Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications
Abstract
:1. Introduction
2. Charge Storage Mechanism in MXenes
2.1. In the Li-Ion Batteries
2.2. In Electrode-Based Supercapacitors
3. Material Structural and Morphological Features Influencing the Electrochemical Storage Performance
3.1. Chemical Composition
Electrode Material | Synthesis Approach | Electrolyte | Electrochemical Performance | Capacity Retention (%) | Ref. |
---|---|---|---|---|---|
Asymmetric supercapacitors | |||||
HS−NCS/Ti3C2Tx | HF-etching/ Hydrothermal | 2M KOH | 1.6 V 226 F/g @ 1.5 A/g 80 Wh/kg 1196 W/kg | 92% for 20,000 cycles | [80] |
Ti3C2Tx | Etching route | 1.5M ZnSO4 | 1.2V 214 mF/cm2 @ 5mV/s 42.8 μWh/cm2 0.64 mW/cm2 | 83.58% after 5000 cycles | [81] |
Ti3C2Tx | Layer-by-layer assembly | ACN-PC-PMMA-LiCF3SO3 gel electrolyte | 1.2V 40.8 mF/cm2 8.2 μWh/cm2 630.1 μW/cm2 | 90% after 200 bending cycles | [82] |
V2NTx | LiF−HCl- etching | 3.5M KOH | 1.8 V 25.3 F/g @ 1.85 mA/cm2 | 96% after 10,000 cycles | [83] |
Symmetric supercapacitors | |||||
Nb2C/Ti3C2 | Chemical etching | 1M PVA/H2SO4 gel electrolyte | 1.3 V 53 F/g @ 0.3 A/g 12.5 Wh/kg 1535 W/kg | 98% for 50,000 cycles | [84] |
Mo1.33 CTz | HF-etching | 19.5M LiCl | 1.8 V 140 F/cm2 @ 0.5mA/cm2 >41.3 mWh/cm3 165.2 mW/cm3 | 82.1% for 50,000 cycles | [85] |
Ti3C2/BCN | Etching/ pyrolysis | 1M PVA/H2SO4 gel electrolyte | 1.6V 245 F/g1 @ 1 A/g 22 Wh/kg 8004 W/kg | 100% after 100,000 cycles | [86] |
Ti3C2Tx 3D Aerogels | Bioinspired freezing method | PVA/H2SO4 gel electrolyte | 0.6V 230 mF/cm2@5 mV/s 38.5 μWh/cm2 1375 μW/cm2 | 86.7% after 4000 cycles | [87] |
Ti3C2/Copper/Cobalt Hybrids | Lewis Acidic Molten Salts Etching | 1.0M H2SO4 | 1.6 V 290.5 mF/cm2@1 mA/cm2 103.3 mWh/cm2 0.8 mW/cm2 | 89% after 10,000 cycles | [88] |
Ti3C2Tx film | in situ etching | H2SO4 | 345 F/g @ 2 mV/s 14.1 Wh/L 135.2 W/L | 88.5% after 5000 cycles | [89] |
Micro-supercapacitors | |||||
PANI@rGO/Mxenes | Solution method | PVA-PAA-NHS hydrogel | 2V 45.62 F/g1 1.585 Wh/kg 25.48 W/kg | 84% after 10,000 cycles | [90] |
MXene/BC@PPy | Vacuum-filtration | 2M Zn(CF3SO3)2-0.1M MnSO4/PAM hydrogel | 1.9V 290 mF/cm2 145.4 μWh/cm2 3.78 mW/cm2 | 95.8% after 25,000 cycles | [91] |
Ti3C2Tx | Multiscale structural engineering | PVA/H2SO4 Gel Electrolyte | 0.6V 2.0 F/cm2 0.1 mWh/cm2 0.38 mW/cm2 | 90% after 10,000 cycles | [92] |
Three-electrode cell | |||||
Ti3C2Tx | HF-etching | 1M EMIMTFSI/ACN | 3.2V 185 F g−1@ 0.2 A/g 370 Wh/kg 46 kW/kg | 97% after 10,000 cycles | [25] |
Ti3C2Tx/graphene/Ni | Supernatant during etching and washing processes | aqueous acidic | 1V 254 F g−1@ 1 A/g 35.28 Wh/kg 18.144 kW/kg | 90% after 5000 cycles | [93] |
Ti3C2Tx | Electrospray Deposition Technique | 1M H2SO4 | 0.8V 400 F/g | 90% after 10,000 cycles | [94] |
CoF/MXene | HF-etching/ ultrasonication | 0.1M KOH | 0.5V 1268.75 F/g @ 1 A/g | 97% after 5000 cycles | [95] |
V2C | HF-free etching process | 1M Na2SO4 | 0.6V 164 F/g @ 2 mV/s | 90% after 10,000 cycles | [96] |
3.2. Surface Terminations
3.3. Lamellar Stacking
4. Effect of Electrolytes on MXene-Based Supercapacitor Mechanism
5. Challenges and Future Outlook
- The stacking of the MXene single layers [103] limits the intercalation of cations and results in insufficient electrochemical performance.
