In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.1.1. Preparation of LMNO Cathode Material
2.1.2. Preparation of Composite Cathodes with SN-Based Modified Layers
2.1.3. Preparation of PVHLi-1.1 and Composite Membranes
2.2. Materials Characterization
2.3. Electrochemical Measurement
2.3.1. Ion Conductivity Testing
2.3.2. Linear Sweep Voltammetry Testing
2.3.3. Battery Performance Evaluation
3. Results and Discussion
3.1. Characterization of LMNO Cathode
3.2. Characterizations of PVDF-HFP PISSE and SN-LiClO4
3.3. High-Voltage S-LMNO|PVHLi-1.1-SN–LiClO4|Li ASSLB Performance Test
3.4. Interface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, H.; Zhang, X.; Yu, H. Design of high-energy-density lithium batteries: Liquid to all solid state. eTransportation 2025, 23, 100382. [Google Scholar] [CrossRef]
- Xu, J.; Sun, M.; Qiao, R.; Renfrew, S.E.; Ma, L.; Wu, T.; Hwang, S.; Nordlund, D.; Su, D.; Amine, K.; et al. Elucidating Anionic Oxygen Activity in Lithium-rich Layered Oxides. Nat. Commun. 2018, 9, 947. [Google Scholar] [CrossRef]
- Wang, H.; Geng, X.; Hu, L.; Wang, J.; Xu, Y.; Zhu, Y.; Liu, Z.; Lu, J.; Lin, Y.; He, X. Efficient Direct Repairing of Lithium- and Manganese-rich Cathodes by Concentrated Solar Radiation. Nat. Commun. 2024, 15, 1634. [Google Scholar] [CrossRef]
- Yuan, X.; Dong, T.; Liu, J.; Cui, Y.; Dong, H.; Yuan, D.; Zhang, H. Bi-affinity Electrolyte Optimizing High-Voltage Lithium-Rich Manganese Oxide Battery via Interface Modulation Strategy. Angew. Chem. Int. Ed. 2023, 62, e202304121. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Li, W.; Xu, H.; Zhang, C.; Qiu, X. Inhibition of Transition Metals Dissolution in Cobalt-free Cathode with Ultrathin Robust Interphase in Concentrated Electrolyte. Nat. Commun. 2020, 11, 3629. [Google Scholar] [CrossRef]
- Betz, J.; Brinkmann, J.-P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M.C.; Winter, M.; Placke, T. Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Adv. Energy Mater. 2019, 9, 1900574. [Google Scholar] [CrossRef]
- Antony Jose, S.; Gallant, A.; Gomez, P.L.; Jaggers, Z.; Johansson, E.; LaPierre, Z.; Menezes, P.L. Solid-State Lithium Batteries: Advances, Challenges, and Future Perspectives. Batteries 2025, 11, 90. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, Y.-H.; Yang, Y.; Wu, H.; Liu, Y.; Hao, C.; Zheng, Y.; Sun, D.; Li, W.; Li, J.; et al. Unraveling the Spatial Asynchronous Activation Mechanism of Oxygen Redox-Involved Cathode for High-Voltage Solid-State Batteries. Adv. Energy Mater. 2024, 14, 2303797. [Google Scholar] [CrossRef]
- Yu, R.; Wang, C.; Duan, H.; Jiang, M.; Zhang, A.; Fraser, A.; Zuo, J.; Wu, Y.; Sun, Y.; Zhao, Y.; et al. Manipulating Charge-Transfer Kinetics of Lithium-Rich Layered Oxide Cathodes in Halide All-Solid-State Batteries. Adv. Mater. 2023, 35, 2207234. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, K.; Ren, F.; Ha, Y.; Liang, Z.; Zheng, X.; Wang, Z.; Yang, W.; Zhang, M.; Luo, M.; et al. Highly Reversible Li2RuO3 Cathodes in Sulfide-based All Solid-state Lithium Batteries. Energy Environ. Sci. 2022, 15, 3470–3482. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, C.Z.; Yuan, H.; Fu, Z.H.; Chen, X.; Lu, Y.; Li, Y.F.; Hu, J.K.; Dong, J.; Huang, J.Q.; et al. Eliminating Interfacial O-involving Degradation in Li-rich Mn-based Cathodes for All-solid-state Lithium Batteries. Sci. Adv. 2022, 8, eadd5189. [Google Scholar] [CrossRef]
