Effects of Deficit Irrigation and Anti-Stressors on Water Productivity, and Fruit Quality at Harvest and Stored ‘Murcott’ Mandarin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site and Climatic Conditions
2.2. Experimental Design and Treatments
2.3. Data Collection and Measurement
2.3.1. Applied Water and Water Productivity
2.3.2. Fruit Yield and Quality Components
2.3.3. Antioxidant Enzyme Activity
2.4. Statistical Analysis
3. Results
3.1. Applied Water and Water Productivity of ‘Murcott’ Mandarin Fruit
3.2. Fruit Yield and Quality Components
3.3. Antioxidant Enzyme Activity
4. Discussion
4.1. Applied Water and Water Productivity of ‘Murcott’ Mandarin Fruit
4.2. Fruit Yield and Quality Components
4.3. Antioxidant Enzyme Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pagán, E.; Robles, J.; Temnani, A.; Berríos, P.; Botía, P.; Pérez-Pastor, A. Effects of water deficit and salinity stress on late mandarin trees. Sci. Total Environ. 2022, 803, 150109. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization Statistical Database. 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 18 April 2023).
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadía, J.; Bastida, F.; Romero-Trigueros, C.; Bayona, J.; Vera, A.; García, C.; Alarcón, J.; Nicolás, E. Interactions between soil microbial communities and agronomic behavior in a mandarin crop subjected to water deficit and irrigated with reclaimed water. Agric. Water Manag. 2021, 247, 106749. [Google Scholar] [CrossRef]
- Cea, D.; Bonomelli, C.; Mártiz, J.; Gil, P.M. Response of Potted Citrus Trees Subjected to Water Deficit Irrigation with the Application of Superabsorbent Polyacrylamide Polymers. Agronomy 2022, 12, 1546. [Google Scholar] [CrossRef]
- Nikiel, C.A.; Eltahir, E.A.B. Past and future trends of Egypt’s water consumption and its sources. Nat. Commun. 2021, 12, 4508. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Nagaz, K.; El Mokh, F.; Ben Hassen, N.; Masmoudi, M.; Ben Mechlia, N.; Sy, M.B.; Belkheiri, O.; Ghiglieri, G. Impact of Deficit Irrigation on Yield and Fruit Quality of Orange Trees (Citrus sinensis, L. Osbeck, CV. Meski Maltaise) in Southern Tunisia. Irrig. Drain. 2017, 69, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.M.A.; Fayad, A.M. The effect of deficit irrigation, partial root drying and mulching on tomato yield, and water and energy saving. Irrig. Drain. 2022, 71, 295–309. [Google Scholar] [CrossRef]
- Panigrahi, P.; Sharma, R.; Hasan, M.; Parihar, S. Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region. Agric. Water Manag. 2014, 140, 48–60. [Google Scholar] [CrossRef]
- Vivaldi, G.A.; Camposeo, S.; Romero-Trigueros, C.; Pedrero, F.; Caponio, G.; Lopriore, G.; Álvarez, S. Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water. Agric. Water Manag. 2021, 258, 107172. [Google Scholar] [CrossRef]
- Hendre, P.; Ranpise, S.; Durgude, A. Effect of different irrigation and fertigation levels on yield and nutrient use efficiency in sweet orange (Citrus sinensis L. Osbeck) cv. Phule Mosambi. Int. J. Chem. Stud. 2020, 8, 1577–1581. [Google Scholar] [CrossRef]
