Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries
Abstract
1. Introduction
2. Working Mechanism and Battery Polarization Challenge of Metal–Air Batteries
2.1. Working Mechanism
2.2. Battery Polarization Challenge
3. Air Cathode Optimized Design
3.1. Single-Atom Catalysts (SACs)
3.2. Low Platinum Catalysts
3.3. Biomass-Derived 3D Porous Cathodes
3.4. Metal–H2O2 Batteries
4. Anode Protection via Electrolyte Engineering
4.1. Electrolyte Additives
Material | Additive | Inhibition Efficiency (%) | Anode Utilization Rate (%) | Capacity Density (m Ah g−1) | Current Density (mA cm−2) | Ref. |
---|---|---|---|---|---|---|
Al alloy 1060 | CA | 52.87 | 89.9 | 2680 | 50 | [136] |
Al-5052 alloy | βD + DDBAB + 8-HQ | 87.2 | 84.5 | 2517 | 20 | [131] |
Pure Al (99.99%) | Nonoxynol-9 | 92.8 | 81.2 | 2320 | 20 | [140] |
Al-5052 alloy | L-tryptophan | 67.66 | 90.76 | 2702.7 | 20 | [141] |
Al alloy | APG + K2SnO3 | 94.14 | 73.87 | 2180 | 100 | [13] |
Al-5052 alloy | 8-HQ + DG | 83.7 | 92.3 | 2748 | 20 | [142] |
Al-5052 alloy | 8-HQ + ZnO | 71.59 | 70.3 | 2094 | 20 | [143] |
Al-0.5Mg-0.1Sn-0.1Ga alloy | Cerium Acetate + L-Glu | 77.85 | - | 2985.075 | 20 | [144] |
Al alloy | NBLT | 73.9 | 82.9 | 2469.1 | 20 | [145] |
Al alloy | AMIB | 60 | 86.1 | 2564 | 20 | [146] |
4.2. Solid-State Electrolytes (SSEs)
5. Conclusions and Perspectives
- Combine in situ characterization and multi-physics field modeling to reveal the correlation between atomic-scale reaction pathways and macroscopic properties during polarization and guide the rational design of materials. In-depth exploration of novel bifunctional catalysts with atomic-scale active sites, high intrinsic activity, and excellent stability. As shown in Table 1, single atom catalysts have high ORR and OER activities, combined with machine learning to screen the optimal coordination environment, combines the large specific surface area of biomass with the high activity of single atoms and designs bifunctional high-efficiency catalysts with high activity and high oxygen diffusion; precious metals, such as Pt and Ir, are introduced into the catalyst structure in single-atom form, making full use of the active sites of the precious metals to improve the catalytic efficiency. Develop a smarter and more stable electrode structure design to achieve efficient transport and rapid conversion of reactants and products while effectively inhibiting carbon corrosion and structure collapse. Flexible and wearable batteries also place higher demands on the anode structure. Explore the coupling of metal–H2O2 batteries with renewable energy sources (e.g., seawater electrolysis to make H2O2) to build a closed-loop system.
- Continue to explore new types of liquid electrolytes (e.g. highly concentrated electrolytes, new solvent systems) with high oxygen solubility/diffusion coefficient, wide electrochemical window, excellent chemical/electrochemical stability, and good interfacial compatibility; design smart additives with “one dose, multiple effects” to synergistically solve the problems of anode protection, oxygen reaction promotion, electrolyte stability, and inhibition of side reactions. Design of intelligent additives to synergistically solve the problems of metal anode protection, oxygen reaction promotion, electrolyte stability, and inhibition of side reactions. Optimize the interfacial compatibility of solid electrolyte and solve the contact impedance problem at the electrode/electrolyte interface; optimize the interfacial compatibility of solid electrolyte and solve the contact impedance problem at the electrode/electrolyte interface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ORR | Oxygen Reduction Reaction |
OER | Oxygen Evolution Reaction |
NMC811 | LiNi0.8Mn0.1Co0.1O2 |
UAV | Unmanned Aerial Vehicle |
PVA | Polyvinyl Alcohol |
GDL | Gas Diffusion Layer |
SAC | Single-Atom Catalyst |
DAC | Dual-Atom Catalyst |
OCV | Open Circuit Voltage |
XAFS | X-ray Absorption Fine Structure |
XANES | X-ray Absorption Near Edge Structure |
EXAFS | Extended X-ray Absorption Fine Structure |
HAADF-STEM | High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy |
MA | Melamine |
DMF | N,N-Dimethylformamide |
SEM | Scanning Electron Microscope |
TEM | Transmission Electron Microscope |
XRD | X-ray Diffraction |
XPS | X-ray Photoelectron Spectroscopy |
RHE | Reversible Hydrogen Electrode |
EDS | Energy Dispersive Spectroscopy |
HEA | High Entropy Alloy |
DFT | Density Functional Theory |
DMEA | N,N-Dimethylethanolamine |
CD | Carbon Dot |
ZAB | Zn-Air Battery |
CNF | Cellulose Nanofiber |
PAA | Polyacrylic Acid |
CNT | Carbon Nanotube |
CA | Cyanuric Acid |
BTCA | Benzenetricarboxylic Acid |
EDTA | Ethylenediaminetetraacetic Acid |
8-HQ | 8-Hydroxyquinoline |
DDBAB | Dodecyl Dimethyl Benzyl Ammonium Bromide |
APG | Alkyl Polyglucoside |
βD | Dodecyl-β-D-Maltoside |
DG | Decyl Glucoside |
NBLT | Nα-Boc-N1-formyl-L-Tryptophan |
AMIB | 1-Aminopropyl-3-Methylimidazolium Bromide |
DMSO | Dimethyl Sulfoxide |
EG | Ethylene Glycol |
ATAC | (3-Acrylamidopropyl) Trimethylammonium Chloride |
AMPNa | Sodium Adenosine-5′-Monophosphate |
SSE | Solid-State Electrolyte |
BSDE | 4,4′-Bis(stearoylamino)diphenyl Ether |
LED | Light Emitting Diode |
References
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material—Fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Kim, U.H.; Jun, D.W.; Park, K.J.; Zhang, Q.; Kaghazchi, P.; Aurbach, D.; Major, D.T.; Goobes, G.; Dixit, M.; Leifer, N.; et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 2018, 11, 1271–1279. [Google Scholar] [CrossRef]
