Evaluation of the Quality and Antioxidant Activity of Dehydrated Medicinal Herbs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Plant Material
2.2. Forced-Air Oven Drying
2.3. Solar Drying
2.4. Drying Curves
2.5. Physicochemical and Microbiological Methods
2.6. Phytochemical Methods
2.7. Statistical Analysis
3. Results and Discussion
3.1. Drying Curves
3.2. Physicochemical Characteristics of Oven- and Sun-Dried Herbs
3.3. Microbiological Characteristics of Oven- and Sun-Dried Herbs
3.4. Color Characteristics of Oven- and Sun-Dried Herbs
3.5. Active Principles in of Oven- and Sun-Dried Herbs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO|World Health Organization. 2020. Available online: https://www.who.int/ (accessed on 23 February 2022).
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines on Good Agricultural and Collection Practices [GACP] for Medicinal Plants; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Morgan, R. Enciclopédia Das Ervas e Plantas Medicinais, 9th ed.; Editora Hemus: São Paulo, Brazil, 2003. [Google Scholar]
- Apolinário, P. Rede Sociotécnica de Inovação em Plantas Medicinais e Fitoterápicos: Do Coletivo de Mulheres no Assentamento Pirituba ao SUS Itapeva-SP. Master’s Thesis, Universidade Federal de São Carlos, São Paulo, Brazil, 2021. [Google Scholar]
- De Figueredo, C.A.; Gurgel, I.G.D.; Gurgel Junior, G.D. A Política Nacional de Plantas Medicinais e Fitoterápicos: Construção, perspectivas e desafios. Physis 2014, 24, 381–400. [Google Scholar] [CrossRef]
- Chen, B.; Xu, M. Natural Antioxidants in Foods. In Encyclopedia of Food Chemistry; Varelis, P., Melton, L., Shahidi, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Brainina, K.; Stozhko, N.; Bukharinova, M.; Khamzina, E.; Vidrevich, M. Potentiometric method of plant microsuspensions antioxidant activity determination. Food Chem. 2019, 278, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Milevskaya, V.V.; Prasad, S.; Temerdashev, Z.A. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. Microchem. J. 2019, 145, 1036–1049. [Google Scholar] [CrossRef]
- Nazarenko, D.V.; Kharyuk, P.V.; Oseledets, I.V.; Rodin, I.A.; Shpigun, O.A. Machine learning for LC–MS medicinal plants identification. Chemom. Intell. Lab. Syst. 2016, 156, 174–180. [Google Scholar] [CrossRef]
- Pedrete, T.A.; Hauser-Davis, R.A.; Moreira, J.C. Proteomic characterization of medicinal plants used in the treatment of diabetes. Int. J. Biol. Macromol. 2019, 140, 294–302. [Google Scholar] [CrossRef]
- Steinhoff, B. Review: Quality of herbal medicinal products: State of the art of purity assessment. Phytomedicine 2019, 60, 153003. [Google Scholar] [CrossRef]
- Geankoplis, C.J. Transport Processes and Separation Process Principles; Prentice Hall: New York, NY, USA, 2003. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Quansah, J.K.; Gazula, H.; Holland, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial quality of blueberries for the fresh market. Food Control. 2019, 100, 92–96. [Google Scholar] [CrossRef]
- Picoli, S.U.; Bessa, M.C.; Castagna, S.M.F.; Gottardi, C.P.T.; Schmidt, V.; Cardoso, M. Enumeration of coliforms, Staphylococcus aureus and aerobic mesofilic bacteria throughout the manufacture process of a goat unripened cheese produced in a dairy plant. Food Sci. Technol. 2006, 26, 64–69. [Google Scholar] [CrossRef]
- Prevost, S.; Cayol, J.-L.; Zuber, F.; Tholozan, J.-L.; Remize, F. Characterization of clostridial species and sulfite-reducing anaerobes isolated from foie gras with respect to microbial quality and safety. Food Control. 2013, 32, 222–227. [Google Scholar] [CrossRef]
- Ministério da Saúde. Manual Técnico de Diagnóstico Laboratorial da Salmonella spp.; Secretaria de Vigilância em Saúde. Departamento de Apoio à Gestão de Vigilância em Saúde: Brasília, Brazil, 2011. Available online: https://portalarquivos2.saude.gov.br/images/pdf/2014/dezembro/15/manual-diagnostico-salmonella-spp-web.pdf (accessed on 3 March 2022).
