Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ultrasound-Assisted Extraction (UAE)
2.2. Subcritical Water Extraction (SWE)
2.3. Deep Eutectic Solvent Extraction
2.4. Supercritical CO2 Extraction (SCO2E)
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Supercritical CO2 Extraction (SCO2E)
3.4. Ultrasound-Assisted Extraction (UAE)
3.5. Subcritical Water Extraction (SWE)
3.6. Deep Eutectic Solvent Extraction
3.7. Gas Chromatography Coupled to Mass Spectrometry (GC–MS)
3.8. High-Performance Liquid Chromatography (HPLC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- YouYouc, T. From Artemisia Annua L. to Artemisinins. The Discovery and Development of Artemisinins and Antimalarial Agents, 1st ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 140, 242, 396–402. [Google Scholar]
- El-Askary, H.I.; Mohamed, S.S.; El-Gohari, H.M.A.; Ezzat, S.M.; Meselhy, M.R. Quinic acid derivatives from Artemisia annua L. leaves; biological activities and seasonal variation. S. Afr. J. Bot. 2020, 128, 200–208. [Google Scholar] [CrossRef]
- Hong, M.; Kim, M.; Jang, H.; Bo, S.; Deepa, P.; Sowndhararajan, K.; Kim, S. multivariate analysis of essential oil composition of Artemisia annua L. collected from different locations in Korea. Molecules 2023, 28, 1131. [Google Scholar] [CrossRef]
- Malhotra, A.; Rawat, A.; Prakash, O.; Kumar, R.; Srivastava, R.M.; Kumar, S. Chemical composition and pesticide activity of essential oils from Artemisia annua L. harvested in the rainy and winter seasons. Biochem. Syst. Ecol. 2023, 107, 104601. [Google Scholar] [CrossRef]
- WHO. Model Monograph on Good Agricultural and Collection Practice (GACP) of Artemisia annua L.; WHO: Geneva, Switzerland, 2006; p. 1.
- D’Alessandro, S.; Scaccabarozzi, D.; Signorini, L.; Perego, F.; Ilboudo, D.P.; Pasquale, F.; Delbue, S. The Use of Antimalarial Drugs against Viral Infection. Microorganisms 2020, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Aftab, T.; Ferreira, J.F.; Khan, M.M.A.; Naeem, M. Artemisia Annua-Pharmacology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 10, 12, 28, 29, 125, 132. [Google Scholar]
- Soktoeva, T.E.; Ryzhova, G.L.; Dychko, K.A.; Khasanov, V.V.; Zhigzhitzhapova, S.V.; Radnaeva, L.D. Artemisinin content in Artemisia annua L. extracts obtained by different methods. Russ. J. Bioorganic Chem. 2013, 39, 761–764. [Google Scholar] [CrossRef]
- Khangholil, S.; Rezaeinodehi, A. Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran. Pak. J. Biol. Sci. 2008, 11, 934–937. [Google Scholar] [CrossRef]
- Rana, V.S.; Abirami, K.; Blázquez, M.A.; Maiti, S. Essential oil composition of Artemisia annua L. at different growth stages. J. Spices Aromat. Crops 2013, 22, 181–187. [Google Scholar]
- Cutler, M.; Lapkin, A.; Plucinski, P.K. Comparative assessment of technologies for extraction of artemisinin. In Summary Report Commissioned through the Malalaria Medicines Venture, Geneva, August; 2006; Available online: https://www.mmv.org/sites/default/files/uploads/docs/artemisinin/2007_event/10_Artemisia_Extraction_Study_Lapkin-Cutler.pdf (accessed on 24 May 2023).