- McNulty, D.; Carroll, E.; O’Dwyer, C. Rutile TiO2 Inverse Opal Anodes for Li-Ion Batteries with Long Cycle Life, High-Rate Capability, and High Structural Stability. Adv. Energy Mater. 2017, 7, 1602291. [Google Scholar] [CrossRef]
- Li, W.; Lee, S.; Manthiram, A. High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries. Adv. Mater. 2020, 32, 2002718. [Google Scholar] [CrossRef] [PubMed]
- Sabhapathy, P.; Raghunath, P.; Sabbah, A.; Shown, I.; Bayikadi, K.S.; Xie, R.-K.; Krishnamoorthy, V.; Lin, M.-C.; Chen, K.-H.; Chen, L.-C. Axial Chlorine Induced Electron Delocalization in Atomically Dispersed FeN4 Electrocatalyst for Oxygen Reduction Reaction with Improved Hydrogen Peroxide Tolerance. Small 2023, 19, 2303598. [Google Scholar] [CrossRef]
- Bi, X.; Jiang, Y.; Chen, R.; Du, Y.; Zheng, Y.; Yang, R.; Wang, R.; Wang, J.; Wang, X.; Chen, Z. Rechargeable Zinc–Air versus Lithium–Air Battery: From Fundamental Promises Toward Technological Potentials. Adv. Energy Mater. 2024, 14, 2302388. [Google Scholar] [CrossRef]
- Mori, R. Recent Developments for Aluminum–Air Batteries. Electrochem. Energy Rev. 2020, 3, 344–369. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J. Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370–1377. [Google Scholar] [CrossRef]
- Pei, P.; Wang, K.; Ma, Z. Technologies for extending zinc–air battery’s cyclelife: A review. Appl. Energy 2014, 128, 315–324. [Google Scholar] [CrossRef]
- Ma, J.; Quhe, R.; Zhang, W.; Yan, Y.; Tang, H.; Qu, Z.; Cheng, Y.; Schmidt, O.G.; Zhu, M. Zn Microbatteries Explore Ways for Integrations in Intelligent Systems. Small 2023, 19, e2300230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qu, Z.; Tang, H.; Wang, X.; Koehler, R.; Yu, M.; Gerhard, C.; Yin, Y.; Zhu, M.; Zhang, K.; et al. On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Lett. 2021, 6, 2491–2498. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Yang, Q.; Venkatesh, V.; Synodis, M.; Pikul, J.H.; Bidstrup Allen, S.A.; Allen, M.G. High-Energy-Density Zinc–Air Microbatteries with Lean PVA–KOH–K2CO3 Gel Electrolytes. ACS Appl. Mater. Interfaces 2023, 15, 6807–6816. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Q.; Sun, D.; Luan, J.; Shi, H.; Hu, S.; Tang, Y.; Wang, H. Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chem. Eng. J. 2020, 383, 123162. [Google Scholar] [CrossRef]
- Lv, C.; Zhu, Y.; Li, Y.; Zhang, Y.; Kuang, J.; Tang, Y.; Li, H.; Wang, H. Hydrogen-bonds reconstructing electrolyte enabling low-temperature aluminum-air batteries. Energy Storage Mater. 2023, 59, 102756. [Google Scholar] [CrossRef]
- Kondori, A.; Esmaeilirad, M.; Harzandi, A.M.; Amine, R.; Saray, M.T.; Yu, L.; Liu, T.; Wen, J.; Shan, N.; Wang, H.-H.; et al. A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte. Science 2023, 379, 499–505. [Google Scholar] [CrossRef]
- Nazir, G.; Rehman, A.; Lee, J.-H.; Kim, C.-H.; Gautam, J.; Heo, K.; Hussain, S.; Ikram, M.; AlObaid, A.A.; Lee, S.-Y.; et al. A Review of Rechargeable Zinc–Air Batteries: Recent Progress and Future Perspectives. Nano-Micro Lett. 2024, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Liu, J.-N.; Zhao, C.-X.; Wang, J.; Ren, D.; Li, B.-Q.; Zhang, Q. A brief history of zinc–air batteries: 140 years of epic adventures. Energy Environ. Sci. 2022, 15, 4542–4553. [Google Scholar] [CrossRef]
- Shao, W.; Yan, R.; Zhou, M.; Ma, L.; Roth, C.; Ma, T.; Cao, S.; Cheng, C.; Yin, B.; Li, S. Carbon-Based Electrodes for Advanced Zinc-Air Batteries: Oxygen-Catalytic Site Regulation and Nanostructure Design. Electrochem. Energy Rev. 2023, 6, 11. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Zuo, Y.; Wei, M.; Pei, P.; Zhang, P.; Chen, Z.; Shang, N. Magnetoelectric Coupling for Metal–Air Batteries. Adv. Funct. Mater. 2022, 33, 2210127. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, D.; Xing, X.; Wu, S.; Guo, X.; Liu, J.; Guo, X.; Zhou, J.; Jiao, Y.; Zeng, B.; et al. Advancements in Gel Electrolytes for High-Performance Zinc–Air Batteries to Stabilize Zinc Anodes. J. Phys. Chem. C 2024, 128, 7007–7025. [Google Scholar] [CrossRef]
- Aurbach, D.; McCloskey, B.D.; Nazar, L.F.; Bruce, P.G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 2016, 1, 16128. [Google Scholar] [CrossRef]
- Yang, T.; Ge, B.; Liu, X.; Zhang, Z.; Chen, Y.; Liu, Y. Boosting the electrocatalytic activity of single atom iron catalysts through sulfur-doping engineering for liquid and flexible rechargeable Zn–air batteries. J. Mater. Chem. A 2024, 12, 11669–11680. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Zhao, C.; Hu, A.; Sun, X.; Mei, B.; Long, J. Carbothermal Reduction-Assisted Synthesis of a Carbon-Supported Highly Dispersed PtSn Nanoalloy for the Oxygen Reduction Reaction. Inorg. Chem. 2024, 63, 19322–19331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jin, L.; Zhou, M.; Fu, K.; Meng, F.; Wei, X.; Liu, J. Single-cell-array biomass-templated architecture of hierarchical porous electrocatalysts for Zn–air and Zn–H2O2 batteries. Chem. Commun. 2023, 59, 4356–4359. [Google Scholar] [CrossRef]
- Yue, C.; Zhang, N.; Zhu, Z.; Chen, P.; Meng, F.; Liu, X.; Wei, X.; Liu, J. Multi-Strategy Architecture of High-Efficiency Electrocatalysts for Underwater Zn–H2O2 Batteries with Superior Power Density of 442 mW cm−2. Small 2022, 18, 2106532. [Google Scholar] [CrossRef] [PubMed]
- Miao, D.; Li, S.; Jin, D.; Long, J.; Qu, J.; Wang, Y.; Wu, Z. Hybrid Organic–Inorganic Additive for Robust Al Anode in Alkaline Aluminum–Air Battery. Small Methods 2024, 8, 2301255. [Google Scholar] [CrossRef]