- Jafari, M.; Kamali, H.; Keshavarz, A.; Momeni, A. Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate. Agric. Water Manag. 2021, 248, 106769. [Google Scholar] [CrossRef]
- Darwesh, R.K.; Hefzy, M.; Mansour, A. Effect of irrigation regime and spraying salicylic acid on characteristics and quality of (Banzahir) lime fruits (Citrus aurantifolia B.) at harvest, marketing and some water relations. Environ. Biodivers. Soil Secur. 2020, 4, 313–331. [Google Scholar] [CrossRef]
- Pedrero, F.; Maestre-Valero, J.; Mounzer, O.; Nortes, P.; Alcobendas, R.; Romero-Trigueros, C.; Bayona, J.; Alarcón, J.; Nicolás, E. Response of young ‘Star Ruby’ grapefruit trees to regulated deficit irrigation with saline reclaimed water. Agric. Water Manag. 2015, 158, 51–60. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Parra, M.; Bayona, J.M.; Nortes, P.; Alarcón, J.J.; Nicolás, E. Effect of deficit irrigation and reclaimed water on yield and quality of grapefruits at harvest and postharvest. LWT Food Sci. Technol. 2017, 85, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.; Boini, A.; Manfrini, L.; Torres-Ruiz, J.; Pierpaoli, E.; Zibordi, M.; Losciale, P.; Morandi, B.; Corelli-Grappadelli, L. Effect of shading and water stress on light interception, physiology and yield of apple trees. Agric. Water Manag. 2018, 210, 140–148. [Google Scholar] [CrossRef]
- Molassiotis, A.; Job, D.; Ziogas, V.; Tanou, G. Citrus Plants: A Model System for Unlocking the Secrets of NO and ROS-Inspired Priming Against Salinity and Drought. Front. Plant Sci. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mashilo, J.; Odindo, A.O.; Shimelis, H.A.; Musenge, P.; Tesfay, S.Z.; Magwaza, L.S. Photosynthetic response of bottle gourd [Lagenaria siceraria (Molina) Standl.] to drought stress: Relationship between cucurbitacins accumulation and drought tolerance. Sci. Hortic. 2018, 231, 133–143. [Google Scholar] [CrossRef]
- Praveen, A. Nitric oxide mediated alleviation of abiotic challenges in plants. Nitric Oxide Biol. Chem. 2022, 128, 37–49. [Google Scholar] [CrossRef]
- Okba, S.K.; Mazrou, Y.; Mikhael, G.B.; Farag, M.E.H.; Alam-Eldein, S.M. Magnetized Water and Proline to Boost the Growth, Productivity and Fruit Quality of ‘Taifi’ Pomegranate Subjected to Deficit Irrigation in Saline Clay Soils of Semi-Arid Egypt. Horticulturae 2022, 8, 564. [Google Scholar] [CrossRef]
- Fan, S.; Wu, H.; Gong, H.; Guo, J. The salicylic acid mediates selenium-induced tolerance to drought stress in tomato plants. Sci. Hortic. 2022, 300, 111092. [Google Scholar] [CrossRef]
- Salama, A.M.; Seleem, E.; el Salam, R.A.; Ghoniem, A. Response of Quinoa plant grown under Drought Stress to Foliar Application with Salicylic Acid, Paclobutrazol and Algae Extract. Sci. J. Agric. Sci. 2021, 3, 87–104. [Google Scholar] [CrossRef]
- Nabi, R.B.S.; Tayade, R.; Hussain, A.; Kulkarni, K.P.; Imran, Q.M.; Mun, B.-G.; Yun, B.-W. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ. Exp. Bot. 2019, 161, 120–133. [Google Scholar] [CrossRef]