- The insufficient understanding of the surface termination effect on the MXene functional properties [35].
- Non-safe processing methods for MXene-based materials production.
- Oxidation of MXene is related to the surface defects of MXene arising from the chemical etching process.
- A balance between the mechanical properties such as mechanical strength, toughness, flexibility etc. and the electrochemical properties of MXenes must be met and remains one of the major challenges for the fabrication of flexible supercapacitor devices.
- Issues for industrial production.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ansari, M.Z.; Seo, K.-M.; Kim, S.-H.; Ansari, S.A. Critical aspects of various techniques for synthesizing metal oxides and fabricating their composite-based supercapacitor electrodes: A review. Nanomaterials 2022, 12, 1873. [Google Scholar] [CrossRef] [PubMed]
- Mateen, A.; Ansari, M.Z.; Hussain, I.; Eldin, S.M.; Albaqami, M.D.; Bahajjaj, A.A.A.; Javed, M.S.; Peng, K.-Q. Ti2CTx-MXene aerogel based ultra-stable Zn-ion supercapacitor. Compos. Commun. 2023, 38, 101493. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Sahoo, S.; Ahmad, M.; Chen, X.; Javed, M.S.; Qin, N.; Gu, S.; Li, Y.; Nawaz, T.; et al. Factors affecting the growth formation of nanostructures and their impact on electrode materials: A systematic review. Mater. Today Phys. 2022, 27, 100844. [Google Scholar] [CrossRef]
- Hussain, I.; Lamiel, C.; Javed, M.S.; Ahmad, M.; Chen, X.; Sahoo, S.; Ma, X.; Bajaber, M.A.; Ansari, M.Z.; Zhang, K. Earth- and marine-life-resembling nanostructures for electrochemical energy storage. Chem. Eng. J. 2023, 454, 140313. [Google Scholar] [CrossRef]
- Kaskhedikar, N.A.; Maier, J. Lithium storage in carbon nanostructures. Adv. Mater. 2009, 21, 2664–2680. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.; Kim, J.; Hsono, E.; Zhou, H.-s.; Kudo, T.; Honm, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, X.W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097–4711. [Google Scholar] [CrossRef]
- Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang, Y.; Wu, M.; Wang, G. Nanoengineering of 2D MXene-based materials for energy storage applications. Small 2021, 17, 1902085. [Google Scholar] [CrossRef]
- Garg, R.; Agarwal, A.; Agarwal, M. A review on MXene for energy storage application: Effect of interlayer distance. Mater. Res. Express 2020, 7, 022001. [Google Scholar] [CrossRef]
- Mateen, A.; Ansari, M.Z.; Abbas, Q.; Muneeb, A.; Hussain, A.; Eldin, E.; Alzahrani, F.M.; Alsaiari, N.S.; Ali, S.; Javed, M.S. In situ functionalization of 2D-Ti3C3Tx-MXenes for high-performance Zn-ion supercapacitor. Molecules 2022, 27, 7446. [Google Scholar] [CrossRef]
- Liu, S.; Song, Z.; Jin, X.; Mao, R.; Zhang, T.; Hu, F. MXenes for metal-ion and metal-sulfur batteries: Synthesis, properties, and electrochemistry. Mater. Rep. Energy 2022, 2, 100077. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Rakhi, R.B.; Bilal, A.; Hedhili, M.N.; Anjum, D.H.; Alshareef, H.N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323. [Google Scholar] [CrossRef]
- Chatterjee, S.; Ray, A.; Mandal, M.; Das, S.; Bhattacharya, S.K. Synthesis and characterization of CuO-NiO canocomposites for electrochemical supercapacitors. J. Mater. Eng. Perform. 2020, 29, 8036–8048. [Google Scholar] [CrossRef]