- Liu, B.; Hu, N.; Li, C.; Ma, J.; Zhang, J.; Yang, Y.; Sun, D.; Yin, B.; Cui, G. Direct Observation of Li-Ion Transport Heterogeneity Induced by Nanoscale Phase Separation in Li-rich Cathodes of Solid-State Batteries. Angew. Chem. Int. Ed. 2022, 61, e202209626. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Carbone, M.R.; Komurcuoglu, C.; Shekhawat, J.S.; Sun, K.; Guo, H.; Liu, S.; Chen, K.; Bak, S.-M.; Du, Y.; et al. Atomic Insights into the Oxidative Degradation Mechanisms of Sulfide Solid Electrolytes. Cell Rep. Phys. Sci. 2024, 5, 101909. [Google Scholar] [CrossRef]
- Li, J.; Luo, J.; Li, X.; Fu, Y.; Zhu, J.; Zhuang, X. Li Metal Anode Interface in Sulfide-based All-solid-state Li batteries. EcoMat 2023, 5, e12383. [Google Scholar] [CrossRef]
- Byeon, Y.-W.; Kim, H. Review on Interface and Interphase Issues in Sulfide Solid-State Electrolytes for All-Solid-State Li-Metal Batteries. Electrochem 2021, 2, 452–471. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Gao, C.; Chen, T.; Song, J.; Zuo, Y.; Fang, Q.; Yang, T.; Xiao, W.; Zhang, K.; et al. An Entanglement Association Polymer electrolyte for Li-metal batteries. Nat. Commun. 2024, 15, 2500. [Google Scholar] [CrossRef]
- Chen, S.; Wang, S.; Peng, Q.; Wei, Z.; Cheng, S.; Fang, Z.; Duan, P.; Cheng, Y.; Cheng, Y.; Jin, K.; et al. In-Situ Fabricated Succinonitrile-based Composite Electrolyte for High-performance and Safe Solid-state Lithium Batteries. J. Power Sources 2024, 604, 234473. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Z.; Xu, X.; Qiao, Y.; Zhou, Z.; Hao, Z.; Chen, X.; Liu, Y.; Wu, X.; Zhou, X.; et al. Nonflammable Succinonitrile-Based Deep Eutectic Electrolyte for Intrinsically Safe High-Voltage Sodium-Ion Batteries. Adv. Mater. 2024, 36, 2400169. [Google Scholar] [CrossRef]
- Bao, D.; Tao, Y.; Zhong, Y.; Zhao, W.; Peng, M.; Zhang, H.; Sun, X. High-Performance Dual-Salt Plastic Crystal Electrolyte Enabled by Succinonitrile-Regulated Porous Polymer Host. Adv. Funct. Mater. 2023, 33, 2213211. [Google Scholar] [CrossRef]
- Das, S.; Prathapa, S.J.; Menezes, P.V.; Row, T.N.G.; Bhattacharyya, A.J. Study of Ion Transport in Lithium Perchlorate-Succinonitrile Plastic Crystalline Electrolyte via Ionic Conductivity and In Situ Cryo-Crystallography. J. Phys. Chem. B 2009, 113, 5025–5031. [Google Scholar] [CrossRef] [PubMed]
- Zuo, M.; Bi, Z.; Guo, X. In-Situ solidification of plastic interlayers enabling high-voltage solid lithium batteries with poly(ethylene oxide) based polymer electrolytes. Chem. Eng. J. 2023, 463, 142463. [Google Scholar] [CrossRef]