- Jiao, M.; Dai, L.; Ren, H.-R.; Zhang, M.; Xiao, X.; Wang, B.; Yang, J.; Liu, B.; Zhou, G.; Cheng, H.-M. A Polarized Gel Electrolyte for Wide-Temperature Flexible Zinc-Air Batteries. Angew. Chem. Int. Ed. 2023, 62, e202301114. [Google Scholar] [CrossRef]
- Jiang, L.; Luo, X.; Wang, D.-W. A review on system and materials for aqueous flexible metal–air batteries. Carbon Energy 2023, 5, e284. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.J.; Kim, M.; Kim, H.; Kwon, H.J.; Lee, H.C.; Im, D. High Energy Density Li-Air Battery with the Polymer Electrolyte Coated CNTs Electrode Via Layer-By-Layer Method. ECS Meet. Abstr. 2020, MA2019-01, 344. [Google Scholar] [CrossRef]
- Zhang, X.; Tsay, K.; Qu, W.; Fahlman, J. Bifunctional air electrode fabrication, performance and stability evaluation. J. Energy Storage 2018, 20, 520–528. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, C.; Zhang, L.; Wang, B.; Zhao, P.; Zhao, Y.; Wang, H.; Yang, G.; Sun, A.; Fan, J.; et al. Wood-derived Fe cluster-reinforced asymmetric single-atom catalysts and weather-resistant organohydrogel for wide-temperature flexible Zn–air batteries. Energy Environ. Sci. 2024, 17, 4746–4757. [Google Scholar] [CrossRef]
- Lai, J.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Electrolytes for Rechargeable Lithium–Air Batteries. Angew. Chem. Int. Ed. 2020, 59, 2974–2997. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; He, P.; Qiao, Y.; Guo, S.; Yang, H.; Zhou, H. Metal-air batteries: Progress and perspective. Sci. Bull. 2022, 67, 2449–2486. [Google Scholar] [CrossRef]
- Huang, R.-B.; Wang, M.-Y.; Xiong, J.-F.; Zhang, H.; Tian, J.-H.; Li, J.-F. Anode optimization strategies for zinc–air batteries. eScience 2025, 5, 100309. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, A.; Han, S.; Wu, Q.; Chen, Y.; Huang, J.; Guan, L. Self-Powered Integrated System with a Flexible Strain Sensor and a Zinc–Air Battery. ACS Appl. Mater. Interfaces 2023, 15, 45260–45269. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, W.; Kwok, H.Y.H.; Zhang, H.; Lu, X.; Leung, D.Y.C. Liquid-free Al-air batteries with paper-based gel electrolyte: A green energy technology for portable electronics. J. Power Sources 2019, 437, 226896. [Google Scholar] [CrossRef]
- Ma, Z.; Yuan, X.; Li, L.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Zhang, J. A review of cathode materials and structures for rechargeable lithium–air batteries. Energy Environ. Sci. 2015, 8, 2144–2198. [Google Scholar] [CrossRef]
- Shao, Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang, J.-G.; Wang, Y.; Liu, J. Making Li-Air Batteries Rechargeable: Material Challenges. Adv. Funct. Mater. 2013, 23, 987–1004. [Google Scholar] [CrossRef]
- Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Flexible Zn– and Li–air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Qiao, Y.; Wu, S.; Lu, X.; Zhu, J.-J.; Zhang, J.-R.; Zhou, H. Superior efficient rechargeable lithium–air batteries using a bifunctional biological enzyme catalyst. Energy Environ. Sci. 2020, 13, 144–151. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, Z.; Wang, C.; Gao, M.; Lin, X.; Duan, H.; Wang, Y.; Sun, X. Design of multifunctional interfaces on ceramic solid electrolytes for high-performance lithium-air batteries. Green Energy Environ. 2025, 10, 183–192. [Google Scholar] [CrossRef]
- Jiao, D.; Ma, Z.; Li, J.; Han, Y.; Mao, J.; Ling, T.; Qiao, S. Test factors affecting the performance of zinc–air battery. J. Energy Chem. 2020, 44, 1–7. [Google Scholar] [CrossRef]
- Iqbal, A.; El-Kadri, O.M.; Hamdan, N.M. Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 2023, 62, 106926. [Google Scholar] [CrossRef]
- Liu, B.; Dai, Y.-K.; Li, L.; Zhang, H.-D.; Zhao, L.; Kong, F.-R.; Sui, X.-L.; Wang, Z.-B. Effect of polytetrafluoroethylene (PTFE) in current collecting layer on the performance of zinc-air battery. Prog. Nat. Sci. Mater. Int. 2020, 30, 861–867. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Lv, Y.; Guo, J.; Liang, N.; Guo, R.; Zhu, Y.; Liu, H.; Jia, D. Fabrication of Zn–Air Battery with High Output Capacity Under Ultra-Large Current. Small 2024, 20, 2307999. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, F.; Su, Z.; Zhang, T.; Zhang, X.; Sun, H. Highly Efficient Li−Air Battery Using Linear Porosity Air Electrodes. J. Electrochem. Soc. 2020, 167, 090529. [Google Scholar] [CrossRef]
- He, P.; Zhang, T.; Jiang, J.; Zhou, H. Lithium–Air Batteries with Hybrid Electrolytes. J. Phys. Chem. Lett. 2016, 7, 1267–1280. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Li, M.; Wang, W.; Xing, S.; Dou, Y.; Gao, S.; Zhang, Z.; Zhou, Z. A leap by the rise of solid-state electrolytes for Li-air batteries. Green Energy Environ. 2023, 8, 939–944. [Google Scholar] [CrossRef]
- Salado, M.; Lizundia, E. Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater. Today Energy 2022, 28, 101064. [Google Scholar] [CrossRef]
- Wang, X.; Wen, K.; Song, Y.; Ye, L.; Zhang, K.H.L.; Pan, Y.; Lv, W.; Liao, Y.; He, W. Gas transport evaluation in lithium–air batteries with micro/nano-structured cathodes. J. Power Sources 2015, 274, 764–767. [Google Scholar] [CrossRef]
- Ye, L.; Lv, W.; Zhang, K.H.L.; Wang, X.; Yan, P.; Dickerson, J.H.; He, W. A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries. Energy 2015, 83, 669–673. [Google Scholar] [CrossRef]
- Xiong, Q.; Huang, G.; Yu, Y.; Li, C.L.; Li, J.C.; Yan, J.M.; Zhang, X.B. Soluble and Perfluorinated Polyelectrolyte for Safe and High-Performance Li−O2 Batteries. Angew. Chem. 2022, 61, e202116635. [Google Scholar] [CrossRef]
- Yu, W.; Shang, W.; Xiao, X.; Ma, Y.; Chen, Z.; Chen, B.; Xu, H.; Ni, M.; Tan, P. Elucidating the mechanism of discharge performance improvement in zinc-air flow batteries: A combination of experimental and modeling investigations. J. Energy Storage 2021, 40, 102779. [Google Scholar] [CrossRef]
