The Effect of Drip Irrigation on the Length and Distribution of Apple Tree Roots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Climate and Soil Conditions
2.2. Irrigation Treatments
2.3. Soil Sampling and Root Measurement
2.4. Statistical Analysis
3. Results
3.1. Distribution of Roots in the Soil Profile
3.2. Effect of Irrigation Treatments on Total Root Length
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolasz, R.; Míková, T.; Valeriánová, A.; Voženílek, V. Climate Atlas of Czechia; Czech Hydrometeorological Institute: Prague, Czech Republic, 2007; ISBN 978-80-86690-1. [Google Scholar]
- Dzikiti, S.; Volschenk, T.; Midgley, S.J.E.; Lötze, E.; Taylor, N.J.; Gush, M.B.; Ntshidi, Z.; Zirebwa, S.F.; Doko, Q.; Schmeisser, M.; et al. Estimating the water requirements of high yielding and young apple orchards in the winter rainfall areas of South Africa using a dual source evapotranspiration model. Agric. Water Manag. 2018, 208, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Leib, B.G.; Caspari, H.W.; Redulla, C.A.; Andrews, P.K.; Jabro, J.J. Partial rootzone drying and deficit irrigation of “Fuji” apples in a semi-arid climate. Irrig. Sci. 2006, 24, 85–99. [Google Scholar] [CrossRef]
- Lecaros-Arellano, F.; Holzapfel, E.; Fereres, E.; Rivera, D.; Muñoz, N.; Jara, J. Effects of the number of drip laterals on yield and quality of apples grown in two soil types. Agric. Water Manag. 2021, 248, 106781. [Google Scholar] [CrossRef]
- Duffková, R.; Holub, J.; Fučík, P.; Rožnovský, J.; Novotný, I. Long-term water balance of selected field crops in different agricultural regions of the Czech republic using FAO-56 and soil hydrological approaches. Sustainability 2019, 11, 5243. [Google Scholar] [CrossRef] [Green Version]
- Středová, H.; Rožnovský, J.; Středa, T. Predisposition of drought occurrence in selected arid areas of the Czech Republic. Contrib. Geophys. Geod. 2013, 43, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Rötter, R.P.; Semerádová, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; et al. Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Sci. Adv. 2019, 5, eaau2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trnka, M.; Balek, J.; Brázdil, R.; Dubrovský, M.; Eitzinger, J.; Hlavinka, P.; Chuchma, F.; Možný, M.; Prášil, I.; Růžek, P.; et al. Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant Soil Environ. 2021, 67, 154–163. [Google Scholar] [CrossRef]
- Štěpánek, P.; Trnka, M.; Chuchma, F.; Zahradníček, P.; Skalák, P.; Farda, A.; Fiala, R.; Hlavinka, P.; Balek, J.; Semerádová, D.; et al. Drought prediction system for central europe and its validation. Geosciences 2018, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Qi, F.; Ji, X.; Peng, Q.; Yang, J.; Wang, M.; Peng, Q. Effect of different irrigation levels on quality parameters of ‘Honeycrisp’ apples. J. Sci. Food Agric. 2022, 102, 3316–3324. [Google Scholar] [CrossRef]
- Kireva, R.; Mihov, M. Water productivity and the effect of watering on apples grown under conditions of optimal irrigation and water deficit. Mech. Agric. Conserv. Resour. 2020, 66, 81–85. [Google Scholar]