- Xu, X.; Yang, L.; Zheng, W.; Zhang, H.; Wu, F.; Tian, Z.; Zhang, P.; Sun, Z.M. MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. Mater. Rep. Energy 2022, 2, 100080. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.; Simon, P.; Xu, B. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater. 2021, 35, 630–660. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhao, Y.; Zhang, J.; Qu, L. Graphene materials for miniaturized energy harvest and storage devices. Small Struct. 2022, 3, 2100124. [Google Scholar] [CrossRef]
- Miao, J.; Zhu, Q.; Li, K.; Zhang, P.; Zhao, Q.; Xu, B. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. J. Energy Chem. 2021, 52, 243–250. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, W.; Zhang, P.; Chen, J.; Tian, W.B.; Zhang, Y.M.; Sun, Z.M. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 2018, 830–831, 1–6. [Google Scholar] [CrossRef]
- Jamil, F.; Ali, H.M.; Janjua, M.M. MXene based advanced materials for thermal energy storage: A recent review. J. Energy Storage 2021, 35, 102322. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef]
- Kim, E.; Song, J.; Song, T.-E.; Kim, H.; Kim, Y.-J.; Oh, Y.-W.; Jung, S.; Kang, I.S.; Gogotsi, Y.; Han, H.; et al. Scalable fabrication of MXene-based flexible micro-supercapacitor with outstanding volumetric capacitance. Chem. Eng. J. 2022, 450, 138456. [Google Scholar] [CrossRef]
- Sohan, A.; Banoth, P.; Aleksandrova, M.; Nirmala, G.A.; Kollu, P. Review on MXene synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. Int. J. Energy Res. 2021, 45, 19746–19771. [Google Scholar] [CrossRef]
- Liang, K.; Matsumoto, R.A.; Zhao, W.; Osti, N.C.; Popov, I.; Thapaliya, B.P.; Fleischmann, S.; Misra, S.; Prenger, K.; Tyagi, M.; et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv. Funct. Mater. 2021, 31, 2104007. [Google Scholar] [CrossRef]
- Wang, K.; Wang, S.; Liu, J.; Guo, Y.; Mao, F.; Wu, H.; Zhang, Q. Fe-based coordination polymers as battery-type electrodes in semi-solid-state battery–supercapacitor hybrid devices. ACS Appl. Mater. Interfaces 2021, 13, 15315–15323. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.S. Evaluating and improving technologies for energy storage and backup power. Joule 2021, 5, 1925–1927. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Pakdel, A.; Pathan, H.M.; Kumar, D.; Vo, D.-V.N.; Al-Gheethi, A.; Sharma, A.; Goel, S.; Singh, P.P.; Lee, B.-K. Prospects of MXenes in energy storage applications. Chemosphere 2022, 297, 134225. [Google Scholar] [CrossRef]
- Hart, J.L.; Hantanasirisakul, K.; Lang, A.C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J.T.; May, S.J.; Gogotsi, Y.; Taheri, M.L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522. [Google Scholar] [CrossRef]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensionsl Niobium und Vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–16969. [Google Scholar] [CrossRef]
- Zhan, C.; Naguib, M.; Lukatskaya, M.; Kent, P.R.C.; Gogotsi, Y.; Jiang, D. Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 2018, 9, 1223–1228. [Google Scholar] [CrossRef]
- Simon, P. Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 2017, 11, 2393–2396. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, H.; Han, Z.; Bo, Z.; Yan, J.; Cen, K.; Ostrikov, K.K. MXene-based electrodes for supercapacitos energy storage. Energy Fuels 2022, 36, 2390–2406. [Google Scholar] [CrossRef]
- Long, M.Q.; Tang, K.K.; Xiao, J.; Li, J.Y.; Chen, J.; Gao, H.; Chen, W.H.; Liu, C.T.; Liu, H. Recent advances on MXene based materials for energy storage applications. Mater. Today Sustain. 2022, 19, 100163. [Google Scholar] [CrossRef]
- Shinde, P.A.; Patil, A.M.; Lee, S.; Jung, E.; Jun, S.C. Two-dimensional MXenes for electrochemical energy storage applications. J. Mater. Chem. A 2022, 10, 1105. [Google Scholar] [CrossRef]