- Ji, H.; Wang, M.; Liu, S.; Sun, H.; Liu, J.; Hou, Z.; Qian, T.; Yan, C. Identifying the Lewis Base Chemistry in Preventing the Deposition of Metal Oxides on Ketone-Enriched Carbon Cathodes for Highly Durable Metal-Air Batteries. ACS Appl. Mater. Interfaces 2020, 12, 3603–3609. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Chen, P.; Quan, X.; Si, M.; Gao, D. Improving the Oxygen Evolution Reaction Kinetics in Zn-Air Battery by Iodide Oxidation Reaction. Small 2024, 20, 2402052. [Google Scholar] [CrossRef]
- Balamurugan, J.; Austeria, P.M.; Kim, J.B.; Jeong, E.-S.; Huang, H.-H.; Kim, D.H.; Koratkar, N.; Kim, S.O. Electrocatalysts for Zinc–Air Batteries Featuring Single Molybdenum Atoms in a Nitrogen-Doped Carbon Framework. Adv. Mater. 2023, 35, 2302625. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Q.Y.; Han, M.J.; Tu, X.B.; Shen, Y. MOF-derived single-atom catalysts for oxygen electrocatalysis in metal-air batteries. Nanoscale 2023, 15, 13487–13497. [Google Scholar] [CrossRef]
- Fang, C.-Y.; Zhang, X.-H.; Zhang, Q.; Liu, D.; Cui, X.-M.; Xu, J.-C.; Shi, C.-L.; Yang, M.-Y. Single transition-metal atoms anchored on a novel Dirac-dispersive π-π conjugated holey graphitic carbon nitride substrate: Computational screening toward efficient bifunctional OER/ORR electrocatalysts. Rare Met. 2024, 43, 3819–3832. [Google Scholar] [CrossRef]
- Wang, Q.; Lyu, L.; Hu, X.; Fan, W.; Shang, C.; Huang, Q.; Li, Z.; Zhou, Z.; Kang, Y.-M. Tailoring the Surface Curvature of the Supporting Carbon to Tune the d-Band Center of Fe−N−C Single-Atom Catalysts for Zinc-Urea-Air Batteries. Angew. Chem. Int. Ed. 2025, 64, e202422920. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef]
- Yuan, K.; Lützenkirchen-Hecht, D.; Li, L.; Shuai, L.; Li, Y.; Cao, R.; Qiu, M.; Zhuang, X.; Leung, M.K.H.; Chen, Y.; et al. Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412. [Google Scholar] [CrossRef]
- Han, J.; Meng, X.; Lu, L.; Bian, J.; Li, Z.; Sun, C. Single-Atom Fe-N-C as an Efficient Electrocatalyst for Zinc–Air Batteries. Adv. Funct. Mater. 2019, 29, 1808872. [Google Scholar] [CrossRef]
- Jang, I.; Lee, S.; Kim, D.-g.; Paidi, V.K.; Lee, S.; Kim, N.D.; Jung, J.Y.; Lee, K.-S.; Lim, H.-K.; Kim, P.; et al. Instantaneous Thermal Energy for Swift Synthesis of Single-Atom Catalysts for Unparalleled Performance in Metal–Air Batteries and Fuel Cells. Adv. Mater. 2024, 36, 2403273. [Google Scholar] [CrossRef]
- Cao, Y.; Peng, H.; Chu, S.; Tang, Y.; Huang, C.; Wang, Z.; Liu, F.; Wu, J.; Shan, B.; Chen, R. Molten-salt-assisted thermal emitting method to transform bulk Fe2O3 into Fe single atom catalysts for oxygen reduction reaction in Zn-air battery. Chem. Eng. J. 2021, 420, 129713. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Zhu, Z.; Li, X.; Zhu, Z.; Yuan, T.; Yang, J.; Pang, Y.; Zheng, S. Vacancy-defective nano-carbon matrix enables highly efficient Fe single atom catalyst for aqueous and flexible Zn-Air batteries. Chem. Eng. J. 2024, 496, 153669. [Google Scholar] [CrossRef]
- Yang, L.; Du, C.; Tian, J.; Yao, X.; Zhang, Q.; Ma, X.; Zhu, Y.; Zou, M.; Cao, C. Fully exposed copper single-atom sites on mesoporous N/S-codoped graphene for efficient zinc-air battery. Appl. Catal. B Environ. Energy 2024, 355, 124190. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Yuan, M.; Liu, Y.; Lan, H.; Li, Z.; Liu, K.; Wang, L. A pH-universal ORR catalyst with S heteroatom doping single-atom iron sites derived from a 2D flake-like MOF for superior flexible quasi-solid-state rechargeable Zn-air battery. Chem. Eng. J. 2023, 471, 144515. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, Y.; Du, Y.; Xiao, Z.; Li, H.; Liu, K.; Wang, L. Dual-Shelled Hollow Leafy Carbon Support with Atomically Dispersed (N,S)-Bridged Hydroxy-Coordinated Asymmetric Fe Sites for Oxygen Reduction. Adv. Funct. Mater. 2024, 34, 2401484. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, B.; Liao, K.; Wang, X.; Chen, Z.; Wang, J.; Hu, W.; Han, X. Boosting Oxygen Reduction Reaction Performance of Fe Single-Atom Catalysts Via Precise Control of the Coordination Environment. Adv. Funct. Mater. 2025, 35, 2425640. [Google Scholar] [CrossRef]
- Ji, S.; Mou, Y.; Liu, H.; Lu, X.; Zhang, Y.; Guo, C.; Sun, K.; Liu, D.; Horton, J.H.; Wang, C.; et al. Manipulating the Electronic Properties of an Fe Single Atom Catalyst via Secondary Coordination Sphere Engineering to Provide Enhanced Oxygen Electrocatalytic Activity in Zinc-Air Batteries. Adv. Mater. 2024, 36, 2410121. [Google Scholar] [CrossRef]
- Xu, C.; Guo, C.; Liu, J.; Hu, B.; Dai, J.; Wang, M.; Jin, R.; Luo, Z.; Li, H.; Chen, C. Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Mater. 2022, 51, 149–158. [Google Scholar] [CrossRef]
- Sun, S.; Yang, F.; Zhang, X.; Qian, J.; Wei, K.; An, J.; Sun, Y.; Wang, S.; Li, X.; Li, Y. Highly dispersed carbon-encapsulated FeS/Fe3C nanoparticles distributed in Fe-N-C for enhanced oxygen electrocatalysis and Zn-air batteries. Chem. Eng. J. 2024, 487, 150673. [Google Scholar] [CrossRef]
- Srinivas, K.; Chen, Z.; Chen, A.; Ma, F.; Zhu, M.-q.; Chen, Y. Fe-Nx sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries. J. Energy Chem. 2024, 90, 565–577. [Google Scholar] [CrossRef]