- Mašán, V.; Burg, P.; Čížková, A.; Skoupil, J.; Zemánek, P.; Višacki, V. Effects of irrigation and fertigation on yield and quality parameters of “Gala” and “Fuji” apple. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Lauri, P.; Pitchers, B.; Dufour, L.; Simon, S. Apple farming systems—Current initiatives and some prospective views on how to improve sustainability. Acta Hortic. 2020, 1281, 307–322. [Google Scholar] [CrossRef]
- Hardie, M.; Green, S.; Oliver, G.; Swarts, N.; Clothier, B.; Gentile, R.; Close, D. Measuring and modelling nitrate fluxes in a mature commercial apple orchard. Agric. Water Manag. 2022, 263, 107410. [Google Scholar] [CrossRef]
- Jiang, X.; He, L. Investigation of effective irrigation strategies for high-density apple orchards in pennsylvania. Agronomy 2021, 11, 732. [Google Scholar] [CrossRef]
- Fromm, H. Root plasticity in the pursuit of water. Plants 2019, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.K.; Singh, A.; Mushtaq, R.; Nazir, N.; Kumar, A.; Khalil, A.; Bhat, R. Effect of soil moisture on temperate fruit crops: A review. J. Pharmacogn. Phytochem. 2018, 7, 2277–2282. [Google Scholar]
- Neilsen, D.; Neilsen, G.H. Efficient use of nitrogen and water in high-density apple orchards. Horttechnology 2002, 12, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Besharat, S.; Nazemi, A.H.; Sadraddini, A.A. Parametric modeling of root length density and root water uptake in unsaturated soil. Turkish J. Agric. For. 2010, 34, 439–449. [Google Scholar] [CrossRef]
- Gong, D.; Kang, S.; Zhang, L.; Du, T.; Yao, L. A two-dimensional model of root water uptake for single apple trees and its verification with sap flow and soil water content measurements. Agric. Water Manag. 2006, 83, 119–129. [Google Scholar] [CrossRef]
- Rogers, W.S.; Vyvyan, M.C. The root systems of some ten year old apple trees on two different rootstocks, and their relation to tree performance; Annual Report, East Malling Research Station II, Supplement; East Malling Research Station: East Malling, UK, 1928; pp. 14–15. [Google Scholar]
- Gregory, P.J.; Bishop, G.J.; Fountain, M.T.; Harrison, R.J.; Saville, R.J. One hundred years of research at East Malling: Science into practice for perennial fruit crops. Ann. Appl. Biol. 2013, 163, 1–11. [Google Scholar] [CrossRef]
- Paltineanu, C.; Nicolae, S.; Tanasescu, N.; Chitu, E.; Ancu, S. Untersuchung der Durchwurzelung von Pflaumen- und Apfelbäumen auf schwachwachsenden Unterlagen zur Optimierung der Obstplantagen-Bewirtschaftung. Erwerbs-Obstbau 2017, 59, 29–37. [Google Scholar] [CrossRef]
- Tanasescu, N.; Paltineanu, C. Root distribution of apple tree under various irrigation systems within the hilly region of Romania. Int. Agrophys. 2004, 18, 175–180. [Google Scholar]
- Fernandez, R.T.; Perry, R.L.; Ferree, D.C. Root distribution patterns of nine apple rootstocks in two contrasting soil types. J. Am. Soc. Hortic. Sci. 1995, 120, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Rogers, W.S. The East Mailing root-observation laboratories. In Root Growth; Whittington, W.J., Ed.; Butterworth: London, UK, 1969; pp. 361–376. [Google Scholar]
