, Z.; Fang, Y.; Zhang, T.; Fei, Z.; Han, F.; Liu, C.; Liu, M.; Xiao, W.; Zhang, W.; Wu, S.; et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnol. J. 2018, 16, 1363–1374. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.H.; Xu, C.Y.; Ming, R.; Tang, H.; Guyot, R.; Kramer, E.M.; Hu, Y.; Yi, X.; Qi, Y.; Xu, X.; et al. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J. 2017, 91, 1108–1128. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, H.; Wu, Z.; Yao, W.; Zhao, P.; Cao, D.; Yu, H.; Li, K.; Poudel, K.; Zhao, D.; et al. The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft- and hard-seeded cultivars. Plant Biotechnol. J. 2020, 18, 955–968. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sharma, J.; Munjal, V.; Sakthivel, K.; Thalor, S.K.; Mondal, K.K.; Chinchure, S.; Gharate, R. Polyphasic phenotypic and genetic analysis reveals clonal nature of Xanthomonas axonopodis pv. punicae causing pomegranate bacterial blight. Plant Pathol. 2020, 69, 347–359. [Google Scholar] [CrossRef]
- Yan, M.; Zhao, X.; Zhou, J.; Huo, Y.; Ding, Y.; Yuan, Z. The complete chloroplast genomes of Punica granatum and a comparison with other species in Lythraceae. Int. J. Mol. Sci. 2019, 20, 2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doyle, J.J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987, 19, 11–15. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wallis, J.W.; McLellan, M.D.; Larson, D.E.; Kalicki, J.M.; Pohl, C.S.; McGrath, S.D.; Wendl, M.C.; Zhang, Q.; Locke, D.P.; et al. BreakDancer: An algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 2009, 6, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Chalvin, C.; Drevensek, S.; Chollet, C.; Gilard, F.; Šolić, E.M.; Dron, M.; Bendahmane, A.; Boualem, A.; Cornille, A. Study of the genetic and phenotypic variation among wild and cultivated clary sages provides interesting avenues for breeding programs of a perfume, medicinal and aromatic plant. PLoS ONE 2021, 16, e0248954. [Google Scholar] [CrossRef]
- Anderson, N.O.; Kávová, T.; Daa, B.; Urn, V.; Květ, J. Phenotypic and genotypic variation in Czech forage, ornamental and wild populations of reed Canarygrass. Crop. Sci. 2016, 56, 2421–2435. [Google Scholar] [CrossRef]
- Saminathan, T.; Bodunrin, A.; Singh, N.V.; Devarajan, R.; Nimmakayala, P.; Jeff, M.; Aradhya, M.; Reddy, U.K. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing. BMC Plant Biol. 2016, 16, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.J.; Li, Y.P.; Zhou, J.J.; Hu, C.G.; Zhang, J.Z. Genome-wide genetic variation and comparison of fruit-associated traits between kumquat (Citrus japonica) and Clementine mandarin (Citrus clementina). Plant Mol. Biol. 2018, 96, 493–507. [Google Scholar] [CrossRef]
- Guo, D.D.; Yuan, F.J.; Yu, X.M. Genome-wide variation analysis of grain and vegetable soybeans based on re-sequencing. Mol. Plant Breed. 2019, 17, 7306–7312. [Google Scholar] [CrossRef]
- Hideki, H.; Kenta, S.; Akio, O.; Hiroyuki, F.; Koh, A.; Christophe, R.; Shusei, S.; Sachiko, I.; Satoshi, T. Genome-Wide SNP genotyping to infer the effects on gene functions in tomato. DNA Res. 2013, 20, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Parida, S.K.; Mukerji, M.M.; Singh, A.K.; Singh, N.K.; Mohapatra, T. SNPs in stress-responsive rice genes: Validation, genotyping, functional relevance and population structure. BMC Genom. 2012, 13, 26–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chen, W.; Xin, L.; Gao, Z.; Hou, Y.; Yu, X.; Zhang, Z.; Qu, S. Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing. Hortic. Res. 2014, 1, 14045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.; Cao, Y.; Quan, J.; Dong, L.; Li, Z.; Zhu, Y.; Zhu, L.; Dong, Z.; Li, D. Identifying the genome-wide sequence variations and developing new molecular narkers for genetics research by re-sequencing a landrace cultivar of Foxtail Millet. PLoS ONE 2013, 8, e73514. [Google Scholar] [CrossRef] [Green Version]
