Water Effect on the Electronic Properties and Lithium-Ion Conduction in a Defect-Engineered LiFePO4 Electrode
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Intrinsic Structure of LiFePO4 and H2O + LiFePO4
3.2. Electronic Properties of LiFePO4 and H2O + LiFePO4
3.3. Charge Properties of LiFePO4 and H2O + LiFePO4
3.4. Migration Properties of the Li Ion in LiFePO4 and H2O + LiFePO4
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Y.; Yuan, Y.F.; Du, P.F.; Zhu, M.; Chen, Y.B.; Guo, S.Y. α-MnS nanoparticles in-situ anchored in 3D macroporous honeycomb carbon as high-performance anode for Li-ion batteries. Appl. Surf. Sci. 2023, 616, 156619. [Google Scholar] [CrossRef]
- Yasin, G.; Arif, M.; Mehtab, T.; Lu, X.; Yu, D.; Muhammad, N.; Nazir, M.T.; Song, H. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Mater. 2020, 25, 644–678. [Google Scholar] [CrossRef]
- Jansen, A.N.; Kahaian, A.J.; Kepler, K.D.; Nelson, P.A.; Amine, K.; Dees, D.W.; Vissers, D.R.; Thackeray, M.M. Development of a high-power lithium-ion battery. J. Power Sources 1999, 81, 902–905. [Google Scholar] [CrossRef]
- Smith, K.; Wang, C.Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J. Power Sources 2006, 160, 662–673. [Google Scholar] [CrossRef]
- Schmuch, R.; Wagner, R.; Horpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278. [Google Scholar] [CrossRef]
- Ahuis, M.; Doose, S.; Vogt, D.; Michalowski, P.; Zellmer, S.; Kwade, A. Recycling of solid-state batteries. Nat. Energy 2024, 9, 373–385. [Google Scholar] [CrossRef]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, L.; Wang, J.; Yan, W.; Huang, X.; Guo, S. 1D-in-1D multi-core CoSe2 nanowires@porous carbon fiber for high-rate and long-life sodium storage. J. Energy Storage 2024, 93, 112328. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Q.; Xu, F.; Fan, M.; Peng, C.; Yan, S. Double-layer SOC and SOH equalization scheme for LiFePO4 battery energy storage system using MAS blackboard system. Energies 2023, 16, 5460. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Xi, J.C.; Zhang, T.; Wang, B.X.; Guo, S.Y.; Huang, Y.Z.; Yang, Q.H. Co-Fe Prussian blue analogue ultrafine nanocrystal cubes grown in-situ in honeycomb carbon as high-performance anode for lithium-ion batteries. Appl. Surf. Sci. 2023, 640, 158456. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188. [Google Scholar] [CrossRef]
- Pan, H.; Wang, L.; Shi, Y.; Sheng, C.; Yang, S.; He, P.; Zhou, H. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure. Nat. Commun. 2024, 15, 2263. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.; Yuan, Y.F.; Lin, Z.C.; Lin, J.J.; Li, S.B.; Guo, S.Y.; Huang, Y.Z.; Yan, W.W. Fluffy ultrathin WO3 nanoneedle clusters in-situ grown in mesoporous hollow carbon nanospheres as advanced anode for lithium-ion batteries. J. Alloys Compd. 2023, 969, 172458. [Google Scholar] [CrossRef]
- Jiang, X.; Xin, Y.; He, B.; Zhang, F.; Tian, H. Effect of heteroatom doping on electrochemical properties of olivine LiFePO4 cathodes for high-performance lithium-ion batteries. Materials 2024, 17, 1299. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Lei, H.; Li, J.; Yuan, Z.; Wang, B.; Zhao, W.; Yang, Y.; Ge, P. Designing functional Li2CuO2-coated separators from Cu foil towards spent LiFePO4 cathode regeneration. Chem. Commun. 2024, 60, 3059–3062. [Google Scholar] [CrossRef] [PubMed]
- Yasin, G.; Arif, M.; Ma, J.; Ibraheem, S.; Yu, D.; Zhang, L.; Liu, D.; Dai, L. Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries. Inorg. Chem. Front. 2022, 9, 1058–1069. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, J.S.; Zheng, T.; Dahn, J.R. Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 1996, 34, 193–200. [Google Scholar] [CrossRef]