- Gu, T.; Zhang, D.; Yang, Y.; Peng, C.; Xue, D.; Zhi, C.; Zhu, M.; Liu, J. Dual-Sites Coordination Engineering of Single Atom Catalysts for Full-Temperature Adaptive Flexible Ultralong-Life Solid-State Zn−Air Batteries. Adv. Funct. Mater. 2022, 33, 2212299. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, L.; Liu, Y.; Lu, B.; Li, L.; Tang, Y.; Sun, Y.; Zhou, J. Construction of single-atomic Fe and Cu sites within nitrogen/sulfur co-doped carbon matrix for boosting the performance of zinc-air batteries. Appl. Catal. B Environ. Energy 2025, 362, 124705. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.-P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering Dual Single-Atom Sites on 2D Ultrathin N-doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew. Chem. Int. Ed. 2022, 61, e202115219. [Google Scholar] [CrossRef]
- Wang, B.; Tang, J.; Zhang, X.; Hong, M.; Yang, H.; Guo, X.; Xue, S.; Du, C.; Liu, Z.; Chen, J. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: Template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. 2022, 437, 135295. [Google Scholar] [CrossRef]
- Zhao, Z.-H.; Ma, D.; Zhuang, Z.; Wang, K.; Xu, C.; Sun, K.; Deng, S.-Q.; Yan, W.; Zhang, J. Atomically dispersed iron–zinc dual-metal sites to boost catalytic oxygen reduction activities for efficient zinc–air batteries. Nanoscale 2025, 17, 9515–9524. [Google Scholar] [CrossRef]
- Li, R.; Fan, W.; Rao, P.; Luo, J.; Li, J.; Deng, P.; Wu, D.; Huang, W.; Jia, C.; Liu, Z.; et al. Multimetallic Single-Atom Catalysts for Bifunctional Oxygen Electrocatalysis. ACS Nano 2023, 17, 18128–18138. [Google Scholar] [CrossRef]
- Yang, J.; Wu, Y.P.; Shi, J.; Liu, H.M.; Liu, Z.Q.; You, Q.W.; Li, X.X.; Cong, L.C.; Liu, D.B.; Liu, F.B.; et al. Effect of Carbon Support on the Properties of Fe, N, S Co-Doped ORR Catalysts Prepared by Molten Salt Method. J. Electrochem. Soc. 2024, 171, 076507. [Google Scholar] [CrossRef]
- Fei, H.; Dong, J.; Wan, C.; Zhao, Z.; Xu, X.; Lin, Z.; Wang, Y.; Liu, H.; Zang, K.; Luo, J.; et al. Microwave-Assisted Rapid Synthesis of Graphene-Supported Single Atomic Metals. Adv. Mater. 2018, 30, 1802146. [Google Scholar] [CrossRef]
- Gong, H.; Wei, Z.; Gong, Z.; Liu, J.; Ye, G.; Yan, M.; Dong, J.; Allen, C.; Liu, J.; Huang, K.; et al. Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2 Production. Adv. Funct. Mater. 2022, 32, 2106886. [Google Scholar] [CrossRef]
- Sun, J.-K.; Pan, Y.-W.; Xu, M.-Q.; Sun, L.; Zhang, S.; Deng, W.-Q.; Zhai, D. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Res. 2024, 17, 1086–1093. [Google Scholar] [CrossRef]
- Zha, S.; Wang, D.; Liu, C.; Wang, W.; Mitsuzaki, N.; Chen, Z. Heteroatom doped M–N–C single-atom catalysts for high-efficiency oxygen reduction reaction: Regulation of coordination configurations. Sustain. Energy Fuels 2023, 943, 117506. [Google Scholar] [CrossRef]
- Yang, K.-Z.; Xu, C.; Guo, P.-P.; Zhao, Y.-M.; Chi, H.-M.; Xu, Y.; Wei, P.-J.; Zheng, T.; He, Q.; Ren, Q.; et al. Regulating the Electronic Configuration of Single-Atom Catalysts with Fe–N5 Sites via Environmental Sulfur Atom Doping for an Enhanced Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2024, 12, 11033–11043. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, T.; Liao, M.; Meng, J.; Xie, Y.; Lu, C. Regulating the coordination environment of atomically dispersed Fe-N4 moieties in carbon enables efficient oxygen reduction for Zn-air batteries. Chem. Eng. J. 2024, 484, 149693. [Google Scholar] [CrossRef]
- Xu, C.; Wu, J.; Chen, L.; Gong, Y.; Mao, B.; Zhang, J.; Deng, J.; Mao, M.; Shi, Y.; Hou, Z.; et al. Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries. ENERGY Environ. Mater. 2024, 7, e12569. [Google Scholar] [CrossRef]
- Hu, L.; Dai, C.; Chen, L.; Zhu, Y.; Hao, Y.; Zhang, Q.; Gu, L.; Feng, X.; Yuan, S.; Wang, L.; et al. Metal-Triazolate-Framework-Derived FeN4Cl1 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2021, 60, 27324–27329. [Google Scholar] [CrossRef]
- Chen, Y.; He, T.; Liu, Q.; Hu, Y.; Gu, H.; Deng, L.; Liu, H.; Liu, Y.; Liu, Y.-N.; Zhang, Y.; et al. Highly durable iron single-atom catalysts for low-temperature zinc-air batteries by electronic regulation of adjacent iron nanoclusters. Appl. Catal. B Environ. 2023, 323, 122163. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.; Zhang, L.; Wang, H.-T.; Chen, K.-H.; Lin, W.-X.; Jin, N.; Sun, C.; Shao, Y.-C.; Chen, J.-L.; et al. Encaging Co nanoparticle in atomic CoN4-dispersed graphite nanopocket evokes high oxygen reduction activity for flexible Zn-air battery. Appl. Catal. B Environ. Energy 2024, 347, 123792. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Liu, J.-W.; Li, G.; Zhao, J.-X. Transition metal clusters with precise numbers of atoms anchored on graphdiyne as multifunctional electrocatalysts for OER/ORR/HER: A computational study. Rare Met. 2024, 43, 3107–3117. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, H.; Wu, C.; Zhang, M.; Yu, J.; Song, L.; Li, K.; He, J. An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon 2021, 185, 526–535. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, X.; Gao, L.; Hu, J.; Peng, W.; Wang, X.; Zhou, G.; Xu, B. Asymmetric Coordination of Bimetallic Fe–Co Single-Atom Pairs toward Enhanced Bifunctional Activity for Rechargeable Zinc–Air Batteries. ACS Nano 2024, 18, 13006–13018. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Wang, Z.; Li, C.; Wang, Z.; Zhang, S.; Deng, C. Fe-Co dual atomic doublets on N, P codoped carbon as active sites in the framework of heterostructured hollow fibers towards high-performance flexible Zn-Air battery. Energy Storage Mater. 2023, 59, 102772. [Google Scholar] [CrossRef]