- Fanizza, G.; Colonna, G.; Resta, P.; Ferrara, G. The effect of the number of RAPD markers on the evaluation of genotypic distances in Vitis vinifera. Euphytica 1999, 107, 45–50. [Google Scholar] [CrossRef]
- Robert, H.S.; Crhak, K.L.; Mroue, S.; Benková, E. The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis. J. Exp. Bot. 2015, 66, 5029–5042. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, H.; Ding, L.; Song, A.; Shen, F.; Jiang, J.; Chen, S.; Chen, F. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium ‘Jinba’. Plant Mol. Biol. 2017, 93, 593–606. [Google Scholar] [CrossRef]
- Yan, S.; Che, G.; Ding, L.; Chen, Z.; Liu, X.; Wang, H.; Zhao, W.; Ning, K.; Zhao, J.; Tesfamichael, K.; et al. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci. Rep. 2016, 6, 20760. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20, 1790–1799. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.A.; Patil, S.B.; Uzair, M.; Fang, J.; Zhao, J.; Guo, T.; Yuan, S.; Uzair, M.; Luo, Q.; Shi, J.; et al. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. New Phytol. 2020, 225, 356–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Zhang, L.; Gao, Q.; Wang, J.; Li, X.; Wang, H.; Liu, Y.; Lin, H.; Liu, J.; Wang, X.; et al. A plasma membrane transporter coordinates phosphate reallocation and grain filling in cereals. Nat. Genet. 2021, 53, 906–915. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, J.; Satheesh, V.; Meng, F.; Gao, W.; Dong, J.; Zheng, Z.; An, G.Y.; Nussaume, L.; Liu, D.; et al. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. Nat. Plants 2022, 8, 1074–1081. [Google Scholar] [CrossRef]
- Gómez-Gómez, L.; Bauer, Z.; Boller, T. Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 2001, 13, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Huang, R.; Jing, M.; Sui, S.; Guo, Y.; Liu, D.; Li, Z.; Lin, Y.; Li, M. Two C3H type zinc finger protein genes, CpCZF1 and CpCZF2, from Chimonanthus praecox affect stamen development in Arabidopsis. Genes 2017, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, K.; Kazama, T.; Toriyama, K. A gene encoding pentatricopeptide repeat protein partially restores fertility in RT98-Type cytoplasmic male-sterile rice. Plant Cell Physiol. 2016, 57, 2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentolila, S.; Bentolila, S.; Alfonso, A.A.; Hanson, M.R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA 2002, 99, 10887–10892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcintosh, K.B.; Bonham-Smith, P.C. The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome 2005, 48, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Takahashi, N.; Shimura, Y.; Okada, K. A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol. 1997, 38, 248–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.; Li, M.; Li, W.; Liu, L.; Jian, Y.; Yang, Z.; Shen, X.; Ning, Q.; Du, Y.; Zhao, R.; et al. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat. Commun. 2020, 11, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcotuli, I.; Mazzeo, A.; Colasuonno, P.; Terzano, R.; Nigro, D.; Porfido, C.; Tarantino, A.; Aiese Cigliano, R.; Sanseverino, W.; Gadaleta, A.; et al. Fruit development in Ficus carica L.: Morphological and genetic pproaches to fig buds for an evolution from monoecy toward dioecy. Front. Plant Sci. 2020, 11, 1208. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Hemsley, P.A.; Kemp, A.C.; Grierson, C.S. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Plant Cell. 2005, 17, 2554–2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variety Type | White Flower Variety | Pink Flower Variety | Red Flower Variety |
---|---|---|---|
Single-petal variety | |||
‘Taiansanbaitian’ | ‘Yichengdanbanfenhongtian’ | ‘Zipitian’ | |
Double-petal variety | |||
‘Luoyangbaimasi’ | ‘Yichengfenhongmudan’ | ‘Taianhongmudan’ |
Variety Name | Original Data (G) | Clean Data (G) | Q30 (%) | GC (%) | Mapped (%) | Depth | Coverage (%) |