- Guleria, G.; Thakur, S.; Shandilya, M.; Sharma, S.; Thakur, S.; Kalia, S. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiol. Biochem. 2023, 194, 533–549. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Karimi, M.; Da Silva, J.A.T. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2020, 100, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Hosseini, M.S.; Meybodi, N.D.H.; da Silva, J.A.T. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, C.; Chen, F.; Yue, L.; Cao, X.; Liu, X.; Yao, Y.; Wang, Z.; Xing, B. Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. radculus pers) after foliar application of selenium nanomaterials. Sci. Total Environ. 2022, 824, 153712. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.D.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef]
- Kumar, A.; Ramamoorthy, D.; Verma, D.K.; Kumar, A.; Kumar, N.; Kanak, K.R.; Marwein, B.M.; Mohan, K. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus 2022, 6, 100070. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef] [Green Version]
- Klute, A. Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part 2—Chemical and Microbiological Properties; Soil Science of America, Inc.: Madison, WI, USA, 1982. [Google Scholar]
- Ravelonandro, P.H.; Ratianarivo, D.H.; Joannis-Cassan, C.; Isambert, A.; Raherimandimby, M. Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J. Chem. Technol. Biotechnol. 2008, 83, 842–848. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H.B.; Entvelsen, C.L.M.; Bronchied, V. Yield Response to Water; Irrig. Drainage Paper No. 33; Pergamon Press: Rome, Italy, 1979; p. 33. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; Volume 65, pp. 1–15. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Irrig. Drainage Paper, No. 46; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Habib, I.M. Land Dessert Irrigation Methods; Faculty of Agriculture, Cairo University: Cairo, Egypt, 1991. (In Arabic) [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrig. Drainage, Paper 29; Food and Agriculture Organization: Rome, Italy, 1985. [Google Scholar]
- Giriappa, S. Water Use Efficiency in Agriculture; Oxford & IBH Publish. Co.: New Delhi, India, 1983. [Google Scholar]
- Novica, V. Irrigation of Agriculture Crops; Fac. Agric. Press: Novi Sad Yugoslavia, Serbia, 1979. [Google Scholar]
- Rajanna, G.; Dhindwal, A.; Nanwal, R. Effect of irrigation schedules on plant—Water relations, root, grain yield and water productivity of wheat [Triticum aestivum (L.) emend. Flori & Paol] under various crop establishment techniques. Cereal Res. Commun. 2017, 45, 166–177. [Google Scholar] [CrossRef] [Green Version]
- AOAC (Association of Official Agriculture Chemists). Compendium of Microbiological Methods for the Analysis of Food and Agricultural Products; AOAC (Association of Official Agriculture Chemists): Washington, DC, USA, 2000. [Google Scholar]
- Jannatizadeh, A. Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. Sci. Hortic. 2019, 246, 544–549. [Google Scholar] [CrossRef]
- Sayyari, M.; Castillo, S.; Valero, D.; Diaz-Mula, H.M.; Serrano, M. Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biol. Technol. 2011, 60, 136–142. [Google Scholar] [CrossRef]