- Smit, A.L.; Bengough, A.G.; Engels, C.; van Noordwijk, M.; Pellerin, S.; van de Geijn, S.C. Root Methods: A Handbook; Springer: Berlin/Heidelberg, Germany, 2000; ISBN 3540667288. [Google Scholar]
- Fallahi, E.; Neilsen, D.; Neilsen, G.H.; Fallahi, B.; Shafii, B. Efficient irrigation for optimum fruit quality and yield in apples. HortScience 2010, 45, 1616–1619. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Kohut, M.; Fiala, R.; Chuchma, F.; Rožnovský, J.; Hora, P. Monitoring of Drought on the CHMI Website. In Proceedings of the Mendel and Bioklimatologie, Brno, Czech Republic, 3–5 September 2014; pp. 1–19. [Google Scholar]
- Litschmann, T. Virrib: A soil moisture sensor and its application in agriculture. Commun. Soil Sci. Plant Anal. 1991, 22, 409–418. [Google Scholar] [CrossRef]
- Li, Z.; Zong, R.; Wang, T.; Wang, Z.; Zhang, J. Adapting root distribution and improving water use efficiency via drip irrigation in a jujube (Zizyphus jujube Mill.) orchard after long-term flood irrigation. Agriculture 2021, 11, 1184. [Google Scholar] [CrossRef]
- Tennant, D. A Test of a Modified Line Intersect Method of Estimating Root Length. J. Ecol. 1975, 63, 995–1001. [Google Scholar] [CrossRef]
- Lind, K.R.; Siemianowski, O.; Yuan, B.; Sizmur, T.; Van Every, H.; Banerjee, S.; Cademartiri, L. Evidence for root adaptation to a spatially discontinuous water availability in the absence of external water potential gradients. Proc. Natl. Acad. Sci. USA 2021, 118, e2012892118. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A. Roots: The Acquisition of Water and Nutrients from the Heterogeneous Soil Environment. In Progress in Botany 71; Springer: Berlin/Heidelberg, Germany, 2010; pp. 307–337. [Google Scholar]
- Bravdo, B.A.; Levin, I.; Assaf, R. Control of root size and root environment of fruit trees for optimal fruit production. J. Plant Nutr. 1992, 15, 699–712. [Google Scholar] [CrossRef]
- Lo, T.H.; Rudnick, D.R.; Singh, J.; Nakabuye, H.N.; Katimbo, A.; Heeren, D.M.; Ge, Y. Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors. Agric. Water Manag. 2020, 231, 105984. [Google Scholar] [CrossRef] [Green Version]
- Green, S.; Clothier, B. The root zone dynamics of water uptake by a mature apple tree. Plant Soil 1999, 206, 61–77. [Google Scholar] [CrossRef]
- Thomaj, F.; Domi, H.; Sallaku, G.; Balliu, A. The Spatial Distribution of Root System in M9 Rootstock Is Affected by Apple Cultivar and Tree Age. J. Agric. Stud. 2019, 7, 160–175. [Google Scholar] [CrossRef] [Green Version]
- Nakhforoosh, A.; Nagel, K.A.; Fiorani, F.; Bodner, G. Deep soil exploration vs. topsoil exploitation: Distinctive rooting strategies between wheat landraces and wild relatives. Plant Soil 2021, 459, 397–421. [Google Scholar] [CrossRef] [PubMed]
- Doussan, C.; Pagès, L.; Pierret, A. Soil Exploration and Resource Acquisition by Plant Roots: An Architectural and Modelling Point of View. Sustain. Agric. 2003, 23, 419–431. [Google Scholar] [CrossRef]
- Sokalska, D.I.; Haman, D.Z.; Szewczuk, A.; Sobota, J.; Dereń, D. Spatial root distribution of mature apple trees under drip irrigation system. Agric. Water Manag. 2009, 96, 917–924. [Google Scholar] [CrossRef]