- Baldino, L.; Reverchon, E. Artemisia annua organic solvent extract, processed by supercritical CO2. J. Chem. Technol. Biotechnol. 2018, 93, 3171–3175. [Google Scholar] [CrossRef]
- Lapkin, A.A.; Plucinski, P.K.; Cutler, M. Comparative assessment of technologies for extraction of artemisinin. J. Nat. Prod. 2006, 69, 1653–1664. [Google Scholar] [CrossRef]
- Hao, J.Y.; Han, W.; Xue, B.Y.; Deng, X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep. Purif. Technol. 2002, 28, 191–196. [Google Scholar] [CrossRef]
- Vidović, S.; Simić, S.; Gavarić, A.; Aćimović, M.; Vladic, J. Extraction of sweet wormwood (Artemisia annua L.) by supercritical carbon dioxide. Lek. Sirovine 2020, 40, 22–26. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 9, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Shan, Y.; Wen, L.; Cao, X. Extraction of artemisinin using natural deep eutectic solvent selected by COSMO-RS. Sustain. Chem. Pharm. 2023, 33, 101096. [Google Scholar] [CrossRef]
- Chen, J.; Ni, Y.; Zhang, P.; Liang, X.; Fang, S. Acidic natural deep eutectic solvents as dual solvents and catalysts for the solubilization and deglycosylation of soybean isoflavone extracts: Genistin as a model compound. Food Chem. 2023, 406, 134999. [Google Scholar] [CrossRef]
- Gundupalli, M.P.; Cheenkachorn, K.; Chuetor, S.; Kirdponpattara, S.; Gundupalli, S.P.; Show, P.L.; Sriariyanun, M. Assessment of pure, mixed and diluted deep eutectic solvents on Napier grass (Cenchrus purpureus): Compositional and characterization studies of cellulose, hemicellulose and lignin. Carbohydr. Polym. 2023, 306, 120599. [Google Scholar] [CrossRef]
- Jokić, S.; Gagić, T.; Knez, Ž.; Šubarić, D.; Škerget, M. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules 2018, 23, 1408. [Google Scholar] [CrossRef]
- Akiya, N.; Savage, P.E. Roles of Water for Chemical Reactions in High-Temperature Water. Chem. Rev. 2002, 102, 2725–2750. [Google Scholar] [CrossRef]
- Kohler, M.; Haerdi, W.; Christen, P.; Veuthey, J.L. Supercritical fluid extraction and chromatography of artemisinin and artemisinic acid. An improved method for the analysis of Artemisia annua samples. Phytochem. Anal. 1997, 8, 223–227. [Google Scholar] [CrossRef]
- Mannan, A.; Ahmed, I.; Arshad, W. Survey of artemisinin production by diverse Artemisia species in northern Pakistan. Malar J. 2010, 9, 310–319. [Google Scholar] [CrossRef]
- Peng, C.A.; Ferreira, J.F.S.; Wood, A.J. Direct analysis of artemisinin from Artemisia annua L. using high-performance liquid chromatography with evaporative light scattering detector, and gas chromatography with flame ionization detector. J. Chromatogr. A 2006, 1133, 254–258. [Google Scholar] [CrossRef]
- ElSohly, H.N.; Croom, E.M.; El-Feraly, F.S.; El-Sherei, M.M. A Large-scale extraction technique of artemisinin from Artemisia Annu. J. Nat. Prod. 1990, 53, 1560–1564. [Google Scholar] [CrossRef]
- Qian, G.; Yang, Y.; Ren, Q. Determination of artemisinin in Artemisia annua L. by reversed phase HPLC. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 705–712. [Google Scholar] [CrossRef]
- Woerdenbag, H.J.; Pras, N.; Chan, N.G. Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med. 1994, 60, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Zarrelli, A.; Pollio, A.; Aceto, S.; Romanucci, V.; Carella, F.; Stefani, P.; De Vico, G. Optimisation of artemisinin and scopoletin extraction from Artemisia annua with a new modern pressurised cyclic solid–liquid (PCSL) extraction technique. Phytochem. Anal. 2019, 30, 564–571. [Google Scholar] [CrossRef]