- Guo, Q.; Yuan, R.; Zhao, Y.; Yu, Y.; Fu, J.; Cao, L. Performance of Nitrogen-Doped Carbon Nanoparticles Carrying FeNiCu as Bifunctional Electrocatalyst for Rechargeable Zinc-Air Battery. Small 2024, 20, 2400830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, C.; Ren, M.; Wang, J.; Feng, L.; Wang, Y.; Liu, C.; Xiao, N.; Zhang, H. Sulfur doping triggers charge redistribution at the heterointerface of Fe-N-C supported ultralow-Pt-loading electrocatalysts for efficient oxygen reduction. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 134055. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Halder, S.; Chakraborty, C. “Less is more”: Carbon nanostructure-tailored low platinum containing electrocatalysts for improved zinc-air battery efficiency. J. Energy Storage 2024, 98, 113008. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Halder, S.; Chakraborty, C. Pt-nanoparticles on ZnO/carbon quantum dots: A trifunctional nanocomposite with superior electrocatalytic activity boosting direct methanol fuel cells and zinc–air batteries. J. Mater. Chem. A 2025, 13, 243–256. [Google Scholar] [CrossRef]
- Zhong, X.; Ye, S.; Tang, J.; Zhu, Y.; Wu, D.; Gu, M.; Pan, H.; Xu, B. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Appl. Catal. B Environ. 2021, 286, 119891. [Google Scholar] [CrossRef]
- Yang, L.; Ma, J.; Liu, Y.; Ma, C.; Yu, X.; Chen, Z. Low platinum loading electrocatalyst supported on a carrier derived from carbon dots doped ZIF-67 for the ORR and zinc–air batteries. Nanoscale 2024, 16, 5433–5440. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Tang, R.; Su, L.; Kou, J.; Guo, X.; Li, Y.; Cao, X.; Cui, J.; Gong, S. Data-driven designed low Pt loading PtFeCoNiMnGa nano high entropy alloy with high catalytic activity for Zn-air batteries. Energy Storage Mater. 2024, 72, 103773. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, W.; Gong, S.; Luo, L.; Li, Y.; Zhao, Y.; Li, Z. Synthesis of High-Entropy-Alloy Nanoparticles by a Step-Alloying Strategy as a Superior Multifunctional Electrocatalyst. Adv. Mater. 2023, 35, 2302499. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Joseph, G.B.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Xu, C.-X.; Zhang, J.-J.; Dou, H.-R.; Li, Y.-Z.; Li, D.-M.; Zhang, Y.-J.; Liu, B.; Inbaraj, P.; Huo, P.-P. Fe4N particles embedded in nitrogen-doped electrospun carbon nanofibers as efficient ORR catalysts for zinc-air battery. Rare Met. 2025, 44, 3156–3169. [Google Scholar] [CrossRef]
- Xu, C.; Guo, C.; Liu, J.; Hu, B.; Chen, H.; Li, G.; Xu, X.; Shu, C.; Li, H.; Chen, C. Bioinspired Hydrophobicity Coupled with Single Fe-N4 Sites Promotes Oxygen Diffusion for Efficient Zinc-Air Batteries. Small 2023, 19, 2207675. [Google Scholar] [CrossRef]
- Cui, H.; Jiao, M.; Chen, Y.-N.; Guo, Y.; Yang, L.; Xie, Z.; Zhou, Z.; Guo, S. Molten-Salt-Assisted Synthesis of 3D Holey N-Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. Small Methods 2018, 2, 1800144. [Google Scholar] [CrossRef]
- Xi, Z.; Han, J.; Jin, Z.; Hu, K.; Qiu, H.-J.; Ito, Y. All-Solid-State Mg–Air Battery Enhanced with Free-Standing N-Doped 3D Nanoporous Graphene. Small 2024, 20, 2308045. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Ma, B.; Liu, J.; Zhou, M.; Xing, Y.; Wei, X.; Meng, F.; Liu, J. In situ green architecture of the 3D FeZn–N–C based electrocatalyst for efficient oxygen reduction. Chem. Commun. 2024, 60, 10366–10369. [Google Scholar] [CrossRef]
- Sun, J.; Shen, M.; Chang, A.j.; Liang, C.; Xiong, C.; Hou, C.; Li, J.; Wang, P.; Li, J.; Huang, J. Cascade protection strategy for anchoring atomic FeN3 sites within defect-rich wood carbon aerogel for high-performance Zn-air batteries and versatile application. Chem. Eng. J. 2025, 503, 158551. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, L.; Chen, J.; Qiu, C.; Wang, B.; Li, J.; Zhang, K.; Yang, G. From wood to flexible Zn-air Battery: Fe3O4 nanoparticles synergistic single iron atoms on N-doped carbon nanosheets electrocatalyst and Lignosulfonate-Functionalized gel electrolyte. Chem. Eng. J. 2024, 484, 149415. [Google Scholar] [CrossRef]
- Wan, W.; Wang, Q.; Zhang, L.; Liang, H.-W.; Chen, P.; Yu, S.-H. N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: An excellent oxygen reduction electrocatalyst for zinc–air batteries. J. Mater. Chem. A 2016, 4, 8602–8609. [Google Scholar] [CrossRef]
- Feng, Y.; Song, K.; Zhang, W.; Zhou, X.; Yoo, S.J.; Kim, J.-G.; Qiao, S.; Qi, Y.; Zou, X.; Chen, Z.; et al. Efficient ORR catalysts for zinc-air battery: Biomass-derived ultra-stable Co nanoparticles wrapped with graphitic layers via optimizing electron transfer. J. Energy Chem. 2022, 70, 211–218. [Google Scholar] [CrossRef]
- Hao, M.; Dun, R.; Su, Y.; He, L.; Ning, F.; Zhou, X.; Li, W. In situ self-doped biomass-derived porous carbon as an excellent oxygen reduction electrocatalyst for fuel cells and metal–air batteries. J. Mater. Chem. A 2021, 9, 14331–14343. [Google Scholar] [CrossRef]
- Jiang, M.; Fu, C.; Cheng, R.; Liu, T.; Guo, M.; Meng, P.; Zhang, J.; Sun, B. Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chem. Eng. J. 2021, 404, 127124. [Google Scholar] [CrossRef]
- Ma, L.; Hu, X.; Min, Y.; Zhang, X.; Liu, W.; Lam, P.K.S.; Li, M.M.J.; Zeng, R.J.; Ye, R. Microalgae-derived single-atom oxygen reduction catalysts for zinc-air batteries. Carbon 2023, 203, 827–834. [Google Scholar] [CrossRef]
- Ma, L.-L.; Liu, W.-J.; Hu, X.; Lam, P.K.S.; Zeng, J.R.; Yu, H.-Q. Ionothermal carbonization of biomass to construct sp2/sp3 carbon interface in N-doped biochar as efficient oxygen reduction electrocatalysts. Chem. Eng. J. 2020, 400, 125969. [Google Scholar] [CrossRef]
- Jiao, C.; Xu, Z.; Shao, J.; Xia, Y.; Tseng, J.; Ren, G.; Zhang, N.; Liu, P.; Liu, C.; Li, G.; et al. High-Density Atomic Fe–N4/C in Tubular, Biomass-Derived, Nitrogen-Rich Porous Carbon as Air-Electrodes for Flexible Zn–Air Batteries. Adv. Funct. Mater. 2023, 33, 2213897. [Google Scholar] [CrossRef]