- Sun, D.; Hu, Q.; Chen, J.; Zhang, X.; Wang, L.; Wu, Q.; Zhou, A. Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: A first-principles investigation. Appl. Mater. Interfaces 2016, 8, 74–81. [Google Scholar] [CrossRef]
- Ghosh, M.; Ray, A.; Rao, G.M. Performance dependence of electrochemical capacitor on surface morphology for vertically aligned graphene nanosheets. Ionics 2020, 26, 981–990. [Google Scholar] [CrossRef]
- Ray, A.; Roth, J.; Saruhan, B. Laser-induced interdigital structured graphene electrodes based flexible micro-supercapacitor for efficient peak energy storage. Molecules 2022, 27, 329. [Google Scholar] [CrossRef]
- Ray, A.; Roy, A.; Ghosh, M.; Ramos-Ramón, J.A.; Saha, S.; Pal, U.; Bhattacharya, S.K.; Das, S. Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Appl. Surf. Sci. 2019, 463, 513–525. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Aberoumand, S.; Dao, D.V. Advances in Si and SiC materials for high-performance supercapacitors toward integrated energy storage systems. Small 2021, 17, 2101775. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Mohamed, A.; Abdelgawad, A.M.; Eid, K.; Abdullah, A.M.; Elzatahry, A. The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: Deep insights into the supercapacitor. Nanomaterials 2020, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Hu, M.; Ling, H.; Zhu, X. MXenes: Focus on optical and electronic properties and corresponsing applications. Nanophotonics 2020, 9, 1601–1620. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Song, L. Tuning 2D MXenes by surface controlling anf interlayer engineering: Methods, properties, and synchrotron radiation characterizations. Adv. Sci. News 2020, 30, 2000869. [Google Scholar]
- Sugahara, A.; Yasunobu, A.; Satoshi, K.; Koji, Y.; Kazuma, G.; Minoru, O.; Masashi, O.; Atsuo, Y. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 2019, 10, 850. [Google Scholar] [CrossRef]
- Maleski, K.; Ren, C.E.; Zhao, M.Q.; Anasori, B.; Gogotsi, Y. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interfaces 2018, 10, 24491–24498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Huang, S.; Mochalin, V.N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 2019, 58, 1958–1966. [Google Scholar] [CrossRef]
- Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon, P.; Barsoum, M.W.; Gogotsi, Y. MXene: A promising transition metal carbide for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64. [Google Scholar] [CrossRef]
- Xie, Y.; Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y.; Yu, X.; Nam, K.-W.; Yang, X.-Q.; Kolesnikov, A.I.; Kent, P.R.C. Role of surface strcuture on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6639. [Google Scholar] [CrossRef]
- Luo, J.; Tao, X.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L.; Gan, Y.; Liang, C. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499. [Google Scholar] [CrossRef]
- Ahmed, B.; Anjum, D.H.; Gogotsi, Y.; Alshareef, H.N. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 2017, 34, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kim, S.J.; Ghidiu, M.; Zhao, M.-Q.; Barsoum, M.W.; Nicolosi, V.; Gogotsi, Y. Layered Orthorhombic Nb2O5@Nb4C3Tx and TiO2@Ti3C2Tx hierarchical composites for high perfromance Li-ion batteries. Adv. Funct. Mater. 2016, 26, 4143–4151. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, Z.; Guo, J.; Liu, B.; Zhang, Q.; Fernandez, C.; Peng, Q. Synthesis of MXene/Ag composites for extraordinary long cycle lifetime storage at high rates. ACS Appl. Mater Interfaces 2016, 8, 22280–22286. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Yang, H.; Chen, G.Z. Enhanced performance of silicon negative electrodes composited with titanium carbide based MXenes for Lithium-ion batteries. Nanoenergy Adv. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Li, A.; Yu, Y.; Chen, X.; Song, H. Three-dimensional hierarchical porous structures constructed by two-stage MXene-wrapped Si nanoparticles for Li-ion batteries. Appl. Mater. Interfaces 2020, 12, 48718–48728. [Google Scholar] [CrossRef] [PubMed]
- Sobyra, T.B.; Matthews, K.; Mathis, T.S.; Gogotsi, Y.; Fenter, P. Operando X-ray reflectivity reveals the dynamical response of Ti3C2 MXene film structure during electrochemical cycling. ACS Energy Lett. 2022, 7, 3612–3617. [Google Scholar] [CrossRef]
- Xia, Y.; Mathis, T.S.; Zhao, M.Q.; Anasori, B.; Dang, A.; Zhou, Z.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Zhou, X.; Chen, F.; Gao, G.; Wang, S.; Shen, C.; Chen, T.; Zhi, C.; Eklund, P.; et al. Synthesis and electrochemical properties of two-dimensional Hafnium carbide. ACS Nano 2017, 11, 3841–3850. [Google Scholar] [CrossRef]
- Wang, X.; Kajiyama, S.; Linuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitnce of MXene nanosheets for high-powder sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544. [Google Scholar] [CrossRef]
- Guo, X.; Gao, H.; Wang, S.; Yang, G.; Zhang, X.; Zhang, J.; Liu, H.; Wang, G. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries. Nano Lett. 2022, 22, 1225–1232. [Google Scholar] [CrossRef]
- Yao, L.; Ju, S.; Yu, X. Rational surface engineering of MXene@N-doped hollow carbon dual-confined cobalt sulfides/selenides for advanced aluminum batteries. J. Mater. Chem. 2021, 9, 16878–16888. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Gao, H.; Shao, Y.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L. VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery. J. Power Sources 2022, 518, 230731. [Google Scholar] [CrossRef]
- Qiu, S.Y.; Wang, C.; Jiang, Z.X.; Zhang, L.S.; Gu, L.L.; Wang, K.X.; Gao, J.; Zhu, X.D.; Wu, G. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries. Nanoscale 2020, 12, 16678–16684. [Google Scholar] [CrossRef]
- Bao, W.; Shuck, C.E.; Zhang, W.; Guo, X.; Gogotsi, Y.; Wang, G. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500–11509. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, R.; Chen, T.; Lv, H.; Zhu, G.; Ma, L.; Wang, C.; Jin, Z.; Liu, J. Emerging non-lithium batteries. Energy Storage Mater. 2016, 4, 103–129. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F. OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. [Google Scholar] [CrossRef]
- Ren, C.E.; Zhao, M.-Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M.W.; Gogotsi, Y. Porous two-dimensional transition metal carbide (MXene) flkaes for high-performance Li-ion storage. ChemElectroChem 2016, 3, 689–693. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Zhang, P.; Sun, N.; Anasoi, B.; Zhu, Q.-Z.; Liu, H.; Gogotsi, Y.; Xi, B. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 2018, 30, 1707334. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Qiu, Z.; Wu, X.; Zhou, P.; Zhou, T.; Zhao, J.; Miao, Z.; Zhou, J.; Zhou, S. Fe3O4@Ti2C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 11189–11197. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Fang, Y.; Lv, W.; Wang, F.; Liu, Y.; Liu, H. Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemial performance. J. Electroanal. Chem. 2018, 817, 1–8. [Google Scholar] [CrossRef]
