Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries
Abstract
Share and Cite
Deeg, P.; Weisenberger, C.; Oehm, J.; Schmidt, D.; Csiszar, O.; Knoblauch, V. Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries. Batteries 2024, 10, 99. https://doi.org/10.3390/batteries10030099
Deeg P, Weisenberger C, Oehm J, Schmidt D, Csiszar O, Knoblauch V. Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries. Batteries. 2024; 10(3):99. https://doi.org/10.3390/batteries10030099
Chicago/Turabian StyleDeeg, Patrick, Christian Weisenberger, Jonas Oehm, Denny Schmidt, Orsolya Csiszar, and Volker Knoblauch. 2024. "Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries" Batteries 10, no. 3: 99. https://doi.org/10.3390/batteries10030099
APA StyleDeeg, P., Weisenberger, C., Oehm, J., Schmidt, D., Csiszar, O., & Knoblauch, V. (2024). Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries. Batteries, 10(3), 99. https://doi.org/10.3390/batteries10030099