- Fan, X.-J.; Zhang, B.; Yan, H.; Feng, J.-T.; Ma, Z.-Q.; Zhang, X. Effect of lotus leaf extract incorporated composite coating on the postharvest quality of fresh goji (Lycium barbarum L.) fruit. Postharvest Biol. Technol. 2019, 148, 132–140. [Google Scholar] [CrossRef]
- Zhao, H.; Dai, T.; Jing, Q.; Jiang, D.; Cao, W. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regul. 2007, 51, 149–158. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies Summary. Plant Soilant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Aebi, H. [13] Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Polle, A.; Otter, T.; Seifert, F. Apoplastic Peroxidases and Lignification in Needles of Norway Spruce (Picea abies L.). Plant Physiol. 1994, 106, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Tanany, M.M.; Sallam, A.A.; Sayed, M.A. Washington navel orange productivity as affected by deficit irrigation water and potassium application. Middle East J. Appl. Sci. 2019, 9, 370–385. [Google Scholar]
- Zaghloul, A.; Moursi, E.-S. Effect of Irrigation Scheduling under some Biostimulants Foliar Application for Navel Orange Trees on some Water Relations, Productivity, Fruit Quality and Storability in the North Nile Delta Region. Alex. Sci. Exch. J. 2017, 38, 671–686. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Mogazy, A.M.; Seleem, E.A.; Mohamed, G.F. Mitigating the Harmful Effects of Water Deficiency Stress on White Lupine (Lupinus albus L.) Plants by Using Algae Extract and Hydrogen Peroxide. J. Plant Prod. 2020, 11, 921–931. [Google Scholar] [CrossRef]
- Farouk, S.; Al-Huqail, A.A. Sodium nitroprusside application regulates antioxidant capacity, improves phytopharmaceutical production and essential oil yield of marjoram herb under drought. Ind. Crop. Prod. 2020, 158, 113034. [Google Scholar] [CrossRef]
- Bhuyan, M.H.M.B.; Hasanuzzaman, M.; Parvin, K.; Mohsin, S.M.; Al Mahmud, J.; Nahar, K.; Fujita, M. Nitric oxide and hydrogen sulfide: Two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regul. 2020, 90, 409–424. [Google Scholar] [CrossRef]
- Majeed, S.; Nawaz, F.; Naeem, M.; Ashraf, M.Y.; Ejaz, S.; Ahmad, K.S.; Tauseef, S.; Farid, G.; Khalid, I.; Mehmood, K. Nitric oxide regulates water status and associated enzymatic pathways to inhibit nutrients imbalance in maize (Zea mays L.) under drought stress. Plant Physiol. Biochem. 2020, 155, 147–160. [Google Scholar] [CrossRef]
- Panigrahi, P.; Srivastava, A.; Huchche, A. Effects of drip irrigation regimes and basin irrigation on Nagpur mandarin agronomical and physiological performance. Agric. Water Manag. 2012, 104, 79–88. [Google Scholar] [CrossRef]
- Bousamid, A.; Mzabri, B.; Benyazid, J.; Messaoudi, Z.; Belabed, A.; Berrichi, A. The effect of irrigation doses on the productivity of citrus clementina variety “fina berkane”, a variety of clementine produced in triffa plain, north eastern morocco. J. Exp. Biol. Agric. Sci. 2021, 9, 432–438. [Google Scholar] [CrossRef]
- Conesa, M.R.; García-Salinas, M.D.; de la Rosa, J.M.; Fernández-Trujillo, J.P.; Domingo, R.; Pérez-Pastor, A. Effects of deficit irrigation applied during fruit growth period of late mandarin trees on harvest quality, cold storage and subsequent shelf-life. Sci. Hortic. 2014, 165, 344–351. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.; Robles, J.; García-Sánchez, F.; Botía, P. Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions. Agric. Water Manag. 2016, 164, 46–57. [Google Scholar] [CrossRef]