- Tian, Y.; An, Y.; Feng, J. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 10004–10011. [Google Scholar] [CrossRef]
- Liang, X.; Garsuch, A.; Nazar, L.F. Sulfur cathodes based on conductive MXene nanosheets for high-performance Lithium-Sulfur batteries. Angew. Chem. Int. Ed. 2015, 54, 3907–3911. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cui, J.; Liu, G.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456. [Google Scholar] [CrossRef]
- Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Wang, L.; Huang, F.; Fan, J.; Shi, N.; Han, M.; Dai, Z. Oxygen-vacancy-rich NiMnZn-layered double hydroxide nanosheets married with Mo2CTx MXene for high-efficiency all-solid-state hybrid supercapacitors. ACS Appl. Energy Mater. 2022, 5, 3346–3358. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, Y.; Jing, Y.; Ma, J.; Du, C.-F.; Yan, Q. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage. Small 2019, 15, 1901503. [Google Scholar]
- Chenya, R.; Zhu, D.; Qi, J.; Meng, Q.; Wei, F.; Ren, Y.; Sui, Y.; Zhang, H. MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors. Surf. Interfaces 2021, 25, 101274. [Google Scholar]
- Jie, X.; Yang, X.; Zou, Y.; Zhu, L.; Xu, F.; Sun, L.; Xiang, C.; Zhang, J. High density anchoring of NiMoS4 on ultrathin Ti3C2 MXene assisted by dopamine for supercapacitor electrode materials. J. Alloy. Compd. 2022, 891, 161945. [Google Scholar]
- Javed, M.S.; Zhang, X.; Ali, S.; Mateen, A.; Idrees, M.; Sajjad, M.; Batool, S.; Ahmad, A.; Imran, M.; Najam, T.; et al. Heterostructured bimetallic–sulfide layered Ti3C2Tx–MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor. Nano Energy 2022, 101, 107624. [Google Scholar] [CrossRef]
- Bao, S.; Li, L.; Chen, A.; Jen, T.-C.; Liu, X.; Shen, G. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 2022, 14, 34. [Google Scholar]
- Yun, J.; Echols, I.; Flouda, P.; Chen, Y.; Wang, S.; Zhao, X.; Holta, D.; Radovic, M.; Green, M.J.; Naraghi, M.; et al. Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 14068–14076. [Google Scholar] [CrossRef] [PubMed]
- Venkateshalu, S.; Cherusseri, J.; Karnan, M.; Kumar, K.S.; Kollu, P.; Sathish, M.; Thomas, J.; Jeong, S.K.; Grace, A.N. New method for the synthesis of 2D vanadium nitride (MXene) and its application as a supercapacitor electrode. ACS Omega 2020, 5, 17983–17992. [Google Scholar] [CrossRef]
- Nasrin, K.; Sudharshan, V.; Arunkumar, M.; Sathish, M. 2D/2D Nanoarchitectured Nb2C/Ti3C2 MXene heterointerface for high-energy supercapacitors with sustainable life cycle. ACS Appl. Mater. Interfaces 2022, 14, 21038–21049. [Google Scholar] [CrossRef]
- Wei, Z.; Halim, J.; Rosen, J.; Barsoum, M.W. MXene-based symmetric supercapacitors with high voltage and high energy density. Mater. Rep. Energy 2022, 2, 100078. [Google Scholar]
- Nasrin, K.; Sudharshan, V.; Subramani, K.; Karnan, M.; Sathish, M. In-situ synergistic 2D/2D MXene/BCN heterostructure for superlative energy density supercapacitor with super long life. Small 2022, 18, 2106051. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Wei, Z.; Deng, L.; Fu, Y. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors. ACS Appl. Mater. Interfaces 2021, 13, 54170–54184. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.; Chen, T.; Li, W.; Zheng, S.; Pi, Y.; Luo, Y.; Pang, H. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors. Angew. Chem. 2021, 133, 25522–25526. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, J.; Kang, H.; Wang, Y.; Xie, Z.; Cheng, Z.; Liu, Y. A compact MXene film with folded structure for advanced supercapacitor electrode material. ACS Appl. Energy Mater. 2020, 3, 1811–1820. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, H.; Zhou, W.; Meng, S.; Qi, C.; Liu, Z.; Kong, T. Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@ rGO/Mxenes electrode and hydrogel electrolyte. Adv. Energy Mater. 2021, 11, 2101329. [Google Scholar] [CrossRef]
