Comparative Cost Modeling of Battery Cell Formats and Chemistries on a Large Production Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Battery Cell Design
2.2. Cost Calculation
2.2.1. Electrode Manufacturing
2.2.2. Cell Assembly
2.3. Battery Parameters
3. Results and Discussion
3.1. Baseline Scenario
3.2. Different Geometries with the Same Capacity
3.3. Influence of Battery Capacity in Production Cost
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EV | electric vehicle |
PBCM | process-based cost model |
References
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Link, S.; Neef, C.; Wicke, T. Trends in Automotive Battery Cell Design: A Statistical Analysis of Empirical Data. Batteries 2023, 9, 261. [Google Scholar] [CrossRef]
- Dhameja, S. 1—Electric Vehicle Batteries. In Electric Vehicle Battery Systems; Dhameja, S., Ed.; Newnes: Woburn, MA, USA, 2002; pp. 1–21. [Google Scholar] [CrossRef]
- Hummes, D.N.; Hunt, J.; Hervé, B.B.; Schneider, P.S.; Montanari, P.M. A comparative study of different battery geometries used in electric vehicles. Lat. Am. J. Energy Res. 2023, 10, 94–114. [Google Scholar] [CrossRef]
- Küpper, D.; Kuhlmann, K.; Wolf, S.; Pieper, C.; Xu, G.; Ahmad, J. The Future of Battery Production for Electric Vehicles. Available online: https://www.bcg.com/publications/2018/future-battery-production-electric-vehicles (accessed on 28 November 2023).
- Nykvist, B.; Sprei, F.; Nilsson, M. Assessing the progress toward lower priced long range battery electric vehicles. Energy Policy 2019, 124, 144–155. [Google Scholar] [CrossRef]
- Nelson, P.A.; Gallagher, K.G.; Bloom, I.D.; Dees, D.W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, 2nd ed.; No. ANL/CSE-19/2; Argonne National Lab. (ANL): Argonne, IL, USA, 2012. [Google Scholar] [CrossRef]
- Patry, G.; Romagny, A.; Martinet, S.; Froelich, D. Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci. Eng. 2014, 3, 71–82. [Google Scholar] [CrossRef]
- Yan, Z.; Obrovac, M. Quantifying the cost effectiveness of non-aqueous potassium-ion batteries. J. Power Sources 2020, 464, 228228. [Google Scholar] [CrossRef]
- Beuse, M.; Steffen, B.; Schmidt, T.S. Projecting the Competition between Energy-Storage Technologies in the Electricity Sector. Joule 2020, 4, 2162–2184. [Google Scholar] [CrossRef]
- Philippot, M.; Alvarez, G.; Ayerbe, E.; Van Mierlo, J.; Messagie, M. Eco-Efficiency of a Lithium-Ion Battery for Electric Vehicles: Influence of Manufacturing Country and Commodity Prices on GHG Emissions and Costs. Batteries 2019, 5, 23. [Google Scholar] [CrossRef]
- Ciez, R.E.; Whitacre, J. Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model. J. Power Sources 2017, 340, 273–281. [Google Scholar] [CrossRef]
- Orangi, S.; Strømman, A.H. A Techno-Economic Model for Benchmarking the Production Cost of Lithium-Ion Battery Cells. Batteries 2022, 8, 83. [Google Scholar] [CrossRef]
- Cheng, Y.; Porpora, F.; D’Arpino, M.; Rizzoni, G. Cost analysis in different battery pack architectures considering protection, monitoring, and diagnostics. In Proceedings of the 2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 21–25 June 2021; pp. 832–839. [Google Scholar] [CrossRef]
- Wentker, M.; Greenwood, M.; Leker, J. A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials. Energies 2019, 12, 504. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef]