- Al-Abbasi, G.B.; Abdullah, K.M.; Hussein, Z.A. Effect of spraying with Tecamin Algae and NPK fertilizer on the growth of pomegranate (Punica granatum L.) seedlings cv. California wonderful. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 012078. [Google Scholar] [CrossRef]
- Lall, D.; Prasad, V.M.; Singh, V.K.; Kiishor, S. Effect of foliar application of Biovita (biofertilizer) on fruit set, yield and quality of guava (Psidium guajava L.) Article. Res. Env. Life Sci. 2017, 6, 432–434. [Google Scholar]
- de Melo, T.A.; Serra, I.M.R.D.S.; Sousa, A.A.; Sousa, T.Y.O.; Pascholati, S.F. Effect of Ascophyllum nodosum seaweed extract on post-harvest ‘Tommy Atkins’ mangoes. Rev. Bras. Frutic. 2018, 40, e-621. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, F.; Rastegar, S. Preservation of mango fruit with guar-based edible coatings enriched with Spirulina platensis and Aloe vera extract during storage at ambient temperature. Sci. Hortic. 2020, 265, 109258. [Google Scholar] [CrossRef]
- Panigrahi, P.; Srivastava, A.K. Water and nutrient management effects on water use and yield of drip irrigated citrus in vertisol under a sub-humid region. J. Integr. Agric. 2017, 16, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Lufu, R.; Ambaw, A.; Opara, U.L. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci. Hortic. 2020, 272, 109519. [Google Scholar] [CrossRef]
- Li, X.; Gong, B.; Xu, K. Interaction of nitric oxide and polyamines involves antioxidants and physiological strategies against chilling-induced oxidative damage in Zingiber officinale Roscoe. Sci. Hortic. 2014, 170, 237–248. [Google Scholar] [CrossRef]
- Wu, Z.; Dong, C.; Wei, J.; Guo, L.; Meng, Y.; Wu, B.; Chen, J. A transcriptional study of the effects of nitric oxide on rachis browning in table grapes cv. Thompson Seedless. Postharvest Biol. Technol. 2021, 175, 111471. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, J.; Song, C.; Qi, S.; Lin, Q.; Cui, Y.; Ling, J.; Duan, Y. Nitric oxide alleviates chilling injury by regulating the metabolism of lipid and cell wall in cold-storage peach fruit. Plant Physiol. Biochem. 2021, 169, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Li, X.; Li, C.; Tang, Q.; Duan, B.; Cheng, Y.; Hou, J.; Li, J. Effect of sodium nitroprusside on antioxidative enzymes and the phenylpropanoid pathway in blueberry fruit. Food Chem. 2019, 295, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Liu, Z.; Wang, J.; Zhu, S.; Huang, D. Nitric oxide modulates sugar metabolism and maintains the quality of red raspberry during storage. Sci. Hortic. 2019, 256, 108611. [Google Scholar] [CrossRef]
- Ghaffari, H.; Tadayon, M.R.; Nadeem, M.; Cheema, M.; Razmjoo, J. Proline-mediated changes in antioxidant enzymatic activities and the physiology of sugar beet under drought stress. Acta Physiol. Plant. 2019, 41, 23. [Google Scholar] [CrossRef]