- Dogan, K.; Erol, E.; Didem Orhan, M.; Degirmenci, Z.; Kan, T.; Gungor, A.; Guzel, M. Instant determination of the artemisinin from various Artemisia annua L. extracts by LC-ESI-MS/MS and their in-silico modelling and in vitro antiviral activity studies against SARS-CoV-2. Phytochem. Anal. 2022, 33, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Prawang, P.; Zhang, Y.; Zhang, Y.; Wang, H. Ultrasonic assisted extraction of artemisinin from Artemisia annua L. using poly (ethylene glycol): Toward a greener process. Ind. Eng. Chem. Res. 2019, 58, 18320–18328. [Google Scholar] [CrossRef]
- Banožić, M.; Banjari, I.; Jakovljević, M.; Šubarić, D.; Tomas, S.; Babić, J.; Jokić, S. Optimization of ultrasound-assisted extraction of some bioactive compounds from tobacco waste. Molecules 2019, 24, 1611. [Google Scholar] [CrossRef]
- Briars, R.; Paniwnyk, L. Examining the extraction of artemisinin from Artemisia annua using ultrasound. In Proceedings of the AIP Conference Proceedings, Ft. Worth, TX, USA, 5–10 August 2012; American Institute of Physics: College Park, MD, USA, 2012; Volume 1433, pp. 581–585. [Google Scholar]
- Lapkin, A.A. Green Extraction of Artemisinin from Artemisia annua L. In Green Extraction of Natural Products Theory and Practice, 1st ed.; Chemat, F., Strube, J., Eds.; Wiley-VCH: Weinheim, Germany, 2015; pp. 333–356. [Google Scholar]
- Lapkin, A.A.; Walker, A.; Sullivan, N.; Khambay, B.; Mlambo, B.; Chemat, S. Development of HPLC analytical protocols for quantification of artemisinin in biomass and extracts. J. Pharm. Biomed. Anal. 2009, 49, 908–915. [Google Scholar] [CrossRef]
- Martinez-Correa, H.A.; Bitencourt, R.G.; Kayano, A.C.A.V.; Magalhães, P.M.; Costa, F.T.M.; Cabral, F.A. Integrated extraction process to obtain bioactive extracts of Artemisia annua L. leaves using supercritical CO2, ethanol and water. Ind. Crops Prod. 2017, 95, 535–542. [Google Scholar] [CrossRef]
- Wright, C.W.; Linley, P.A.; Burn, R.; Wittlin, S.; Hsu, E. Ancient Chinese methods are remarkably effective for the preparation of artemisinin rich extracts of Qing Hao with potent antimalarial activity. Molecules 2010, 15, 804–812. [Google Scholar] [CrossRef]
- Hsu, The history of qinghao in the Chinese materiamedica. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 505–508. [CrossRef]
- Van der Kooy, F.; Verpoorte, R. The content of artemisinin in the Artemisia annua tea infusion. Planta Med. 2011, 77, 1754–1756. [Google Scholar] [CrossRef] [PubMed]
- Jokić, S.; Aladić, K.; Šubarić, D. Subcritical water extraction laboratory plant design and application. Annu. Croat. Acad. Eng. 2017, 1, 247–258. [Google Scholar]
- Sales, I.; Abranches, D.O.; Costa, P.; Sintra, T.E.; Ventura, S.P.; Mattedi, S.; Pinho, S.P. Enhancing artemisinin solubility in aqueous solutions: Searching for hydrotropes based on ionic liquids. Fluid Phase Equilibria 2021, 534, 112961. [Google Scholar] [CrossRef]
- Ahirrao, P.; Batra, D.; Jain, U.K. Artemisinin, a potential antimalarial drug: Current status. J. Chem. Pharm. Res. 2016, 8, 624–636. [Google Scholar]
- Pan, Z.; Bo, Y.; Liang, Y.; Lu, B.; Zhan, J.; Zhang, J.; Zhang, J. Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. J. Mol. Liq. 2021, 326, 115283. [Google Scholar] [CrossRef]
- Popović, B.M.; Gligorijević, N.; Aranđelović, S.; Macedo, A.C.; Jurić, T.; Uka, D.; Mocko-Blažek, K.; Serra, A.T. Cytotoxicity profiling of choline chloride-based natural deep eutectic solvents. RSC Adv. 2023, 25, 3520–3527. [Google Scholar] [CrossRef]
- Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible deep eutectic solvents based on choline chloride: Characterization and application to the extraction of rutin from sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Cao, J.; Yang, M.; Cao, F.; Wang, J.; Su, E. Well-designed hydrophobic deep eutectic solvents as green and efficient media for the extraction of artemisinin from Artemisia annua leaves. ACS Sustain. Chem. Eng. 2017, 5, 3270–3278. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Wang, M.; Bi, W.; Li, H.; Chen, D.D.Y. High-throughput analysis for artemisinins with deep eutectic solvents mechanochemical extraction and direct analysis in real time mass spectrometry. Anal Chem. 2018, 90, 3109–3117. [Google Scholar] [CrossRef]
- Bertea, C.M.; Freije, J.R.; van der Woude, H.; Verstappen, F.W.; Perk, L.; Marquez, V.; De Kraker, J.W.; Posthumus, M.A.; Jansen, B.J.; de Groot, A.; et al. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 2005, 71, 40–47. [Google Scholar] [CrossRef]
- Bouwmeester, H.J.; Wallaart, T.E.; Janssen, M.H.; van Loo, B.; Jansen, B.J.; Posthumus, M.A.; Schmidt, C.O.; De Kraker, J.W.; Konig, W.A.; Franssen, M.C. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 1999, 52, 843–854. [Google Scholar] [CrossRef]
- Dobreva, A.M.; Dincheva, I.N.; Nenov, N.S.; Trendafilova, A.B. Chemical characterization of Artemisia annua L. subcritical extract. Bulg. Chem. Commun. 2022, 54, 43–48. [Google Scholar]
- Radulović, N.S.; Randjelović, P.J.; Stojanović, N.M.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Ilić, I.R.; Djordjević, V.B. Toxic essential oils. Part II: Chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles. Food Chem. Toxicol. 2013, 58, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, M.; Qin, H.; Lin, H.; An, X.; Shi, Z.; Song, L.; Yang, X.; Fan, H.; Tong, Y. Artemether, Artesunate, Arteannuin B, Echinatin, Licochalcone B and Andrographolide effectively inhibit SARS-CoV-2 and related viruses in vitro. Front. Cell Infect. Microbiol. 2021, 11, 680127. [Google Scholar] [CrossRef]
- Jokić, S.; Svilović, S.; Vidović, S. Modelling the supercritical CO2 extraction kinetics of soybean oil. Croat. J. Food Sci. Technol. 2015, 7, 52–57. [Google Scholar] [CrossRef]
- Molnar, M.; JakovljeviĆ, M.; Jokić, S. Optimization of the process conditions for the extraction of rutin from ruta graveolens l. by choline chloride based deep eutectic solvents. Solvent Extr. Res. Dev. Jpn. 2018, 25, 109–116. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Roje, M.; Kuś, P.M.; Jokić, S.; Čož-Rakovac, R. Phytochemical study of the headspace volatile organic compounds of fresh algae and seagrass from the Adriatic Sea (single point collection). PLoS ONE 2018, 13, e0196462. [Google Scholar] [CrossRef]
No | Extraction Technique | Extraction Conditions | Artemisinin Content (µg/mg) |
---|---|---|---|
1. | UAE | 30 °C, 45 min, 20 mL/g | BDL* |
2. | UAE | 50 °C, 30 min, 20 mL/g | 0.554 |
3. | UAE | 50 °C, 45 min, 30 mL/g | 0.350 |
4. | UAE | 70 °C, 45 min, 20 mL/g | 0.916 |
5. | UAE | 70 °C, 30 min, 10 mL/g | 2.001 |
6. | UAE | 70 °C, 15 min, 20 mL/g | BDL* |
7. | UAE | 50 °C, 15 min, 10 mL/g | 0.565 |
8. | UAE | 30 °C, 30 min, 30 mL/g | 0.256 |
9. | UAE | 70 °C, 30 min, 30 mL/g | 0.204 |
10. | UAE | 30 °C, 15 min, 20 mL/g | 2.232 |
11. | UAE | 50 °C, 45 min, 10 mL/g | 0.444 |
12. | UAE | 30 °C, 30 min, 10 mL/g | 0.516 |
13. | UAE | 50 °C, 15 min, 30 mL/g | BDL* |
