Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries
Abstract
1. Introduction
2. Thermal Runaway Impact
3. Tested Sensors Set
4. Experiment
5. Measurements
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BEV | Battery electric vehicle |
PHEV | Plug in hybrid electrical vehicle |
HEV | Hybrid electric vehicle |
GTR EVS | Global technical regulation on electrical vehicle safety |
SnO | Tin dioxide |
CH | Methane |
CH | Propane |
CO | Carbon monoxide |
IR | Infra red |
LED | Light emitting diode |
PCB | Printed circuit board |
NMC | LiNiMnCoO |
SOC | State of charge |
References
- Latif, A.A. Volkswagen brand: The fall of an auto empire. J. Glob. Bus. Adv. 2017, 10, 281–304. [Google Scholar] [CrossRef]
- Bergmann, J. When compliance fails. Compliance Elliance J. 2016, 2, 85–94. [Google Scholar]
- Scrosati, B.; Hassoun, J.; Sun, Y.K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295. [Google Scholar] [CrossRef]
- Kern, R.; Bindel, R.; Uhlenbrock, R. Durchgängiges Sicherheitskonzept für die Prüfung von Lithium-Ionen- Batteriesysteme. ATZ Elektron. 2009, 4, 22–29. [Google Scholar] [CrossRef]
- Barnett, B.; Ofer, D.; Sriramulu, S.; Stringfellow, R. Lithium-ion batteries, safety. In Batteries for Sustainability; Springer: New York, NY, USA, 2013; pp. 285–318. [Google Scholar]
- Brousse, T.; Taberna, P.L.; Crosnier, O.; Dugas, R.; Guillemet, P.; Scudeller, Y.; Zhou, Y.; Favier, F.; Bélanger, D.; Simon, P. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 2007, 173, 633–641. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Draft Global Technical Regulation on Electric Vehicle Safety, 2017. ECE/TRANS/WP.29/GRSP/2017/2. Available online: https://www.unece.org/fileadmin/DAM/trans/doc/2017/wp29grsp/GRSP-61-07.pdf (accessed on 23 August 2017).
- Feng, X.; Weng, C.; Ouyang, M.; Sun, J. Online internal short circuit detection for a large format lithium ion battery. Appl. Energy 2016, 161, 168–180. [Google Scholar] [CrossRef]
- Roscher, M.A.; Kuhn, R.M.; Döring, H. Error detection for PHEV, BEV and stationary battery systems. Control Eng. Prac. 2013, 21, 1481–1487. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Harris, S.; Timmons, A.; Pitz, W. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. J. Power sources 2009, 193, 855–858. [Google Scholar] [CrossRef]
- MacNeil, D.; Dahn, J. Test of reaction kinetics using both differential scanning and accelerating rate calorimetries as applied to the reaction of LixCoO2 in non-aqueous electrolyte. J. Phys. Chem. A 2001, 105, 4430–4439. [Google Scholar] [CrossRef]
- Maleki, H.; AlHallaj, S.; Selman, J.; Dinwiddie, R.; Wang, H. Thermal properties of lithium-ion battery and components. J. Elecrochem. Soc. 1999, 146, 947–954. [Google Scholar] [CrossRef]
- Yang, H.; Bang, H.; Amine, K.; Prakash, J. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Elecrochem. Soc. 2005, 152, A73–A79. [Google Scholar] [CrossRef]
- Arai, H.; Tsuda, M.; Saito, K.; Hayashi, M.; Sakurai, Y. Thermal reactions between delithiated lithium nickelate and electrolyte solutions. J. Elecrochem. Soc. 2002, 149, A401–A406. [Google Scholar] [CrossRef]
- Feng, X.; Fang, M.; He, X.; Ouyang, M.; Lu, L.; Wang, H.; Zhang, M. Thermal runaway features of large format prismatci lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 2014, 255, 294–301. [Google Scholar] [CrossRef]
- Feng, X.; He, X.; Ouyang, M.; Lu, L.; Wu, P.; Kulp, C.; Prasser, S. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery. Appl. Energy 2015, 154, 74–91. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Ramesh, R.; Kumar, T.P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414. [Google Scholar] [CrossRef]
- Tobishima, S.; Yamaki, J. A consideration of lithium cell safety. J. Power Sources 1999, 81–82, 882–886. [Google Scholar] [CrossRef]
- Ponchaut, N.; Marr, K.; Colella, F.; Somadepalli, V.; Horn, Q. Thermal Runaway and Safety of Large Lithium-Ion Battery Systems. In Proceedings of the The Battcon 2015, Orlando, FL, USA, 12–14 May 2015; pp. 17.1–17.10. [Google Scholar]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issue for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Ohsaki, T.; Kishi, T.; Kuboki, T.; Takami, N.; Shimura, N.; Sato, Y.; Sekino, M.; Satoh, A. Overcharge reaction of lithium-ion batteries. J. Power Sources 2005, 146, 97–100. [Google Scholar] [CrossRef]
- Doughty, D.; Roth, E.; Crafts, C.; Nagasubramanian, G.; Henriksen, G.; Amine, K. Effects of additives on thermal stability of Li ion cells. J. Power Sources 2005, 146, 116–120. [Google Scholar] [CrossRef]
- Abraham, D.; Roth, E.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. Diagnostic examination of thermally abused high-power lithium-ion cells. J. Power Sources 2006, 161, 648–657. [Google Scholar] [CrossRef]
- Majimaa, M.; Tadab, T.; Ujiieb, S.; Yagasakib, E.; Inazawaa, S.; Miyazakia, K. Design and characteristics of large-scale lithium ion battery. J. Power Sources 1999, 81–82, 877–881. [Google Scholar] [CrossRef]
Label | Sensor | Measured Physical Dimension |
---|---|---|
S1 | voltage sensor | voltage of first logical cell |
S2 | gas detector | presence of chemicals |
S3 | smoke detector | smoke particle density |
S4 | creep distance sensor | electrical resistivity of surface |
S5 | temperature sensor | gas temperature |
S6 | pressure sensor | pressure |
S7 | force sensor | force between cells |
Test | Cell Volume | Cell Energy Density | Connection | Module Count | Trigger | Sensors |
---|---|---|---|---|---|---|
V1 | 210 cm | 350 Wh L | 1p | 1 | Heating | S1-S6 |
V2 | 370 cm | 700 Wh L | 2p | 1 | Nail penetration | S1–S5, S7 |
V3 | 390 cm | 540 Wh L | 2p | 2 | Nail penetration | S1-S6 |
Sensor | Detection Speed | Signal Clarity | Sensor Feasibility |
---|---|---|---|
S1 voltage | - | + | + |
S2 gas | + | + | - |
S3 smoke | - | 0 | 0 |
S4 creep distance | - | - | + |
S5 temperature | 0 | 0 | 0 |
S6 pressure | + | - | + |
S7 force | + | - | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, S.; Birke, K.P.; Kuhn, R. Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries. Batteries 2018, 4, 16. https://doi.org/10.3390/batteries4020016
Koch S, Birke KP, Kuhn R. Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries. Batteries. 2018; 4(2):16. https://doi.org/10.3390/batteries4020016
Chicago/Turabian StyleKoch, Sascha, Kai Peter Birke, and Robert Kuhn. 2018. "Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries" Batteries 4, no. 2: 16. https://doi.org/10.3390/batteries4020016
APA StyleKoch, S., Birke, K. P., & Kuhn, R. (2018). Fast Thermal Runaway Detection for Lithium-Ion Cells in Large Scale Traction Batteries. Batteries, 4(2), 16. https://doi.org/10.3390/batteries4020016