---|---|---|---|---|---|---|---|
‘Taiansanbaitian’ | 13.99 | 12.74 | 91.19 | 41.43 | 99.70 | 57.53 | 95.29 |
‘Yichengdanbanfenhongtian’ | 17.49 | 16.37 | 91.43 | 40.67 | 93.45 | 55.25 | 95.06 |
‘Zipidian’ | 18.36 | 17.26 | 91.70 | 40.09 | 81.81 | 58.23 | 95.36 |
‘Luoyangbaimasi’ | 14.90 | 13.55 | 90.89 | 41.28 | 99.71 | 45.73 | 95.18 |
‘Yichengfenhongmudan’ | 15.53 | 14.39 | 90.50 | 41.35 | 99.65 | 48.56 | 95.23 |
‘Taianhongmudan’ | 18.13 | 17.05 | 91.88 | 40.95 | 99.83 | 42.97 | 95.29 |
Variety Type | Variety Name | Total SNPs | Homozygous | Heterozygous | Heterozygosity Rate (%) |
---|---|---|---|---|---|
Single-petal variety | ‘Taiansanbaitian’ | 329,045 | 112,214 | 216,831 | 65.90 |
Single-petal variety | ‘Yichengdanbanfenhongtian’ | 347,440 | 155,103 | 192,337 | 55.36 |
Single-petal variety | ‘Zipidian’ | 343,226 | 84,488 | 258,738 | 75.38 |
Double-petal variety | ‘Luoyangbaimasi’ | 460,355 | 127,643 | 332,712 | 72.27 |
Double-petal variety | ‘Yichengfenhongmudan’ | 456,143 | 125,983 | 330,160 | 72.38 |
Double-petal variety | ‘Taianhongmudan’ | 475,022 | 154,553 | 320,469 | 67.46 |
Variety Type | Variety Name | Insertion in CDS/Genome | Deletion in CDS/Genome | InDel in CDS/Genome |
---|---|---|---|---|
Single petal variety | ‘Taiansanbaitian’ | 602/34,084 | 849/43,142 | 1451/77,226 |
Single petal variety | ‘Yichengdanbanfenhongtian’ | 722/37,739 | 976/46,177 | 1698/83,916 |
Single petal variety | ‘Zipidian’ | 892/35,653 | 1065/44,068 | 1957/79,721 |
Double petal variety | ‘Luoyangbaimasi’ | 807/50,503 | 1127/59,038 | 1934/109,541 |
Double petal variety | ‘Yichengfenhongmudan’ | 834/51,256 | 1092/59,718 | 1926/110,974 |
Double petal variety | ‘Taianhongmudan’ | 849/53,643 | 1137/61,826 | 1986/115,469 |
Function Category | Gene Annotation | Gene ID |
---|---|---|
Hormone pathway and stress response | Indole-3-pyruvate monooxygenase, YUC | CDL15_Pgr015667 |
CBS domain-containing protein, CBSX6 | CDL15_Pgr010955 | |
Phosphate transporter, PHO1 | CDL15_Pgr020531 | |
Receptor-like kinases, RLK | CDL15_Pgr015627 | |
Transcription and post-transcriptional regulation | transcription factor, TGA2.3 | CDL15_Pgr003069 |
CCCH-type zinc finger protein, C3H20 | CDL15_Pgr015624 | |
Werner Syndrome-like exonuclease, WEX | CDL15_Pgr003048 | |
Pentatricopeptide repeat protein, PPR | CDL15_Pgr003067 | |
Translation and post-translation regulation | Tryptophan-tRNA ligase, TrpS | CDL15_Pgr015628 |
Valine-tRNA ligase, ValS | CDL15_Pgr020557 | |
Ribosomal protein, L23 | CDL15_Pgr004206 | |
Serine/threonine-protein phosphatase, STPK | CDL15_Pgr005655 | |
Palmitoyltransferase, PAT | CDL15_Pgr003037 | |
Charged multivesicular body protein, CHMP | CDL15_Pgr015621 | |
Purine metabolism | phosphoribosylaminoimidazole-succinocarboxamide synthase | CDL15_Pgr015078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Yang, H.; Ding, W.; Yuan, Z.; Zhu, Z. Exploring the Relationship between Genomic Variation and Phenotype in Ornamental Pomegranate: A Study of Single and Double-Petal Varieties. Horticulturae 2023, 9, 361. https://doi.org/10.3390/horticulturae9030361
Huo Y, Yang H, Ding W, Yuan Z, Zhu Z. Exploring the Relationship between Genomic Variation and Phenotype in Ornamental Pomegranate: A Study of Single and Double-Petal Varieties. Horticulturae. 2023; 9(3):361. https://doi.org/10.3390/horticulturae9030361
Chicago/Turabian StyleHuo, Yan, Han Yang, Wenjie Ding, Zhaohe Yuan, and Zunling Zhu. 2023. "Exploring the Relationship between Genomic Variation and Phenotype in Ornamental Pomegranate: A Study of Single and Double-Petal Varieties" Horticulturae 9, no. 3: 361. https://doi.org/10.3390/horticulturae9030361
APA StyleHuo, Y., Yang, H., Ding, W., Yuan, Z., & Zhu, Z. (2023). Exploring the Relationship between Genomic Variation and Phenotype in Ornamental Pomegranate: A Study of Single and Double-Petal Varieties. Horticulturae, 9(3), 361. https://doi.org/10.3390/horticulturae9030361