- Ministério da Agricultura. Métodos Analíticos Oficiais para Controle de Produtos de Origem Animal e seus Ingredientes. II-Métodos Microbiológicos; Secretaria Nacional de Defesa Agropecuária. Laboratório Nacional de Referência Animal: Brasília, Brazil, 2018. Available online: https://www.gov.br/agricultura/pt-br/assuntos/lfda/legislacao-metodos-da-rede-lfda/poa/metodos_oficiais_para_analise_de_produtos_de_origem_animal-_1a_ed-_2022_assinado.pdf (accessed on 17 May 2023).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Park, J.C.; Lee, J.H.; Choi, J.S. A flavone diglycoside from Cirsium japonicum var. ussuriense. Phytochemistry 1995, 39, 261–262. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M.; Paul, G.L. Antioxidant Capacity of Oat (Avena sativa L.) Extracts. 2. In Vitro Antioxidant Activity and Contents of Phenolic and Tocol Antioxidants. J. Agric. Food Chem. 1999, 47, 4894–4898. [Google Scholar] [CrossRef] [PubMed]
- Doymaz, I. Thin-layer drying behaviour of mint leaves. J. Food Eng. 2006, 74, 370–375. [Google Scholar] [CrossRef]
- Park, K.J.; Vohnikova, Z.; Brod, F.P.R. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). J. Food Eng. 2002, 51, 193–199. [Google Scholar] [CrossRef]
- Akpinar, E.K. Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J. Food Eng. 2006, 77, 864–870. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Agência Nacional de Vigilância Sanitária. Instrução Normativa n° 60 de 23 de Dezembro de 2019. Estabelece as Listas de Padrões Microbiológicos para Alimentos; ANVISA: Brasília, Brazil, 2019. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-60-de-23-de-dezembro-de-2019-235332356 (accessed on 3 March 2022).
- Agência Nacional de Vigilância Sanitária. Resolução-RDC N° 12, de 2 de Janeiro de 2001. Regulamento Técnico Sobre Padrões Microbiológicos Para Alimentos; ANVISA: Brasília, Brazil, 2001. Available online: http://portal.anvisa.gov.br/documents/33880/2568070/RDC_12_2001.pdf/15ffddf6-3767-4527-bfac-740a0400829b (accessed on 3 March 2022).
- Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Lee, K.-G.; Shibamoto, T. Determination of Antioxidant Potential of Volatile Extracts Isolated from Various Herbs and Spices. J. Agric. Food Chem. 2002, 50, 4947–4952. [Google Scholar] [CrossRef]
- Penuelas, J.; Munnebosch, S. Isoprenoids: An evolutionary pool for photoprotection. Trends Plant Sci. 2005, 10, 166–169. [Google Scholar] [CrossRef]
- Wellwood, C.R.L.; Cole, R.A. Relevance of Carnosic Acid Concentrations to the Selection of Rosemary, Rosmarinus officinalis (L.), Accessions for Optimization of Antioxidant Yield. J. Agric. Food Chem. 2004, 52, 6101–6107. [Google Scholar] [CrossRef] [PubMed]