- Du, S.; Tong, L.; Kang, S.; Li, F.; Du, T.; Li, S.; Ding, R. Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China. Front. Agric. Sci. Eng. 2018, 5, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Kadayifçi, A.; Şenyiǧit, U.; Daǧdelen, N.; Öz, H.; Atilgan, A. The effects of different irrigation methods on root distribution, intensity and effective root depth of young dwarf apple trees. Afr. J. Biotechnol. 2010, 9, 4217–4224. [Google Scholar]
- Iqbal, R.; Raza, M.A.S.; Toleikiene, M.; Ayaz, M.; Hashemi, F.; Habib-ur-Rahman, M.; Zaheer, M.S.; Ahmad, S.; Riaz, U.; Ali, M.; et al. Partial root-zone drying (PRD), its effects and agricultural significance: A review. Bull. Natl. Res. Cent. 2020, 44, 159. [Google Scholar] [CrossRef]
- Gotur, M.; Sharma, D.K.; Joshi, C.J.; Rajan, R. Partial root-zone drying technique in fruit crops: A review paper. Int. J. Chem. Stud. 2018, 6, 900–903. [Google Scholar]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorup-Kristensen, K.; Halberg, N.; Nicolaisen, M.; Olesen, J.E.; Crews, T.E.; Hinsinger, P.; Kirkegaard, J.; Pierret, A.; Dresbøll, D.B. Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends Plant Sci. 2020, 25, 406–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Gao, X.; Wang, S.; Zhao, X. Quantifying the importance of deep root water uptake for apple trees’ hydrological and physiological performance in drylands. J. Hydrol. 2022, 606, 127471. [Google Scholar] [CrossRef]
- Song, X.; Gao, X.; Zhao, X.; Wu, P.; Dyck, M. Spatial distribution of soil moisture and fine roots in rain-fed apple orchards employing a Rainwater Collection and Infiltration (RWCI) system on the Loess Plateau of China. Agric. Water Manag. 2017, 184, 170–177. [Google Scholar] [CrossRef]
- Tsoulias, N.; Gebbers, R.; Zude-Sasse, M. Using data on soil ECa, soil water properties, and response of tree root system for spatial water balancing in an apple orchard. Precis. Agric. 2020, 21, 522–548. [Google Scholar] [CrossRef]
- Zheng, L.; Ma, J.; Sun, X.; Guo, X.; Cheng, Q.; Shi, X. Estimating the root water uptake of surface-irrigated apples using water stable isotopes and the Hydrus-1D model. Water 2018, 10, 1624. [Google Scholar] [CrossRef] [Green Version]
- Kautz, T.; Amelung, W.; Ewert, F.; Gaiser, T.; Horn, R.; Jahn, R.; Javaux, M.; Kemna, A.; Kuzyakov, Y.; Munch, J.C.; et al. Nutrient acquisition from arable subsoils in temperate climates: A review. Soil Biol. Biochem. 2013, 57, 1003–1022. [Google Scholar] [CrossRef]
- Haberle, J.; Svoboda, P. Impacts of use of observed and exponential functions of root distribution in soil on water utilization and yield of wheat, simulated with a crop model. Arch. Agron. Soil Sci. 2014, 60, 1533–1542. [Google Scholar] [CrossRef]
- Aguzzoni, A.; Engel, M.; Zanotelli, D.; Penna, D.; Comiti, F.; Tagliavini, M. Water uptake dynamics in apple trees assessed by an isotope labeling approach. Agric. Water Manag. 2022, 266, 107572. [Google Scholar] [CrossRef]