- Benkreira, H.; Shibata, Y.; Ito, K. Thinnest uniform liquid films formed at the highest speeds with reverse roll coating. AlChE J. 2013, 59, 3083–3091. [Google Scholar] [CrossRef]
- Shen, C.; Wan, L. A design methodology for lithium-ion battery management system and its application to an autonomous underwater vehicle. Adv. Mater. Res. 2012, 383, 7175–7182. [Google Scholar] [CrossRef]
- Miao, B.; Lv, J.; Wang, Q.; Zhu, G.; Guo, C.; An, G.; Ou, J. The suppression effect of water mist released at different stages on lithium-ion battery flame temperature, heat release, and heat radiation. Batteries 2024, 10, 232. [Google Scholar] [CrossRef]
- Liu, G.Q.; Wen, L.; Liu, Y.M. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J. Solid State Electrochem. 2010, 14, 2191–2202. [Google Scholar] [CrossRef]
- Delaporte, N.; Trudeau, M.L.; Belanger, D.; Zaghib, K. Protection of LiFePO4 against Moisture. Materials 2020, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Cuisinier, M.; Martin, J.-F.; Dupré, N.; Kanno, R.; Guyomard, D. Elucidating the LiFePO4 air aging mechanism to predict its electrochemical performance. J. Mater. Chem. 2011, 21, 18575–18583. [Google Scholar] [CrossRef]
- Jarolimek, K.; Risko, C. Modification of the LiFePO4 (010) surface due to exposure to atmospheric gases. ACS Appl. Mater. Interfaces 2021, 13, 29034–29040. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Gao, S.; Zheng, W.; Cheng, L.; Feng, L.; Shui, M.; Shu, J. Properties of LIB cathode material LiFePO4 after extreme water soaking conditions. Chin. Battery Ind. 2012, 17, 161–164. [Google Scholar]
- Xu, H.; Jiang, S. Influence of moisture on electrical properties of lithium iron phosphate. Chin. J. Power Sources 2019, 43, 1284–1286. [Google Scholar]
- Ahn, C.-W.; Choi, J.-J.; Ryu, J.; Hahn, B.-D.; Kim, J.-W.; Yoon, W.-H.; Choi, J.-H.; Lee, J.-S.; Park, D.-S. Electrochemical properties of Li7La3Zr2O12-based solid state battery. J. Power Sources 2014, 272, 554–558. [Google Scholar] [CrossRef]
- Wang, R.; Chen, X.; Huang, Z.; Yang, J.; Liu, F.; Chu, M.; Liu, T.; Wang, C.; Zhu, W.; Li, S.; et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat. Commun. 2021, 12, 3085. [Google Scholar] [CrossRef]
- Lee, J.; Zhou, W.; Idrobo, J.C.; Pennycook, S.J.; Pantelides, S.T. Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4. Phys. Rev. Lett. 2011, 107, 085507. [Google Scholar] [CrossRef]
- Amin, R.; Maier, J. Effect of annealing on transport properties of LiFePO4: Towards a defect chemical model. Solid State Ion. 2008, 178, 1831–1836. [Google Scholar] [CrossRef]
- Amin, R.; Lin, C.; Maier, J. Aluminium-doped LiFePO4 single crystals. Phys. Chem. Chem. Phys. 2008, 10, 3519–3523. [Google Scholar] [CrossRef]
- Amin, R.; Lin, C.; Maier, J. Aluminium-doped LiFePO4 single crystals. Phys. Chem. Chem. Phys. 2008, 10, 3524–3529. [Google Scholar] [CrossRef]
- Aksyonov, D.A.; Varlamova, I.; Trussov, I.A.; Savina, A.A.; Senyshyn, A.; Stevenson, K.J.; Abakumov, A.M.; Zhugayevych, A.; Fedotov, S.S. Hydroxyl defects in LiFePO4 cathode material: DFT+U and an experimental study. Inorg. Chem. 2021, 60, 5497–5506. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Solovyev, I.V.; Korotin, M.A.; Czyżyk, M.T.; Sawatzky, G.A. Density-functional theory and NiO photoemission spectra. Phys. Rev. B 1993, 48, 16929–16934. [Google Scholar] [CrossRef]
- Lichtenstein, A. First-principles calculations of electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 1995, 9, 767–808. [Google Scholar]
- Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 2004, 132, 181–186. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Streltsov, V.A.; Belokoneva, E.L.; Tsirelson, V.G.; Hansen, N.K. Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data. Acta Crystallogr. Sect. B 1993, 49, 147–153. [Google Scholar] [CrossRef]