- Niu, J.; Liu, Y.; Wang, X.; Liu, J.; Zhao, Z.; Liu, X.; Ostrikov, K. Biomass-Derived Bifunctional Cathode Electrocatalyst and Multiadaptive Gel Electrolyte for High-Performance Flexible Zn–Air Batteries in Wide Temperature Range. Small 2023, 19, 2302727. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, Y.; Chen, H.; Zhang, K.; Hui, B. Bamboo-Modulated Helical Carbon Nanotubes for Rechargeable Zn-Air Battery. Small 2024, 20, 2307776. [Google Scholar] [CrossRef]
- Zhou, M.; Fu, K.; Xing, Y.; Liu, J.; Meng, F.; Wei, X.; Liu, J. 500 mW cm−2 underwater Zn-H2O2 batteries with ultrafine edge-enriched electrocatalysts. Sci. China Mater. 2024, 67, 2908–2914. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, K.; Tang, D.; Liu, W.; Meng, F.; Huang, Q.; Liu, J. Recent Progress in Electrolytes for Zn–Air Batteries. Front. Chem. 2020, 8, 372. [Google Scholar] [CrossRef] [PubMed]
- Siahrostami, S. H2O2 electrosynthesis and emerging applications, challenges, and opportunities: A computational perspective. Chem Catal. 2023, 3, 100568. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, M.; Jin, K.; Li, J.; Meng, F.; Wei, X. Beyond metal–air battery, emerging aqueous metal–hydrogen peroxide batteries with improved performance. Battery Energy 2024, 3, 20230049. [Google Scholar] [CrossRef]
- Brodrecht, D.J.; Rusek, J.J. Aluminum–hydrogen peroxide fuel-cell studies. Appl. Energy 2003, 74, 113–124. [Google Scholar] [CrossRef]
- Hasvold, O.; Johansen, K.H. The alkaline aluminium hydrogen peroxide semi-fuel cell for the HUGIN 3000 autonomous underwater vehicle. In Proceedings of the 2002 Workshop on Autonomous Underwater Vehicles, San Antonio, TX, USA, 21 June 2002; pp. 89–94. [Google Scholar]
- Xu, L.; Liu, J.; Chen, P.; Wang, Z.; Tang, D.; Liu, X.; Meng, F.; Wei, X. High-Power Aqueous Zn-H2O2 Batteries for Multiple Applications. Cell Rep. Phys. Sci. 2020, 1, 100027. [Google Scholar] [CrossRef]
- Sun, L.; Wen, F.; Shi, L.; Li, S. Pd and CoOx decorated reduced graphene oxide self-assembled on Ni foam as Al–H2O2 semi-fuel cells cathodes. J. Alloys Compd. 2020, 815, 152361. [Google Scholar] [CrossRef]
- Shu, C.; Wang, E.; Jiang, L.; Tang, Q.; Sun, G. Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J. Power Sources 2012, 208, 159–164. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Lv, P.; Zhang, Y.; Li, J.; Wei, Q. Gel polymer electrolyte based on deep eutectic solvent in flexible Zn-air batteries enables dendrite-free Zn anode. Energy Storage Mater. 2024, 69, 103382. [Google Scholar] [CrossRef]
- Li, C.-P.; Zhang, W.-Y.; Gao, L.-X.; Zhang, D.-Q. A patching reinforcement strategy for hybrid surfactants as electrolyte additives with excellent performance in aluminum-air batteries. J. Power Sources 2023, 584, 233604. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, W. Improving Cycle Life of Zinc–Air Batteries with Calcium Ion Additive in Electrolyte or Separator. Nanomaterials 2023, 13, 1864. [Google Scholar] [CrossRef]
- Wan, H.; Bai, Q.; Peng, Z.; Mao, Y.; Liu, Z.; He, H.; Wang, D.; Xie, J.; Wu, G. A high power Li–air battery enabled by a fluorocarbon additive. J. Mater. Chem. A 2017, 5, 24617–24620. [Google Scholar] [CrossRef]
- Jianming, R.; Tao, L.; Jiao, Z.; Min, J.; Qing, D.; Chaopeng, F. Spray-formed commercial aluminum alloy anodes with suppressed self-corrosion for Al-Air batteries. J. Power Sources 2022, 524, 231082. [Google Scholar] [CrossRef]
- Meng, A.; Sun, Y.; Cheng, W.; Huang, L.; Chen, Y. Discharge performance of Al-0.1Sn-0.1In-0.05Ga alloy for Al–air battery anodes. J. Energy Storage 2024, 81, 110414. [Google Scholar] [CrossRef]
- Liu, J.; Xing, Y.; Ma, B.; Wei, X.; Li, S.; Li, D.; Meng, F.; Deng, W.; Liu, J. Tripod-Linked Molecular Armor for Low-Overpotential Al–Air Batteries. ACS Electrochem. 2025, 1, 826–831. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Zhang, D.; Gao, L.; Qu, J.; Lin, T. Synergistic effect of 8-aminoquinoline and ZnO as hybrid additives in alkaline electrolyte for Al-air battery. J. Mol. Liq. 2021, 322, 114946. [Google Scholar] [CrossRef]
- Wei, M.; Wang, K.; Pei, P.; Zuo, Y.; Zhong, L.; Shang, N.; Wang, H.; Chen, J.; Zhang, P.; Chen, Z. An enhanced-performance Al-air battery optimizing the alkaline electrolyte with a strong Lewis acid ZnCl2. Appl. Energy 2022, 324, 119690. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, S.; Li, W.; Yang, Y.; Yang, L.; Zhang, Z. Inhibition effect and mechanism of inorganic-organic hybrid additives on three-dimension porous aluminum foam in alkaline Al-air battery. J. Power Sources 2020, 448, 227460. [Google Scholar] [CrossRef]
- Deyab, M.A. Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery. J. Power Sources 2019, 412, 520–526. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, W.; Guo, L.; Zhang, Q.; Wang, K.; Zheng, X.; Verma, C.; Qiang, Y. Corrosion inhibition of L-tryptophan on Al-5052 anode for Al-air battery with alkaline electrolyte. J. Power Sources 2023, 564, 232866. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, S.; Zhang, D.; Gao, L. Excellent performance of 8-hydroxyquinoline and alkyl polyglycolides hybrid electrolyte additives on aluminum-air battery. Chem. Eng. J. 2023, 472, 145139. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, H.; Wu, A.; Zhang, D.; Gao, L.; Lin, T. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery. J. Power Sources 2019, 432, 55–64. [Google Scholar] [CrossRef]