- Qian, C.; Ji, Z.; Zhu, Q.; Qi, X.; Li, Q.; Yin, J.; Liu, J.; Kan, J.; Zhang, M.; Jin, C.; et al. Effects of 1-MCP on proline, polyamine, and nitric oxide metabolism in postharvest peach fruit under chilling stress. Hortic. Plant J. 2021, 7, 188–196. [Google Scholar] [CrossRef]
- Baskaran, A.; Muruganandam, A. Enhancing role of proline in scavenging free radicals by antioxidative defence system during stress in black gram and cluster bean. Int. J. Pharm. Sci. Rev. Res. 2017, 43, 211–216. [Google Scholar]
- Rezayian, M.; Ebrahimzadeh, H.; Niknam, V. Nitric Oxide Stimulates Antioxidant System and Osmotic Adjustment in Soybean Under Drought Stress. J. Soil Sci. Plant Nutr. 2020, 20, 1122–1132. [Google Scholar] [CrossRef]
- Lau, S.-E.; Hamdan, M.F.; Pua, T.-L.; Saidi, N.B.; Tan, B.C. Plant Nitric Oxide Signaling under Drought Stress. Plants 2021, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, K. Exogenous nitric oxide treatment impacts antioxidant response and alleviates chilling injuries in longkong pericarp. Sci. Hortic. 2018, 237, 311–317. [Google Scholar] [CrossRef]
- Del Castello, F.; Nejamkin, A.; Cassia, R.; Correa-Aragunde, N.; Fernández, B.; Foresi, N.; Lombardo, C.; Ramirez, L.; Lamattina, L. The era of nitric oxide in plant biology: Twenty years tying up loose ends. Nitric Oxide Biol. Chem. 2019, 85, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Fan, Z.; Wu, J.; Zhu, S. Effects of pre-treatment with S-nitrosoglutathione-chitosan nanoparticles on quality and antioxidant systems of fresh-cut apple slices. LWT 2021, 139, 110565. [Google Scholar] [CrossRef]
- Wang, D.; Huang, H.; Jiang, Y.; Duan, X.; Lin, X.; Aghdam, M.S.; Luo, Z. Exogenous phytosulfokine α (PSKα) alleviates chilling injury of banana by modulating metabolisms of nitric oxide, polyamine, proline, and γ-aminobutyric acid. Food Chem. 2022, 380, 132179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, Z.; Du, R.; Liu, Y.; Ying, T.; Mao, L. Effect of Nitric Oxide on Antioxidative Response and Proline Metabolism in Banana during Cold Storage. J. Agric. Food Chem. 2013, 61, 8880–8887. [Google Scholar] [CrossRef]
- Chavoushi, M.; Najafi, F.; Angaji, S.A. Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Indust. Crops Prod. 2019, 134, 168–176. [Google Scholar] [CrossRef]
- Ahmad, P.; Jamsheed, S.; Hameed, A.; Rasool, S.; Sharma, I.; Azooz, M.; Hasanuzzaman, M. Drought Stress Induced Oxidative Damage and Antioxidants in Plants. In Oxidative Damage to Plants; Ahmad, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 345–367. [Google Scholar] [CrossRef]
Parameters | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air temperature (°C) | Max. | 18.6 | 20.8 | 23.2 | 27.1 | 31.2 | 32.6 | 33.8 | 34.0 | 33.4 | 29.5 | 25.2 | 20.9 |
Min. | 9.9 | 12.2 | 15.9 | 20.1 | 24.3 | 26.6 | 27.2 | 27.3 | 24.9 | 18.0 | 19.6 | 14.0 | |
Mean | 14.2 | 16.5 | 19.5 | 23.6 | 27.8 | 29.6 | 30.5 | 30.7 | 29.2 | 23.7 | 22.4 | 17.5 | |
Relative humidity (%) | Max. | 86.3 | 86.0 | 83.5 | 80.5 | 73.9 | 78.2 | 83.8 | 78.5 | 84.4 | 78.5 | 83.7 | 87.4 |
Min. | 61.2 | 58.3 | 55.5 | 46.1 | 42.3 | 47.7 | 54.2 | 59.8 | 48.9 | 50.9 | 55.0 | 61.4 | |