- Naboulsi, A.; Chometon, R.; Ribot, F.; Nguyen, G.; Fichet, O.; Laberty-Robert, C. Correlation between Ionic Conductivity and Mechanical Properties of Solid-like PEO-based Polymer Electrolyte. ACS Appl. Mater. Interfaces 2024, 16, 13869–13881. [Google Scholar] [CrossRef]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2021, 18, 2103617. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, W.; Hu, Z.; Shen, Y.; Wu, G.; Cong, F.; Fu, X.; Lu, F.; Li, Y.; Liu, P.; et al. Constructing PVDF-Based Polymer Electrolyte for Lithium Metal Batteries by Polymer-Induced Phase Structure Adjustment Strategy. Adv. Funct. Mater. 2025, 35, 2424763. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, Z.; Zhou, W.; Liu, Q.; Wu, J.-F.; Liu, T.-H.; Xu, C.; Liu, J. 4.2V Polymer All-solid-state Lithium Batteries Enabled by High-concentration PEO Solid Electrolytes. Energy Storage Mater. 2023, 57, 171–179. [Google Scholar] [CrossRef]
- Panneerselvam, T.; Murugan, R.; Sreejith, O.V.; Moulisvar, M.; Elsin Abraham, S. 3D Flexible Electrospun Nanocomposite Polymer Electrolyte Based on Li1.45Al0.45Ge0.2Ti1.35(PO4)3 for Lithium Metal Batteries. Energy Fuels 2023, 38, 682–693. [Google Scholar] [CrossRef]
- Liu, W.; Yi, C.; Li, L.; Liu, S.; Gui, Q.; Ba, D.; Li, Y.; Peng, D.; Liu, J. Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries. Angew. Chem. Int. Ed. 2021, 60, 12931–12940. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yu, Q.; Li, S.; Wang, S.; Zhang, L.; Cai, B.; Zhou, D.; Li, B. Safe LAGP-based All Solid-state Li Metal Batteries with Plastic Super-conductive Interlayer Enabled by In-Situ Solidification. Energy Storage Mater. 2020, 25, 613–620. [Google Scholar] [CrossRef]
- Hu, Z.; Xian, F.; Guo, Z.; Lu, C.; Du, X.; Cheng, X.; Zhang, S.; Dong, S.; Cui, G.; Chen, L. Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chem. Mater. 2020, 32, 3405–3413. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, H.; Fan, L.Z.; Shi, Q. Preparation and Performance of a Non-ionic Plastic Crystal Electrolyte with the Addition of Polymer for Lithium Ion Batteries. Electrochim. Acta 2013, 114, 720–725. [Google Scholar] [CrossRef]
- Shen, C.; Liu, Y.; Hu, L.; Li, W.; Liu, X.; Shi, Y.; Jiang, Y.; Zhao, B.; Zhang, J. Regulating Anionic Redox Activity of Lithium-rich Layered Oxides via LiNbO3 Integrated Modification. Nano Energy 2022, 101, 107555. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, M.; Li, J.; Li, S.; Zhang, G.; Liu, S.; Cui, Y.; Liu, H. Cellulose-Based Plastic Crystal Electrolyte Membranes with Enhanced Interface for Solid-State Lithium Batteries. Energy Technol. 2021, 9, 2100114. [Google Scholar] [CrossRef]
- Arunkumar, R.; Babu, R.S.; Usha Rani, M.; Kalainathan, S. Effect of PBMA on PVC-based Polymer Blend Electrolytes. J. Appl. Polym. Sci. 2017, 134, 44939. [Google Scholar] [CrossRef]
- Bian, X.; Liang, J.; Tang, X.; Li, R.; Kang, L.; Su, A.; Su, X.; Wei, Y. A Boron Nitride-polyvinylidene Fluoride-co-hexafluoropropylene Composite Gel Polymer Electrolyte for Lithium Metal Batteries. J. Alloys Compd. 2019, 803, 1075–1081. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, X.; Jiang, S.; Wei, L.; Xi, K.; Lei, Y.; Cheng, X.; Yin, J.; Gao, Y. Halloysite Nanotubes Modified Poly(vinylidenefluoride-co-hexafluoropropylene)-based Polymer-in-salt Electrolyte to Achieve High-performance Li Metal Batteries. J. Colloid Interface Sci. 2023, 645, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C.P.; Vezin, H.; Sougrati, M.T.; Doublet, M.L.; Foix, D.; Gonbeau, D.; Walker, W. Reversible Anionic Redox Chemistry in High-capacity Layered-oxide Electrodes. Nat. Mater. 2013, 12, 827–835. [Google Scholar] [CrossRef]