- Wenxiang, C.; Fu, J.; Hu, H.; Ho, D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 2021, 8, 2100775. [Google Scholar]
- Huang, X.; Huang, J.; Yang, D.; Wu, P. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Adv. Sci. 2021, 8, 2101664. [Google Scholar] [CrossRef]
- Kumar, S.; Rehman, M.A.; Lee, S.; Kim, M.; Hong, H.; Park, J.Y.; Seo, Y. Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Sci. Rep. 2021, 11, 649. [Google Scholar] [CrossRef]
- Cho, S.; Kim, D.Y.; Seo, Y. Binder-free high-performance MXene supercapacitors fabricated by a simple electrospray deposition technique. Adv. Mater. Interfaces 2020, 7, 2000750. [Google Scholar] [CrossRef]
- Ayman, I.; Rasheed, A.; Ajmal, S.; Rehman, A.; Ali, A.; Shakir, I.; Warsi, M.F. CoFe2O4 nanoparticle-decorated 2D MXene: A novel hybrid material for supercapacitor applications. Energy Fuels 2020, 34, 7622–7630. [Google Scholar] [CrossRef]
- Guan, Y.; Jiang, S.; Cong, Y.; Wang, J.; Dong, Z.; Zhang, Q.; Yuan, G.; Li, Y.; Li, X. 2020. A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes. 2D Mater. 2020, 7, 025010. [Google Scholar] [CrossRef]
- Wang, X.; Mathis, T.S.; Sun, Y.; Tsai, W.Y.; Shpigel, N.; Shao, H.; Zhang, D.; Hantanasirisakul, K.; Malchik, F.; Balke, N.; et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 2021, 15, 15274–15284. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.; Levi, M.D.; Halim, J.; Taberna, P.-L.; Barsoum, M.W.; Simon, P.; et al. Ultra-highrate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy Nat. Publ. Group 2017, 2, 17105. [Google Scholar] [CrossRef]
- Chen, J.; Chen, M.; Zhou, W.; Xu, X.; Liu, B.; Zhang, W.; Wong, C. Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high-performance electrochemical capacitors. ACS Nano 2022, 16, 2461–2470. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Ivanovski, A.L. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Sructural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations. J. Solid State Chem. 2013, 207, 42–48. [Google Scholar] [CrossRef]
- Xie, Y.; Kent, P.R.C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X=C, N) monolayers. Phys. Rev. B 2013, 87, 235441. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Yunoki, S. Topological insulators in the ordered double transition metals M′2M″C2 MXenes (M′=Mo, W; M″=Ti, Zr, Hf). Phys. Rev. B 2016, 94, 125152. [Google Scholar] [CrossRef]
- Sun, N.; Guan, Z.; Zhu, Q.; Anasori, B.; Gogotsi, Y.; Xu, B. Enhanced ionic accssibility of flexible Mxene electrodes produced by natural sedimentation. Nano-Micro Lett. 2020, 12, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Li, X.; Bai, Y.; Xiao, H.; Liu, Y.; Liu, R. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 2019, 29, 1900326. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Lu, K.; Cai, W.; Jie, Y.; Huang, F.; Li, X.; Cao, R.; Jian, S. Engineering rGO/MXene hybrid film as a anode host for stable sodium-metal batteries. Energy Fuels 2021, 35, 4587–4595. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, D.; Huang, Q.; Yang, J.; Barsoum, M.W.; Yan, X. Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 14096–14100. [Google Scholar] [CrossRef]