- Morton, L.W.; Caccetta, R.A.-A.; Puddey, I.B.; Croft, K.D. Chemistry and Biological Effects of Dietary Phenolic Compounds: Relevance to Cardiovascular Disease. Clin. Exp. Pharmacol. Physiol. 2000, 27, 152–159. [Google Scholar] [CrossRef] [PubMed]
Drying Process | Page’s Model Parameters | Herbs | ||||
---|---|---|---|---|---|---|
Rosemary | Lemon Grass | Common Fennel | Mint | Basil | ||
Oven- Dried | C | 0.988 | 0.988 | 0.988 | 0.993 | 0.966 |
k (102) | 1.49 | 1.30 | 1.09 | 2.03 | 0.26 | |
n | 1.01 | 0.97 | 1.20 | 1.04 | 1.32 | |
R2 | 0.997 | 0.988 | 0.994 | 0.998 | 0.996 | |
Sun- dried | C | 0.862 | 1.01 | 0.976 | 0.965 | 0.990 |
k (102) | 0.006 | 0.82 | 0.057 | 0.063 | 0.449 | |
n | 1.33 | 0.932 | 1.34 | 1.38 | 1.01 | |
R2 | 0.972 | 0.991 | 0.994 | 0.995 | 0.993 |
Herbs | Drying Process | Composition 1 (g/100 g) | |||||
---|---|---|---|---|---|---|---|
Moisture | Mineral Content | Protein | Fiber | Reducing Sugars | Sucrose | ||
Rosemary | Oven-dried | 88.81 a | 7.01 a | 10.90 a | 21.32 a | 6.58 a | 18.22 a |
Sun-dried | 86.21 b | 6.07 a | 8.51 b | 25.27 a | 4.48 b | 13.67 b | |
Std. Dev. | 1.84 | 0.67 | 1.69 | 2.79 | 1.48 | 3.22 | |
Lemon grass | Oven-dried | 91.53 b | 9.81 a | 10.26 a | 25.84 a | 3.87 a | 17.60 a |
Sun-dried | 91.75 a | 7.96 b | 10.40 a | 25.98 a | 3.35 b | 12.30 b | |
Std. Dev. | 0.16 | 1.31 | 0.10 | 0.10 | 0.37 | 3.75 | |
Common fennel | Oven-dried | 94.12 a | 13.19 a | 24.68 b | 10.56 a | 3.35 a | 16.52 a |
Sun-dried | 90.90 b | 13.16 a | 27.08 a | 10.84 a | 2.68 a | 13.33 a | |
Std. Dev. | 2.28 | 0.02 | 1.70 | 0.20 | 0.47 | 2.26 | |
Mint | Oven-dried | 92.20 a | 11.44 a | 27.47 a | 9.67 a | 4.99 a | 16.77 a |
Sun-dried | 91.56 a | 11.41 a | 24.47 a | 9.62 a | 3.80 b | 18.84 a | |
Std. Dev. | 0.46 | 0.02 | 2.12 | 0.04 | 0.84 | 1.46 | |
Basil | Oven-dried | 94.50 a | 16.13 a | 25.49 a | 11.28 a | 3.78 b | 11.97 b |
Sun-dried | 88.97 b | 9.15 b | 16.09 b | 7.84 b | 7.27 a | 30.93 a | |
Std. Dev. | 3.91 | 4.94 | 6.65 | 2.43 | 2.47 | 13.41 |
Drying Process | Microbial Counts | ||||
---|---|---|---|---|---|
Rosemary | Lemon Grass | Common Fennel | Mint | Basil | |
Mold and yeast (CFU/g) 1 | |||||
Oven-dried | 0.40 × 103 | 1.1 × 103 | 1.3 × 103 | 0.70 × 103 | 5.6 × 103 |
Sun-dried | 0.30 × 103 | 2.0 × 103 | 1.6 × 104 | 2.0 × 103 | 9.6 × 104 |
Staphylococcus aureus (CFU/g) | |||||
Oven-dried | 0 | 0 | 3.66 × 103 | 0 | 5.99 × 102 |
Sun-dried | 0 | 0 | 6.66 × 103 | 0 | 0 |
Total coliforms (MPN/g) 2 | |||||
Oven-dried | 11.5 | 16.0 | 240 | 23.0 | 240 |
Sun-dried | 0 | 151.5 | 1100 | 1100 | 16.05 |
Fecal coliforms (MPN/g) | |||||
Oven-dried | 0 | 0 | 13.3 | 0 | 0 |
Sun-dried | 0 | 79.55 | 1.8 | 6.35 | 4.55 |
Herbs | Drying Process | Color Space Parameters 1 | ||
---|---|---|---|---|
L* 2 | a* 3 | b* 4 | ||