- Zhang, X.X.; Whalley, P.A.; Ashton, R.W.; Evans, J.; Hawkesford, M.J.; Griffiths, S.; Huang, Z.D.; Zhou, H.; Mooney, S.J.; Whalley, W.R. A comparison between water uptake and root length density in winter wheat: Effects of root density and rhizosphere properties. Plant Soil 2020, 451, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Neilsen, G.H.; Parchomchuk, P.; Berard, R.; Neilsen, D. Irrigation frequency and quantity affect root and top growth of fertigated “McIntosh” apple on M.9, M.26 and M.7 rootstock. Can. J. Plant Sci. 1997, 77, 133–139. [Google Scholar] [CrossRef] [Green Version]
Soil Layer | Texture | FWC 1 | Volume Weight | Corg Content | Total N Content | pH (KCl) | Available Nutrients 2 | |
---|---|---|---|---|---|---|---|---|
cm | - | % vol. | g·cm−3 | g·kg−1 | g·kg−1 | mg·kg−1 | ||
0–30 | Silt loam | 31.9 | 1.45 | 1.53 | 0.160 | 6.32 | P | 124.4 |
K | 260.1 | |||||||
Mg | 214.6 | |||||||
30–60 | Silt loam | 34.1 | 1.42 | 0.90 | 0.101 | 6.42 | P | 11.6 |
K | 147.5 | |||||||
Mg | 191.2 | |||||||
60–90 | Silt loam | 33.0 | 1.45 | 0.33 | 0.047 | 6.37 | P | 1.6 |
K | 121.8 | |||||||
Mg | 162.5 |
TRLt | TRLv | ||||||
---|---|---|---|---|---|---|---|
10 cm | 30 cm | 60 cm | 10 cm | 30 cm | 60 cm | ||
p-value | |||||||
Treatment | Autumn 2019 | 0.003 | ns | ns | <0.001 | ns | ns |
Spring 2020 | ns | ns | ns | <0.001 | ns | 0.012 | |
Autumn 2020 | 0.001 | ns | ns | 0.080 | 0.006 | 0.072 | |
Spring 2021 | Ns | ns | ns | ns | 0.014 | ns | |
Autumn 2021 | Ns | ns | 0.079 | ns | 0.017 | <0.001 | |
Average values of 2020 and 2021 | |||||||
Year | <0.001 | 0.001 | ns | <0.001 | <0.001 | 0.004 | |
Season | ns | ns | ns | 0.011 | 0.035 | ns | |
Variant | 0.086 | ns | ns | ns | 0.078 | 0.026 |
Total Root Density, TRLt (km·m−2) | ||||
---|---|---|---|---|
Variant | 10 cm | 30 cm | 60 cm | |
Spring 2019 | ET100 | 10.90 ± 0.95 | 6.18 ± 1.34 | 8.54 ± 1.23 |
Autumn 2019 | ET0 | 11.16 ± 2.24 b | 5.82 ± 1.00 a | 6.31 ± 3.56 a |
ET50 | 18.67 ± 3.18 a | 9.94 ± 4.35 a | 5.30 ± 4.31 a | |
ET100 | 17.45 ± 1.14 a | 7.85 ± 5.03 a | 4.14 ± 3.49 a | |
Spring 2020 | ET0 | 17.61 ± 6.29 a | 8.10 ± 4.28 a | 5.33 ± 3.57 a |
ET50 | 15.28 ± 2.94 a | 6.47 ± 2.96 a | 4.09 ± 0.82 a | |
ET100 | 19.11 ± 5.62 a | 4.21 ± 0.96 a | 3.56 ± 1.92 a | |
2Drops | 14.49 ± 1.21 a | 3.83 ± 3.15 a | 2.77 ± 0.31 a | |
Autumn 2020 | ET0 | 22.67 ± 3.53 a | 4.77 ± 1.30 a | 3.83 ± 2.00 a |
ET50 | 15.42 ± 2.44 b | 8.31 ± 3.35 a | 4.64 ± 1.34 a | |
ET100 | 20.41 ± 3.20 a | 6.66 ± 3.20 a | 2.67 ± 1.84 a | |
2Drops | 13.47 ± 1.11 b | 5.54 ± 0.94 a | 3.32 ± 2.38 a | |
Spring 2021 | ET0 | 9.38 ± 1.37 a | 4.41 ± 0.57 a | 3.47 ± 1.32 a |
ET50 | 9.58 ± 0.67 a | 4.63 ± 0.63 a | 5.48 ± 4.68 a | |
ET100 | 8.44 ± 5.02 a | 4.21 ± 2.95 a | 3.49 ± 1.42 a | |
2Drops | 7.56 ± 0.95 a | 5.56 ± 0.78 a | 4.93 ± 4.29 a | |
Autumn 2021 | ET0 | 11.82 ± 1.03 a | 3.43 ± 2.07 a | 1.30 ± 0.19 b |
ET50 | 9.26 ± 1.92 a | 3.57 ± 2.38 a | 5.43 ± 3.49 a | |
ET100 | 9.81 ± 2.01 a | 4.80 ± 0.99 a | 4.80 ± 2.26 ab | |
2Drops | 8.45 ± 2.26 a | 5.60 ± 1.26 a | 3.59 ± 1.05 ab | |
2019 (Autumn) | 15.76 ± 4.03 a | 7.87 ± 3.93 a | 5.25 ± 3.56 a | |
2020 | 17.31 ± 4.48 a | 5.99 ± 2.93 ab | 3.80 ± 1.96 a | |
2021 | 9.29 ± 2.35 b | 4.53 ± 1.66 b | 4.06 ± 2.79 a | |
Spring (2020, 2021) | 12.68 ± 5.36 a | 5.18 ± 2.56 a | 4.16 ± 2.61 a | |
Autumn (2020, 2021) | 13.91 ± 5.41 a | 5.34 ± 2.42 a | 3.70 ± 2.18 a | |
2020, 2021 | ET0 | 15.37 ± 6.28 a | 5.18 ± 2.87 a | 3.48 ± 2.43 a |