Mean | 73.7 | 72.1 | 69.5 | 63.3 | 58.1 | 62.9 | 69.0 | 69.2 | 66.7 | 64.7 | 69.4 | 74.4 | |
Wind speed (km d−1) | Mean | 45.8 | 46.3 | 63.8 | 78.8 | 96.4 | 105.8 | 92.3 | 80.0 | 88.2 | 77.8 | 43.4 | 43.1 |
Pan evaporation (mm d−1) | Mean | 2.0 | 2.2 | 3.7 | 5.1 | 6.8 | 8.0 | 7.7 | 7.0 | 5.8 | 4.1 | 2.0 | 1.8 |
Radiation (Mj m−2 d−1) | Mean | 12.3 | 15.2 | 19.1 | 23.1 | 25.8 | 28 | 27.3 | 25.8 | 22.1 | 17.8 | 13.8 | 11.3 |
Rain (mm) | Mean | 34.4 | 14.3 | 18.6 | 2.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 6.7 | 26.5 |
ETo (mm d−1) | Mean | 1.5 | 2.0 | 3.0 | 4.3 | 5.5 | 6.2 | 6.1 | 5.8 | 4.9 | 3.4 | 2.2 | 1.6 |
Soil Depth (cm) | Vol. Field Capacity (%) | Vol. Wilting Point (%) | Bulk Density (Mgm–3) | Total Porosity (%) | Sand (%) | Silt (%) | Clay (%) | Texture Class | ECe (dSm−1) | pH 1:2.5 |
---|---|---|---|---|---|---|---|---|---|---|
0–15 | 44.81 | 22.67 | 1.22 | 53.96 | 20.13 | 24.75 | 55.12 | Clayey | 2.25 | 7.96 |
15–30 | 43.25 | 21.93 | 1.26 | 52.45 | 19.08 | 25.18 | 55.74 | Clayey | 2.71 | 8.25 |
30–45 | 41.08 | 20.55 | 1.38 | 47.92 | 17.74 | 25.59 | 56.67 | Clayey | 3.46 | 8.5 |
45–60 | 40.5 | 20.78 | 1.47 | 44.53 | 15.63 | 26.44 | 57.93 | Clayey | 3.89 | 8.67 |
Mean | 42.41 | 21.48 | 1.33 | 49.81 | 18.15 | 25.49 | 56.36 | Clay | 3.08 |
Monthly Applied Water (mm) | Seasonal | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigation | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | (mm) | (m3ha−1) Z |
100% ETc | 29 | 35 | 70 | 95 | 119 | 118 | 110 | 98 | 81 | 59 | 38 | 30 | 882 | 8834 a |
85% ETc | 25 | 29 | 60 | 81 | 101 | 101 | 93 | 84 | 69 | 50 | 32 | 26 | 750 | 7500 b |
70% ETc | 20 | 24 | 49 | 66 | 83 | 83 | 77 | 69 | 57 | 41 | 27 | 21 | 618 | 6177 c |
Treatments | Fruit Volume (mL) | Fruit Yield (Mgha−1) | ||||
---|---|---|---|---|---|---|
70% ETc | 85% ETc | 100% ETc | 70% ETc | 85% ETc | 100% ETc | |
Control | 97.5 k Z | 108.8 j | 139.1 fg | 2.37 l Z | 2.70 hi | 2.85 fg |
Algae 1% | 136.0 g | 144.3 ef | 159.9 db | 2.57 ijk | 3.17 d | 3.46 c |
Algae 2% | 152.6 c | 167.1 a | 169.5 a | 2.83 g | 3.65 b | 3.80 a |
Nano Se | 96.5 k | 139.0 fg | 149.8 cde | 2.55 jk | 2.77 gh | 3.03 e |
SNP 50 µm | 99.4 k | 116.0 hi | 144.8 def | 2.46 kl | 2.72 gh | 2.98 ef |
SNP 100 µm | 101.2 k | 122.0 h | 145.6 def | 2.65 hij | 3.01 1e | 3.26 d |
SNP 150 µm | 111.7 ij | 146.8 cde | 151.0 cd | 2.69 hi | 3.27 d | 3.57 bc |
Treatments | Juice | |
---|---|---|
% | ||
Control | 56.5 | c z |
Algea 1% | 65.4 | a |
Algea 2% | 67.0 | a |
Nano Se | 58.0 | bc |
SNP 50 µm | 57.0 | c |
SNP 100 µm | 57.1 | c |
SNP 150 µm | 60.5 | b |
Treatments | Total Acidity (%) | Total Acidity Change (%) | ||||
---|---|---|---|---|---|---|
70% ETc | 85% ETc | 100% ETc | 70% ETc | 85% ETc | 100% ETc | |
Control | 1.21 k Z | 1.39 ij | 1.39 ij | −49.1 h Z | −29.0 abcdef | −28.0 abc |
Algae 1% | 1.32 jk | 1.48 hi | 1.73 def | −23.5 ab | −29.0 abcdef | −39.0 defgh |
Algae 2% | 1.49 hi | 1.62 fgh | 1.68 ef | −34.0 bcdef | −35.0 cdefg | −32.0 abcdef |
Nano Se | 1.48 hi | 1.66 efg | 1.81 de | −37.0 cdefg | −32.0 abcdef | −36.0 cdefg |
SNP 50 µm | 1.52 ghi | 1.60 fgh | 1.85 cd | −23.0 a | −28.0 abcd | −39.0 efgh |