- Duffner, F.; Mauler, L.; Wentker, M.; Leker, J.; Winter, M. Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs. Int. J. Prod. Econ. 2021, 232, 107982. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2024; Technical Report; U.S. Geological Survey: Menlo Park, CA, USA, 2024. [Google Scholar] [CrossRef]
- Kwade, A.; Haselrieder, W.; Leithoff, R.; Modlinger, A.; Dietrich, F.; Droeder, K. Current status and challenges for automotive battery production technologies. Nat. Energy 2018, 3, 290–300. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Wang, J.; Wang, Y. Current and future lithium-ion battery manufacturing. IScience 2021, 24, 102332. [Google Scholar] [CrossRef] [PubMed]
- Warner, J.T. The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Phul, S.; Deshpande, A.; Krishnamurthy, B. A mathematical model to study the effect of potential drop across the SEI layer on the capacity fading of a lithium ion battery. Electrochim. Acta 2015, 164, 281–287. [Google Scholar] [CrossRef]
- Nicke, K.; Holst, G.; Gleiter, T.; Reichelt, L.; Zittel, W. Batterierecycling als Beschäftigungs perspektive für die Lausitz. In Ansätze Einer Arbeits-Und Beschäftigungsorientierten Regionalentwicklungsstrategie; IMU Institut: Stuttgart, Germany, 2019. [Google Scholar]
- Windisch-Kern, S.; Holzer, A.; Ponak, C.; Nagovnak, P.; Raupenstrauch, H. Recycling von Lithium-Ionen-Batterien: Herausforderungen und aktuelle Forschungsergebnisse. BHM 2021, 166, 150–156. [Google Scholar] [CrossRef]
- Inclán, I.R. Analysis of Global Battery Production: Production Locations and Quantities of Cells with LFP and NMC/NCA Cathode Material; Fraunhofer Institute for Systems and Innovation Research ISI: Stuttgart, Germany, 2023. [Google Scholar]
- Tang, Z.; Feng, D.; Xu, Y.; Chen, L.; Zhang, X.; Ma, Q. Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects. Batteries 2023, 9, 156. [Google Scholar] [CrossRef]
- Ohneseit, S.; Finster, P.; Floras, C.; Lubenau, N.; Uhlmann, N.; Seifert, H.J.; Ziebert, C. Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes–Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC). Batteries 2023, 9, 237. [Google Scholar] [CrossRef]
- Lu, S.J.; Tang, L.B.; Wei, H.X.; Huang, Y.D.; Yan, C.; He, Z.J.; Li, Y.J.; Mao, J.; Dai, K.; Zheng, J.C. Single-crystal nickel-based cathodes: Fundamentals and recent advances. Electrochem. Energy Rev. 2022, 5, 15. [Google Scholar] [CrossRef]
- Vekić, N. Lithium-Ionen-Batterien für die Elektromobilität: Status, Zukunftsperspektiven, Recycling. Thinktank Ind. Ressourcenstrategien 2020, 9, 2022. [Google Scholar]
- Degen, F.; Krätzig, O. Modeling large-scale manufacturing of lithium-ion battery cells: Impact of new technologies on production economics. IEEE Trans. Eng. Manag. 2023, 71, 6753–6769. [Google Scholar] [CrossRef]
- Qi, L.; Wang, Y.; Kong, L.; Yi, M.; Song, J.; Hao, D.; Zhou, X.; Zhang, Z.; Yan, J. Manufacturing processes and recycling technology of automotive lithium-ion battery: A review. J. Energy Storage 2023, 67, 107533. [Google Scholar] [CrossRef]
Variable | Unit | Description |
---|---|---|
g | Mass of component y | |
Ah/g | Specific capacity of electrode y | |
- | Mixing percentage of electrode component y | |
g/mm3 | Density of y | |
- | Porosity of y | |
mm3 | Volume of y | |
mm2 | Area of y | |