2020, 2021 | ET50 | 12.39 ± 3.62 a | 5.75 ± 2.95 a | 4.91 ± 2.77 a |
2020, 2021 | ET100 | 14.45 ± 6.70 a | 4.97 ± 2.29 a | 3.67 ± 1.86 a |
2020, 2021 | 2Drops | 10.99 ± 3.39 a | 5.13 ± 1.79 a | 3.65 ± 2.39 a |
Total Root Density, TRLv (km·m−2) | ||||
---|---|---|---|---|
Variant | 10 cm | 30 cm | 60 cm | |
Spring 2019 | ET100 | 2.79 ± 0.49 | 2.21 ± 1.08 | 2.54 ± 1.63 |
Autumn 2019 | ET0 | 1.57 ± 0.39 b | 1.36 ± 0.16 a | 1.00 ± 0.55 a |
ET50 | 4.17 ± 0.60 a | 2.04 ± 0.77 a | 1.35 ± 0.89 a | |
ET100 | 4.74 ± 0.89 a | 1.99 ± 0.41 a | 1.65 ± 0.83 a | |
Spring 2020 | ET0 | 1.12 ± 0.17 b | 0.76 ± 0.31 a | 0.40 ± 0.06 b |
ET50 | 2.16 ± 0.46 a | 0.51 ± 0.18 a | 0.43 ± 0.25 b | |
ET100 | 1.39 ± 0.12 b | 0.95 ± 0.48 a | 1.16 ± 0.54 a | |
2Drops | 1.18 ± 0.17 b | 0.79 ± 0.17 a | 0.49 ± 0.14 b | |
Autumn 2020 | ET0 | 1.84 ± 0.79 a | 0.54 ± 0.13 b | 0.51 ± 0.17 a |
ET50 | 2.27 ± 0.33 a | 1.04 ± 0.14 ab | 1.06 ± 0.14 a | |
ET100 | 2.62 ± 0.32 a | 1.59 ± 0.63 a | 0.80 ± 0.48 a | |
2Drops | 1.59 ± 0.57 b | 0.81 ± 0.17 b | 0.87 ± 0.04 a | |
Spring 2021 | ET0 | 1.12 ± 0.20 a | 1.31 ± 0.17 a | 0.87 ± 0.30 a |
ET50 | 1.21 ± 0.17 a | 0.86 ± 0.08 ab | 1.46 ± 1.13 a | |
ET100 | 1.07 ± 0.25 a | 0.59 ± 0.42 b | 0.70 ± 0.22 a | |
2Drops | 1.46 ± 0.39 a | 1.07 ± 0.84 ab | 0.85 ± 0.69 a | |
Autumn 2021 | ET0 | 1.18 ± 0.17 a | 0.75 ± 0.18 a | 0.39 ± 0.08 bc |
ET50 | 1.38 ± 0.07 a | 0.98 ± 0.44 ab | 0.92 ± 0.25 b | |
ET100 | 1.56 ± 0.42 a | 1.61 ± 0.39 b | 1.49 ± 0.44 a | |
2Drops | 1.29 ± 0.84 a | 1.32 ± 0.27 ab | 1.23 ± 0.14 ab | |
2019 (Autumn) | 3.49 ± 1.56 a | 1.80 ± 0.56 a | 1.33 ± 0.75 a | |
2020 | 1.77 ± 0.64 b | 0.88 ± 0.43 b | 0.72 ± 0.38 b | |
2021 | 1.28 ± 0.45 c | 1.06 ± 0.42 b | 0.99 ± 0.59 ab | |
Spring (2020, 2021) | 1.34 ± 0.48 b | 0.86 ± 0.35 b | 0.79 ± 0.59 | |
Autumn (2020, 2021) | 1.72 ± 0.66 a | 1.08 ± 0.48 a | 0.91 ± 0.41 | |
2020, 2021 | ET0 | 1.32 ± 0.50 a | 0.84 ± 0.35 a | 0.54 ± 0.26 b |
2020, 2021 | ET50 | 1.76 ± 0.56 a | 0.85 ± 0.31 a | 0.97 ± 0.66 ab |
2020, 2021 | ET100 | 1.67 ± 0.67 a | 1.18 ± 0.61 a | 1.04 ± 0.51 a |
2020, 2021 | 2Drops | 1.38 ± 0.60 a | 1.00 ± 0.33 a | 0.86 ± 0.42 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svoboda, P.; Haberle, J.; Moulik, M.; Raimanová, I.; Kurešová, G.; Mészáros, M. The Effect of Drip Irrigation on the Length and Distribution of Apple Tree Roots. Horticulturae 2023, 9, 405. https://doi.org/10.3390/horticulturae9030405
Svoboda P, Haberle J, Moulik M, Raimanová I, Kurešová G, Mészáros M. The Effect of Drip Irrigation on the Length and Distribution of Apple Tree Roots. Horticulturae. 2023; 9(3):405. https://doi.org/10.3390/horticulturae9030405
Chicago/Turabian StyleSvoboda, Pavel, Jan Haberle, Michal Moulik, Ivana Raimanová, Gabriela Kurešová, and Martin Mészáros. 2023. "The Effect of Drip Irrigation on the Length and Distribution of Apple Tree Roots" Horticulturae 9, no. 3: 405. https://doi.org/10.3390/horticulturae9030405
APA StyleSvoboda, P., Haberle, J., Moulik, M., Raimanová, I., Kurešová, G., & Mészáros, M. (2023). The Effect of Drip Irrigation on the Length and Distribution of Apple Tree Roots. Horticulturae, 9(3), 405. https://doi.org/10.3390/horticulturae9030405