- Liu, H.; Ren, Z.; Zhang, X.; Hu, J.; Gao, M.; Pan, H.; Liu, Y. Incorporation of ammonia borane groups in the lithium borohydride structure enables ultrafast lithium ion conductivity at room temperature for solid-state batteries. Chem. Mater. 2020, 32, 671–678. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Shi, X.; Meng, C.; Das, P.; Zheng, S.; Pan, F.; Wu, Z.-S. Regulation of 3d-transition metal interlayered disorder by appropriate lithium depletion for Li-rich layered oxide with remarkably enhanced initial coulombic efficiency and stability. Adv. Energy Mater. 2023, 13, 2203045. [Google Scholar] [CrossRef]
- Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J.B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 269–284. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Safaei, B.; Huang, W.; Jen, T.-C. Theoretical investigation on niobium doped LiFePO4 cathode material for high performance lithium-ion batteries. J. Energy Storage 2023, 67, 107572. [Google Scholar] [CrossRef]
- Molenda, J.; Kulka, A.; Milewska, A.; Zając, W.; Świerczek, K. Structural, transport and electrochemical properties of LiFePO4 substituted in lithium and iron sublattices (Al, Zr, W, Mn, Co and Ni). Materials 2013, 6, 1656–1687. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Gibbs, G.V.; Cox, D.F.; Ross, N.L.; Crawford, T.D.; Downs, R.T.; Burt, J.B. Comparison of the electron localization function and deformation electron density maps for selected earth materials. J. Phys. Chem. A 2005, 109, 10022–10027. [Google Scholar] [CrossRef]
- Gibbs, G.V.; Cox, D.F.; Ross, N.L.; Crawford, T.D.; Burt, J.B.; Rosso, K.M. A mapping of the electron localization function for earth materials. Phys. Chem. Miner. 2005, 32, 208–221. [Google Scholar] [CrossRef]
- Morgan, D.; Van der Ven, A.; Ceder, G. Li conductivity in LixMPO4 (M = Mn , Fe , Co , Ni) olivine materials. Electrochem. Solid-State Lett. 2003, 7, A30. [Google Scholar] [CrossRef]
- Ouyang, C.; Shi, S.; Wang, Z.; Huang, X.; Chen, L. First-principles study of Li ion diffusion in LiFePO4. Phys. Rev. B 2004, 69, 104303. [Google Scholar] [CrossRef]
- Nishimura, S.-I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A. Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 2008, 7, 707–711. [Google Scholar] [CrossRef]
Case | a | b | c | V | Ref. |
---|---|---|---|---|---|
LiFePO4 | 4.727 | 12.046 | 10.282 | 585.47 | this work |
Li0.875FePO4 | 4.680 | 11.861 | 10.103 | 560.78 | this work |
H2O + LiFePO4 | 4.756 | 12.122 | 10.346 | 596.47 | this work |
LiFePO4 | 4.692 | 12.022 | 10.332 | 582.80 | [45] |
Case | Li | Fe | P | O | ||
---|---|---|---|---|---|---|
LiFePO4 | −0.87 | −1.43 | −3.62 | +1.48 | 0.00 | — |
H2O + LiFePO4 | −0.86 | −1.44 | −3.60 | +1.46 | +0.38 | −0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Xu, P.; Desta, H.G.; Beshiwork, B.A.; Li, B.; Adam, W.G.; Lin, B. Water Effect on the Electronic Properties and Lithium-Ion Conduction in a Defect-Engineered LiFePO4 Electrode. Batteries 2024, 10, 281. https://doi.org/10.3390/batteries10080281
Wang G, Xu P, Desta HG, Beshiwork BA, Li B, Adam WG, Lin B. Water Effect on the Electronic Properties and Lithium-Ion Conduction in a Defect-Engineered LiFePO4 Electrode. Batteries. 2024; 10(8):281. https://doi.org/10.3390/batteries10080281
Chicago/Turabian StyleWang, Guoqing, Pengfei Xu, Halefom G. Desta, Bayu Admasu Beshiwork, Baihai Li, Workneh Getachew Adam, and Bin Lin. 2024. "Water Effect on the Electronic Properties and Lithium-Ion Conduction in a Defect-Engineered LiFePO4 Electrode" Batteries 10, no. 8: 281. https://doi.org/10.3390/batteries10080281
APA StyleWang, G., Xu, P., Desta, H. G., Beshiwork, B. A., Li, B., Adam, W. G., & Lin, B. (2024). Water Effect on the Electronic Properties and Lithium-Ion Conduction in a Defect-Engineered LiFePO4 Electrode. Batteries, 10(8), 281. https://doi.org/10.3390/batteries10080281