Rosemary | Oven-dried | 42.31 b | 0.90 a | 14.97 b |
Sun-dried | 49.12 a | 0.85 a | 16.47 a | |
Std. Dev. | 4.82 | 0.04 | 1.06 | |
Lemon grass | Oven-dried | 45.42 a | −4.32 b | 29.17 a |
Sun-dried | 45.30 a | −5.20 a | 23.98 b | |
Std. Dev. | 0.09 | 0.62 | 3.67 | |
Common fennel | Oven-dried | 30.91 a | −3.92 b | 13.13 b |
Sun-dried | 29.37 b | −4.45 a | 13.26 a | |
Std. Dev. | 1.09 | 0.38 | 0.09 | |
Mint | Oven-dried | 33.30 b | −2.41 b | 15.27 b |
Sun-dried | 35.65 a | −3.57 a | 16.62 a | |
Std. Dev. | 1.66 | 0.82 | 0.96 | |
Basil | Oven-dried | 34.69 b | −0.79 b | 14.46 b |
Sun-dried | 42.60 a | −3.23 a | 20.09 a | |
Std. Dev. | 5.59 | 1.73 | 3.98 |
Drying Process | Herbs | Positive Controls | |||||
---|---|---|---|---|---|---|---|
Rosemary | Lemon Grass | Common Fennel | Mint | Basil | Butylated Hydroxytoluene | α-Tocopherol | |
Antioxidant activity (%) | |||||||
Oven-dried | 71.55 a | 55.46 a | 19.18 a | 56.06 a | 60.54 a | 89.53 a | 90.23 a |
Sun-dried | 58.27 a | 38.99 a | 22.41 a | 42.98 a | 17.73 b | 90.56 a | 87.75 a |
Std. Dev. | 9.18 | 12.00 | 13.10 | 9.65 | 30.13 | - | - |
Total phenolics (mg gallic acid/g extract) | |||||||
Oven-dried | 165.68 b | 93.04 a | 31.43 b | 115.27 a | 91.46 b | - | - |
Sun-dried | 182.20 a | 95.56 a | 49.31 a | 126.20 a | 149.28 a | - | - |
Std. Dev. | 12.68 | 9.36 | 12.64 | 7.73 | 40.89 | ||
Total flavonoids (mg quercetin/g extract) | |||||||
Oven-dried | 9.96 a | 13.79 a | 5.15 a | 20.00 a | 0.75 b | - | - |
Sun-dried | 9.45 a | 13.67 a | 5.00 a | 20.78 a | 13.02 a | - | - |
Std. Dev. | 0.36 | 0.08 | 0.11 | 0.55 | 8.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massarioli, A.P.; de Alencar, S.M.; Siqueira, A.F.; de Melo, M.P.; Vidigal, I.G.; Ferreira, A.L.G. Evaluation of the Quality and Antioxidant Activity of Dehydrated Medicinal Herbs. Horticulturae 2023, 9, 597. https://doi.org/10.3390/horticulturae9050597
Massarioli AP, de Alencar SM, Siqueira AF, de Melo MP, Vidigal IG, Ferreira ALG. Evaluation of the Quality and Antioxidant Activity of Dehydrated Medicinal Herbs. Horticulturae. 2023; 9(5):597. https://doi.org/10.3390/horticulturae9050597
Chicago/Turabian StyleMassarioli, Adna Prado, Severino Matias de Alencar, Adriano Francisco Siqueira, Mariana Pereira de Melo, Igor Gomes Vidigal, and Ana Lúcia Gabas Ferreira. 2023. "Evaluation of the Quality and Antioxidant Activity of Dehydrated Medicinal Herbs" Horticulturae 9, no. 5: 597. https://doi.org/10.3390/horticulturae9050597
APA StyleMassarioli, A. P., de Alencar, S. M., Siqueira, A. F., de Melo, M. P., Vidigal, I. G., & Ferreira, A. L. G. (2023). Evaluation of the Quality and Antioxidant Activity of Dehydrated Medicinal Herbs. Horticulturae, 9(5), 597. https://doi.org/10.3390/horticulturae9050597