mm | Thickness of component y | |
Wh | Energy of the cell | |
V | Average discharge tension of the cell | |
- | Number of electrode layers | |
L | mm | Cell length |
H | mm | Cell height |
- | Ratio of negative to positive electrode capacity |
y | Description |
---|---|
pos | Positive active material |
neg | Negative active material |
cat | Cathode |
ano | Anode |
b | Binder |
car | Carbon black |
sep | Separator |
cat layer pouch | Cathode layer in a pouch-type cell |
cat layer prism | Cathode layer in a prismatic-type cell |
cat layer | Cathode layer in any cell |
ano layer | Anode layer in any cell |
cat cc | Cathode current collector |
ano cc | Anode current collector |
Input | Unit | Value |
---|---|---|
Yearly production of facility | GWh/a | 10 |
Work days per year | Days/ year | 360 |
8 h shifts per day | Shifts/ day | 3 |
Working days per worker | Days/ worker | 210 |
Machine useful life | Years | 8 |
Electricity price—Industry | EUR/kWh | 0.20 |
Labor rate | EUR/h | 32 |
Fixed Overhead | % | 20 |
Building costs | EUR/m2 | 4000 |
Building useful life | Years | 20 |
Process/Machine | Investment Cost [Million EUR] | Energy Consumption [kWh] | Footprint [] | Required Workers | Process Rate |
---|---|---|---|---|---|
Mixing | 1.15 | 20.0 | 72 | 1.0 | 250 L/h |
Coating | 5.50 | 75.0 | 420 | 2.0 | 30 m/min |
Drying | |||||
Calendering | 2.90 | 60.0 | 72 | 1.0 | 30 m/min |
Slitting | 1.15 | 45.0 | 72 | 1.0 | 80 m/min |
Vacuum Drying | 1.20 | 5.0 | 48 | 1.0 | 12.5 coils/h |
Separation | 1.50 | 1.0 | 15 | 0.5 | 360 sheets/min |
Stacking | 2.00 | 8.0 | 15 | 0.5 | 360 sheets/min |
Winding | 1.50 | 8.4 | 106 | 0.8 | 4000 cells/h |
Packaging | 1.50 | 54.0 | 106 | 0.8 | 4000 cells/h |
Electrolyte Filling | 0.67 | 10.0 | 75 | 0.2 | 3000 cells/h |
Roll Pressing | 4.00 | 9.6 | 20 | 1.0 | 3.5 s/cell |
Formation | 7.50 | 334.0 | 161 | 0.7 | 4000 cells/h |
Aging | 3.00 | 14.0 | 246 | 0.2 | 4000 cells/h |
Test and Classification | 5.00 | 33.3 | 5 | 10.4 | 4000 cells/h |
Dry room | EUR 5.208/ | 1.11 kWh/ | - | - | - |
Cell Type | Dimensions | Capacity [Wh] | Electrode Thickness [m] |
---|---|---|---|
Cylindrical [mm] | 65 | 12 | |
Pouch [mm × mm] | 300 × 50 | 200 | 70 |
Prismatic [mm × mm] | 400 × 100 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldan Cattani, N.; Noronha, E.; Schmied, J.; Frieges, M.; Heimes, H.; Kampker, A. Comparative Cost Modeling of Battery Cell Formats and Chemistries on a Large Production Scale. Batteries 2024, 10, 252. https://doi.org/10.3390/batteries10070252
Soldan Cattani N, Noronha E, Schmied J, Frieges M, Heimes H, Kampker A. Comparative Cost Modeling of Battery Cell Formats and Chemistries on a Large Production Scale. Batteries. 2024; 10(7):252. https://doi.org/10.3390/batteries10070252
Chicago/Turabian StyleSoldan Cattani, Natalia, Eduardo Noronha, Jessica Schmied, Moritz Frieges, Heiner Heimes, and Achim Kampker. 2024. "Comparative Cost Modeling of Battery Cell Formats and Chemistries on a Large Production Scale" Batteries 10, no. 7: 252. https://doi.org/10.3390/batteries10070252
APA StyleSoldan Cattani, N., Noronha, E., Schmied, J., Frieges, M., Heimes, H., & Kampker, A. (2024). Comparative Cost Modeling of Battery Cell Formats and Chemistries on a Large Production Scale. Batteries, 10(7), 252. https://doi.org/10.3390/batteries10070252