- Kang, Q.X.; Zhang, T.Y.; Wang, X.; Wang, Y.; Zhang, X.Y. Effect of cerium acetate and L-glutamic acid as hybrid electrolyte additives on the performance of Al–air battery. J. Power Sources 2019, 443, 227251. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, L.; Huang, Y.; Tan, Y.; Ritacca, A.G.; Zheng, X.; Leng, S.; Wang, B. Self-assembly of an amino acid derivative as an anode interface layer for advanced alkaline Al–air batteries. Phys. Chem. Chem. Phys. 2024, 26, 10892–10903. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Q.; Huang, Y.; Sun, R.; Zhang, R.; Saji, V.S.; Chang, J.; Zheng, X.; Makin Adam, A.M. Regulating the Helmholtz plane by trace ionic liquid additive for advanced Al-air battery. J. Power Sources 2025, 625, 235672. [Google Scholar] [CrossRef]
- Kang, Q.X.; Wang, Y.; Zhang, X.Y. Experimental and theoretical investigation on calcium oxide and L-aspartic as an effective hybrid inhibitor for aluminum-air batteries. J. Alloys Compd. 2019, 774, 1069–1080. [Google Scholar] [CrossRef]
- Qiu, D.; Li, B.; Zhao, C.; Dang, J.; Chen, G.; Qiu, H.; Miao, H. A review on zinc electrodes in alkaline electrolyte: Current challenges and optimization strategies. Energy Storage Mater. 2023, 61, 102903. [Google Scholar] [CrossRef]
- Wang, J.; Panchal, A.A.; Canepa, P. Strategies for fitting accurate machine-learned inter-atomic potentials for solid electrolytes. Mater. Futures 2023, 2, 015101. [Google Scholar] [CrossRef]
- Wang, T.; Yang, T.; Luo, D.; Fowler, M.; Yu, A.; Chen, Z. High-Energy-Density Solid-State Metal–Air Batteries: Progress, Challenges, and Perspectives. Small 2024, 20, 2309306. [Google Scholar] [CrossRef]
- Sun, P.; Chen, J.; Huang, Y.; Tian, J.-H.; Li, S.; Wang, G.; Zhang, Q.; Tian, Z.; Zhang, L. High-Strength agarose gel electrolyte enables long-endurance wearable Al-air batteries with greatly suppressed self-corrosion. Energy Storage Mater. 2021, 34, 427–435. [Google Scholar] [CrossRef]
- Cui, W.; Ma, C.; Lei, X.; Lv, Y.; Zhang, Q.; Guan, W.; Liu, X. Gel electrolyte with dimethyl sulfoxide confined in a polymer matrix for Li-air batteries operable at sub-zero temperature. J. Power Sources 2023, 577, 233264. [Google Scholar] [CrossRef]
- Emley, B.; Wu, C.; Zhao, L.; Ai, Q.; Liang, Y.; Chen, Z.; Guo, L.; Terlier, T.; Lou, J.; Fan, Z.; et al. Impact of fabrication methods on binder distribution and charge transport in composite cathodes of all-solid-state batteries. Mater. Futures 2023, 2, 045102. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, H.; Liang, J.; You, Z.; Wang, R.; Wan, L.; Lei, D.; Li, Z. Highly adhesive hydrogel electrolytes driven by adenosine monophosphate and Fe3+ for high-voltage asymmetric flexible zinc-air batteries. Energy Storage Mater. 2024, 71, 103599. [Google Scholar] [CrossRef]
- Chen, Y.; He, S.; Rong, Q. Stretchable, anti-drying, and self-healing hydrogel electrolytes for thermal adaptive zinc–air batteries with robust electrolyte/electrode interfaces. Mater. Today Chem. 2023, 33, 101726. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Huang, F.; Cai, Y.; Li, Y.; Ke, H.; Lv, P.; Wei, Q. “Water-in-Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc-Air Batteries with Ultra-Long Operating Time. Adv. Funct. Mater. 2022, 32, 2203204. [Google Scholar] [CrossRef]
Catalyst | E1/2 (V vs. RHE) | E10 (V vs. RHE) | OCV (V) | Pmax (mW cm−2) | Cycling (h/mA cm−2) | Ref. |
---|---|---|---|---|---|---|
VMoON@NC | 0.861 | 1.417 | 1.392 | 376.4 | >630/10 | [57] |
Fe-Nx-C | 0.91 | 1.83 | 1.51 | 96.4 | 300/5 | [63] |
FeN4/NGO | 0.91 | - | - | 217 | 100/10 | [64] |
Fe-Z8NC&NaCl | 0.896 | - | 1.52 | 104 | >100/20 | [65] |
Fe-NNCv | 0.924 | 1.64 | 1.57 | 99.1 | >330/10 | [66] |
g-Cu-SACs | 0.92 | - | 1.48 | 112 | >650/5 | [67] |
Fe-NX@NSCST-ZL | 0.94 | 1.71 | 1.47 | 196.21 | >750/5 | [68] |
FeSA/N,S-PHLC | 0.91 | - | 1.47 | 217 | >882/5 | [69] |
FeN-SC | 0.92 | - | 1.46 | 251 | 140/10 | [70] |
Fe1/NCP | 0.95 | 1.6 | 1.50 | 263.8 | 350/10 | [71] |
Fe3C@NCNTs | 0.84 | - | 1.61 | 194 | >100/10 | [72] |
FeS/Fe3C@Fe-N-C | 0.91 | 1.506 | 1.432 | 113 | >24/50 | [73] |
FAS-NSC@950 | 0.871 | 1.544 | 1.48 | 181.8 | >72/10 | [74] |
Fe3Co7-NC | 0.893 | 1.573 | - | 133 | >400/2 | [75] |
FeCu SACs@NSC | 0.89 | 1.68 | 1.47 | 152 | >300/5 | [76] |
FeMn-DSAC | 0.922 | 1.635 | 1.45 | 184 | >80/2 | [77] |
FeNi-DSAs-PNCH | 0.89 | - | 1.48 | 99.20 | - | [78] |
FeZn-NC-800 | 0.89 | - | 1.508 | 218.6 | >200/10 | [79] |
FeCoCuZn-SACs | 0.89 V | 1.51 | 1.51 | 252 | >225/5 and 10 | [80] |
Catalyst | Specific Surface Area (m2 g−1) | E1/2 (V vs. RHE) | E10 (V vs. RHE) | Pmax (mW cm−2) | Ref. |
---|---|---|---|---|---|
Fe SA/NCZ | 912 | 0.87 | 1.55 | 101 | [118] |
RN350-Z(1-2)-1000 | 1835 | 0.868 | 204 | [114] | |
SV-900 | 464.94 | 0.822 | 1.56 | 732.77 | [119] |
SA-FeCNS-800 | 1192 | 0.85 | 1.615 | 209 | [111] |
MPWC-FeSA | 454 | 0.85 | 152 | [110] | |
N/biochar-800-7 | 1334 | 0.9 | 125 | [117] | |
ZIF-67/nori-800 | 1454.3 | 0.85 | 1.46 | 476 | [25] |
CoN-BC-0.3 | 273.6 | 0.83 | 1.55 | 226 | [120] |
ZnCo-NC-S-900 | 279.5 | 0.90 | 1.57 | 510 | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Hong, D.; Wei, X.; Liu, J. Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries. Batteries 2025, 11, 315. https://doi.org/10.3390/batteries11080315
Ma B, Hong D, Wei X, Liu J. Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries. Batteries. 2025; 11(8):315. https://doi.org/10.3390/batteries11080315
Chicago/Turabian StyleMa, Biao, Deling Hong, Xiangfeng Wei, and Jiehua Liu. 2025. "Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries" Batteries 11, no. 8: 315. https://doi.org/10.3390/batteries11080315
APA StyleMa, B., Hong, D., Wei, X., & Liu, J. (2025). Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries. Batteries, 11(8), 315. https://doi.org/10.3390/batteries11080315