14. | SWE | 125 °C, 15 min, 20 mL/g, 30 bar | BDL* |
15. | SWE | 150 °C, 15 min, 20 mL/g, 30 bar | BDL* |
16. | SWE | 175 °C, 15 min, 20 mL/g, 30 bar | BDL* |
17. | SWE | 200 °C, 15 min, 20 mL/g, 30 bar | BDL* |
18. | SCO2E | 40 °C, 15 min, 1.4 kg CO2/h 300 bar | 3.210 |
19. | DES | Choline chloride:lactic acid (1:2) with 20% water (v/v), 30 °C, 60 min | 1.026 |
20. | DES | Choline chloride:levulinic acid (1:2) with 20% water (v/v), 50 °C, 60 min | 1.417 |
No | Compound | RI | % |
---|---|---|---|
1. | 3-Methylbut-2-enoic acid | <900 | 0.04 |
2. | α-Pinene | 942 | 0.76 |
3. | Camphene | 958 | 0.48 |
4. | Sabinene | 980 | 0.14 |
5. | β-Pinene | 983 | 0.30 |
6. | β-Myrcene | 993 | 0.30 |
7. | 2,5,5-Trimethylhepta-3,6-dien-2-ol (Yomogi alcohol) | 1000 | 0.32 |
8. | p-Cymene | 1030 | 0.08 |
9. | Limonene | 1034 | 0.08 |
10. | 1,8-Cineole | 1037 | 5.37 |
11. | Artemisia ketone | 1066 | 10.97 |
12. | trans-Sabinene hydrate | 1072 | 0.36 |
13. | Artemisia alcohol | 1086 | 1.45 |
14. | cis-Sabinene hydrate | 1100 | 0.34 |
15. | Nonanal | 1106 | 0.10 |
16. | trans-p-Mentha-2,8-dienol | 1124 | 0.16 |
17. | α-Campholenal | 1130 | 0.48 |
18. | trans-Pinocarveol | 1143 | 1.63 |
19. | Camphor | 1148 | 12.23 |
20. | Pinocarvone | 1166 | 1.63 |
21. | Borneol | 1169 | 0.12 |
22. | Terpinen-4-ol | 1180 | 0.44 |
23. | α-Terpineol | 1192 | 0.26 |
24. | Myrtenol | 1197 | 0.72 |
25. | Verbenone | 1210 | 0.16 |
26. | trans-Carveol | 1221 | 0.14 |
27. | trans-Anethole | 1286 | 0.32 |
28. | p-Cymen-7-ol | 1292 | 0.08 |
29. | Eugenol | 1360 | 0.28 |
30. | α-Copaene | 1376 | 1.87 |
31. | β-Bourbonene | 1384 | 0.08 |
32. | β-Cubebene | 1389 | 0.28 |
33. | trans-β-Caryophyllene | 1417 | 2.68 |
34. | α-Humulene | 1452 | 0.24 |
35. | trans-β-Farnesene | 1459 | 1.23 |
36. | α-Selinene | 1475 | 0.12 |
37. | Germacrene D | 1480 | 1.09 |
38. | β-Selinene | 1484 | 4.39 |
39. | δ-Cadinene | 1523 | 0.08 |
40. | Dihydroactinidiolide | 1526 | 0.06 |
41. | Spathulenol | 1576 | 0.32 |
42. | Caryophyllene oxide | 1580 | 3.86 |
43. | Methyl jasmonate | 1649 | 0.28 |
44. | Artemisic acid | 1847 | 4.95 |
45. | Nonadecane | 1900 | 0.48 |
46. | Hexadecanoic acid | 1967 | 2.05 |
47. | Contrunculin-A | 1996 | 4.93 |
48. | Arteannuin b | 2054 | 15.29 |
49. | Phytol | 2107 | 2.23 |
50. | (Z,Z)-Octadeca-9,12-dienoic acid (Linoleic acid) | 2128 | 1.49 |
51. | Artemisinin | 2187 | 1.39 |
52. | Tricosane | 2300 | 0.91 |
53. | Tetracosane | 2400 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banožić, M.; Wronska, A.W.; Jakovljević Kovač, M.; Aladić, K.; Jerković, I.; Jokić, S. Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.). Horticulturae 2023, 9, 629. https://doi.org/10.3390/horticulturae9060629
Banožić M, Wronska AW, Jakovljević Kovač M, Aladić K, Jerković I, Jokić S. Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.). Horticulturae. 2023; 9(6):629. https://doi.org/10.3390/horticulturae9060629
Chicago/Turabian StyleBanožić, Marija, Aleksandra Weronika Wronska, Martina Jakovljević Kovač, Krunoslav Aladić, Igor Jerković, and Stela Jokić. 2023. "Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.)" Horticulturae 9, no. 6: 629. https://doi.org/10.3390/horticulturae9060629
APA StyleBanožić, M., Wronska, A. W., Jakovljević Kovač, M., Aladić, K., Jerković, I., & Jokić, S. (2023). Comparative Evaluation of Different Extraction Techniques for Separation of Artemisinin from Sweet Wormwood (Artemisia annua L.). Horticulturae, 9(6), 629. https://doi.org/10.3390/horticulturae9060629