- Naylor, A.J.; Makkos, E.; Maibach, J.; Guerrini, N.; Sobkowiak, A.; Björklund, E.; Lozano, J.G.; Menon, A.S.; Younesi, R.; Roberts, M.R. Depth-dependent Oxygen Redox Activity in Lithium-rich Layered Oxide Cathodes. J. Mater. Chem. A 2019, 7, 25355–25368. [Google Scholar] [CrossRef]
- Shimoda, K.; Minato, T.; Nakanishi, K.; Komatsu, H.; Matsunaga, T.; Tanida, H.; Arai, H.; Ukyo, Y.; Uchimoto, Y.; Ogumi, Z. Oxidation Behavior of Lattice Oxygen in Li-rich Manganese-based Layered Oxide Studied by Hard X-ray Photoelectron Spectroscopy. J. Mater. Chem. A 2016, 4, 5909–5916. [Google Scholar] [CrossRef]
- Liang, W.; Zhou, X.; Zhang, B.; Zhao, Z.; Song, X.; Chen, K.; Wang, L.; Ma, Z.; Liu, J. The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte with Enhanced Charge Transfer for LiF-Rich SEI Generation in Lithium Metal Batteries. Angew. Chem. Int. Ed. 2024, 63, e202320149. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, N.; Duan, S.; Li, Z.; Gao, R.; Zhu, Y.; Wang, H.; Zhang, T.; Li, G.; Luo, D.; et al. Dual-Enhanced Charge Transfer through Prelithiation Strategy in Polymer Electrolyte Enables Robust LiF-Rich SEI for Ultralong-Life All-Solid-State Batteries. Adv. Funct. Mater. 2025, e11011. [Google Scholar] [CrossRef]
- Kim, M.S.; Zhang, Z.; Wang, J.; Oyakhire, S.T.; Kim, S.C.; Yu, Z.; Chen, Y.; Boyle, D.T.; Ye, Y.; Huang, Z.; et al. Revealing the Multifunctions of Li3N in the Suspension Electrolyte for Lithium Metal Batteries. ACS Nano 2023, 17, 3168–3180. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, Z.; He, S.; Chen, K.; Huang, Q.; Zhang, P.; Hao, S.M.; Wang, J.; Zhou, W. Influencing Factors on Li-ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angew. Chem. Int. Ed. 2023, 62, e202218229. [Google Scholar] [CrossRef] [PubMed]
Li1.2Mn0.6Ni0.2O2, C2/m, a = 4.954(6) Å, b = 8.563(3) Å, c = 5.030(6) Å, V = 201.4(2), β = 109.25(1)°, Rwp = 3.124% | ||||||
---|---|---|---|---|---|---|
Atom | Position | Occupancy | Uiso | Multiplicity | ||
Li1 | 0 | 0.1607(11) | 0 | 0.3 | 0.029(3) | 4 |
Mn1 | 0 | 0.1607(11) | 0 | 0.7 | 0.029(3) | 4 |
Ni1 | 0 | 0.5 | 0 | 0.6 | 0.012(4) | 2 |
Mn2 | 0 | 0.5 | 0 | 0.4 | 0.012(4) | 2 |
Li3 | 0 | 0 | 0.5 | 1 | 0.035 | 2 |
Li4 | 0 | 0.66602 | 0.5 | 1 | 0.035 | 4 |
O1 | 0.238(4) | 0 | 0.257(3) | 1 | 0.013(2) | 4 |
O2 | 0.232(3) | 0.346(1) | 0.213(1) | 1 | 0.013(1) | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Tan, J.; Wang, F.; Sun, M. In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries. Batteries 2025, 11, 334. https://doi.org/10.3390/batteries11090334
Zhou F, Tan J, Wang F, Sun M. In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries. Batteries. 2025; 11(9):334. https://doi.org/10.3390/batteries11090334
Chicago/Turabian StyleZhou, Fei, Jinwei Tan, Feixiang Wang, and Meiling Sun. 2025. "In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries" Batteries 11, no. 9: 334. https://doi.org/10.3390/batteries11090334
APA StyleZhou, F., Tan, J., Wang, F., & Sun, M. (2025). In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries. Batteries, 11(9), 334. https://doi.org/10.3390/batteries11090334