- Ray, A.; Saruhan, B. Application of ionic liquids for batteries and supercapacitors. Materials 2021, 14, 2942. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zheng, W. A review for aqueous electrochemical supercapacitors. Front. Energy Res. 2015, 3, 23. [Google Scholar] [CrossRef]
- Lin, Z.; Daffos, B.; Taberna, P.-L.; Aken, K.L.V.; Anasori, B.; Gogotsi, Y.; Simon, P. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. J. Power Sources 2016, 326, 575–579. [Google Scholar] [CrossRef]
- Carey, M.; Barsoum, M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021, 9, 100120. [Google Scholar] [CrossRef]
- Forouzandeh, P.; Pillai, S.C. MXenes-based nanocomposites for supercapacitor applications. Curr. Opin. Chem. Eng. 2021, 33, 100710. [Google Scholar] [CrossRef]
Electrode Material | Synthesis Approach | Mass Loading, mg/cm2 | Electrolyte | Capacity | Ref. |
---|---|---|---|---|---|
Li-ion batteries | |||||
Nb2AlC V2AlC | HF-etching | N/A * | 1M LiPF6/ EC, DEC | 170 mAh/g@1C 110 mAh/g@1C | [30] |
PVP-Sn(IV)@Ti3C2 | Liquid-phase immersion | N/A * | 1M LiPF6/ EC, DEC | 635 mAh/g | [50] |
HfO2@Ti3C2/SnO2 | Atomic layer deposition | N/A * | 1M LiPF6/ EC, DMC | 843 mAh/g | [51] |
Nb2O5@Nb4C3Tx | One-step oxidation | 2.65 | 1M LiClO4/ EC, DMC | 208 mAh/[email protected] | [52] |
Ti3AlC2/Ag | HF-etching/ AgNO3 reduction | N/A * | 1M LiPF6/ EC, DMC | 310 mAh/g@1C 260 mAh/g@10C | [53] |
Hf3C2Tz | HF-etching | 0.5–0.7 | 1M LiPF6/ EC, DMC | 145 mAh/g | [58] |
Ti3C2 | Delamination | 3.0 | 1M LiPF6/ EC, DEC | 410 mAh/g@1C | [66] |
Ti3C2 | DFT computations | N/A * | N/A * | 320 mAh/g@ | [67] |
Ti3C2Tx/CNT | HF-etching | 0.6–1.0 | 1M LiPF6/ EC, DEC | 1250 mAh/[email protected] | [68] |
Ti3C2/TiO2 Ti3C2/SnO2 | HF-etching/ Self-assembling | 1.0–1.1 | 1M LiPF6/ EC, DEC | 209 mAh/[email protected] A/g 530 mA·h·g−1/1 A/g | [69] |
Ti3C2/Fe3O4 | Sonication | 1.5–2.0 | 1M LiPF6/ EC, DMC, EMC | 747 mAh/g@1C | [70] |
Ti3C2/CoO | Hydrothermal | N/A * | 1M LiPF6/ EC, DMC | 324 mAh/[email protected] A/g | [71] |
Ti2CTx/Si | Covalently anchoring silicon nanospheres | N/A * | 1M LiPF6/ EC, DEC | 1670 mAh/g@1 A/g | [72] |
Na-ion batteries | |||||
Hf3C2Tz | HF-etching | 0.5–0.7 | 1M LiPF6/ EC, DMC | 47 mAh/g | [58] |
Ti2CTx | HF-etching | 1.0 | 1M NaPF6/ EC, DEC | 40 mAh/g@1C | [59] |
S-ion batteries | |||||
S/Ti2C | HF-etching/ melt diffusion | 1.0 | 1M LiTFSI/DME, DOL/LiNO3 | 1200 mAh/g@5C | [73] |
NaS batteries | |||||
Ti3C2Tx/S | LiF/HCl etching | 4.5 | 2M NaFSI/ EC, DEC | 577 mAh/g@2C | [64] |
Al-ion batteries | |||||
Ti3C2Tx/Co9S8 | LiF/HCl etching/ thermal-induced carbonization/sulfidation | 0.8–1.0 | IL-electrolyte | 288 mAh/g@1 A/g | [61] |
K-ion batteries | |||||
Ti3C2Tx/Sb | LiF/HCl etching/ hydrothermal | 1.0 | 1M KFSI/ EC, PC | 314 mAh/g@1 A/g | [60] |
Ti3C2Tx/MoSe2 | LiF/HCl etching/ hydrothermal | 1.0 | 1M KFSI/ EC, DEC | 183 mAh/g@10 A/g | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nahirniak, S.; Ray, A.; Saruhan, B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries 2023, 9, 126. https://doi.org/10.3390/batteries9020126
Nahirniak S, Ray A, Saruhan B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries. 2023; 9(2):126. https://doi.org/10.3390/batteries9020126
Chicago/Turabian StyleNahirniak, Svitlana, Apurba Ray, and Bilge Saruhan. 2023. "Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications" Batteries 9, no. 2: 126. https://doi.org/10.3390/batteries9020126
APA StyleNahirniak, S., Ray, A., & Saruhan, B. (2023). Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries, 9(2), 126. https://doi.org/10.3390/batteries9020126