SNP 100 µm | 1.78 de | 1.99 bc | 2.05 b | −29.0 abcde | −40.0 fgh | −37.0 cdefg |
SNP 150 µm | 2.01 b | 2.53 a | 2.53 a | −33.0 abcdef | −45.0 gh | −45.0 gh |
Treatments | Carotenoid Content | Carotenoid Change | POD Change | |||
---|---|---|---|---|---|---|
“μg mL−1” | % | |||||
Control | 1.91 | a z | −6.6 | b | 0.4 | b |
Algea 1% | 1.34 | bc | −9.0 | b | 5.3 | a |
Algea 2% | 1.44 | b | −5.0 | b | 5.1 | a |
Nano Se | 1.40 | bc | −4.1 | b | 5.3 | a |
SNP 50 µm | 1.30 | bc | −9.8 | b | 5.5 | a |
SNP 100 µm | 1.22 | c | −10.4 | b | 5.4 | a |
SNP 150 µm | 0.89 | d | 6.2 | a | 5.9 | a |
Treatments | MDA Content (μmole g−1 FW) | MDA Change % | ||||
---|---|---|---|---|---|---|
70% ETc | 85% Etc | 100% Etc | 70% Etc | 85% Etc | 100% Etc | |
Control | 30.25 a Z | 21.79 c | 21.43 c | 43.9 efg Z | 77.5 bcd | 61.2 de |
Algae 1% | 18.95 d | 16.54 defg | 15.13 fgh | 74.8 bcd | 90.1 bc | 75.7 bcd |
Algae 2% | 25.26 b | 17.99 de | 18.03 de | 43.5 efg | 92.8 b | 78.5 bcd |
Nano Se | 23.38 bc | 17.03 def | 13.82 h | 26.1 fg | 64.0 cde | 88.4 bcd |
SNP 50 µm | 15.78 efgh | 15.3 fgh | 10.59 i | 86.3 bcd | 77.0 bcd | 123.9 a |
SNP100 µm | 15.02 fgh | 10.36 i | 8.54 ij | 77.2 bcd | 124.8 a | 132.9 a |
SNP150 µm | 14.35 gh | 9.36 ij | 7.52 j | 45.6 ef | 24.9 fg | 16.5 g |
Treatments | CAT “µmole g−1 FW min−1” | CAT Change (%) | ||||
---|---|---|---|---|---|---|
70% ETc | 85% ETc | 100% ETc | 70% ETc | 85% ETc | 100% ETc | |
Control | 12.89 f Z | 10.92 jk | 10.62 k | 2.88 ab | 1.68 cdef | 0.69 f |
Algae 1% | 13.01 ef | 11.71 i | 10.86 k | 2.97 a | 2.59 abc | 0.69 f |
Algae 2% | 14.02 c | 12.73 fg | 11.37 ij | 0.94 ef | 1.26 def | 0.69 f |
Nano Se | 13.45 de | 12.26 gh | 10.98 jk | 1.77 cde | 2.05 abcd | 0.69 f |
SNP 50 µm | 14.23 bc | 12.65 fg | 11.39 ij | 1.32 def | 2.36 abc | 1.29 def |
SNP 100 µm | 14.63 b | 13.49 d | 11.48 i | 1.32 def | 2.01 abcd | 1.29 def |
SNP 150 µm | 15.16 a | 14.55 b | 11.79 hi | 1.42 def | 1.89 bcd | 1.29 def |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmenofy, H.M.; Hatterman-Valenti, H.M.; Hassan, I.F.; Mahmoud, M.M.A. Effects of Deficit Irrigation and Anti-Stressors on Water Productivity, and Fruit Quality at Harvest and Stored ‘Murcott’ Mandarin. Horticulturae 2023, 9, 787. https://doi.org/10.3390/horticulturae9070787
Elmenofy HM, Hatterman-Valenti HM, Hassan IF, Mahmoud MMA. Effects of Deficit Irrigation and Anti-Stressors on Water Productivity, and Fruit Quality at Harvest and Stored ‘Murcott’ Mandarin. Horticulturae. 2023; 9(7):787. https://doi.org/10.3390/horticulturae9070787
Chicago/Turabian StyleElmenofy, Hayam M., Harlene M. Hatterman-Valenti, Islam F. Hassan, and Mahmoud Mohamed Abdalla Mahmoud. 2023. "Effects of Deficit Irrigation and Anti-Stressors on Water Productivity, and Fruit Quality at Harvest and Stored ‘Murcott’ Mandarin" Horticulturae 9, no. 7: 787. https://doi.org/10.3390/horticulturae9070787
APA StyleElmenofy, H. M., Hatterman-Valenti, H. M., Hassan, I. F., & Mahmoud, M. M. A. (2023). Effects of Deficit Irrigation and Anti-Stressors on Water Productivity, and Fruit Quality at Harvest and Stored ‘Murcott’ Mandarin. Horticulturae, 9(7), 787. https://doi.org/10.3390/horticulturae9070787