Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Cdots/PPy/TOCNF and Cdots/PPy/Fe3O4/TOCNF Composite Films
2.3. Instruments
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of Film Electrodes
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raghavendra, K.V.G.; Vinoth, R.; Zeb, K.; Gopi, C.V.M.; Sambasivam, S.; Kummara, M.R.; Obaidat, I.M.; Kim, H.J. An intuitive review of supercapacitors with recent progress and novel device applications. J. Energy Storage 2020, 31, 101652. [Google Scholar] [CrossRef]
- Pandolfo, A.G.; Hollenkamp, A.F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27. [Google Scholar] [CrossRef]
- Sheng, S.; Liu, W.; Zhu, K.; Cheng, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Fe3O4 nanospheres in situ decorated graphene as high-performance anode for asymmetric supercapacitor with impressive energy density. J. Colloid Interface Sci. 2019, 536, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Li, H.Q.; Xia, Y.Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18, 2619–2623. [Google Scholar] [CrossRef]
- Fite, M.C.; Rao, J.-Y.; Imae, T. Effect of External Magnetic Field on Hybrid Supercapacitors of Nitrogen-doped Graphene with Magnetic Metal Oxides. Bull. Chem. Soc. Jpn. 2020, 93, 1139–1149. [Google Scholar] [CrossRef]
- Chang, C.C.; Geleta, T.A.; Imae, T. Effect of Carbon Dots on Supercapacitor Performance of Carbon Nanohorn/Conducting Polymer Composites. Bull. Chem. Soc. Jpn. 2021, 94, 454–462. [Google Scholar] [CrossRef]
- Efa, M.T.; Imae, T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J. Taiwan Inst. Chem. Eng. 2018, 92, 112–117. [Google Scholar] [CrossRef]
- Tuerhong, M.; Yang, X.; Xue-Bo, Y. Review on carbon dots and their applications. Chin. J. Anal. Chem. 2017, 45, 139–150. [Google Scholar] [CrossRef]
- Etefa, H.F.; Imae, T.; Yanagida, M. Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 18596–18608. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B 2016, 4, 5772–5788. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Imae, T. Effect of external magnetic field on cyclic voltammetry of exfoliated graphene-based magnetic composites with conductive polymer and carbon dots. J. Magn. Magn. Mater. 2019, 491, 165604. [Google Scholar] [CrossRef]
- Yazar, S.; Atun, G. Electrochemical synthesis of tunable polypyrrole-based composites on carbon fabric for wide potential window aqueous supercapacitor. Int. J. Energy Res. 2022, 46, 14408–14423. [Google Scholar] [CrossRef]
- Madhuvilakku, R.; Alagar, S.; Mariappan, R.; Piraman, S. Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sens. Actuators B 2017, 253, 879–892. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, X.; Zhang, Y.; Qian, X. Fe2O3/reduced graphene oxide/Fe3O4 composite in situ grown on Fe foil for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 30133–30142. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Chowdhury, A.D.; Doong, R.A. Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochim. Acta 2017, 245, 912–923. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Liu, J.; Wu, J.; Chen, H.; Bi, H. Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots. Carbon 2017, 115, 134–146. [Google Scholar] [CrossRef]
- Chang, C.C.; Imae, T. Synergistic Performance of Composite Supercapacitors between Carbon Nanohorn and Conducting Polymer. ACS Sustain. Chem. Eng. 2018, 6, 5162–5172. [Google Scholar] [CrossRef]
- Lin, T.-W.; Dai, C.-S.; Hung, K.-C. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 2014, 4, 7274. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Tong, S.; Jiang, L.; Hou, B.; Li, X.; Zhang, Y.; Yue, J.; Jiang, M.; Sheng, L. Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors. J. Alloys Compd. 2020, 844, 156217. [Google Scholar] [CrossRef]
- Masikhwa, T.M.; Barzegar, F.; Dangbegnon, J.K.; Bello, A.; Madito, M.J.; Momodu, D.; Manyala, N. Asymmetric supercapacitor based on VS2 nanosheets and activated carbon materials. RSC Adv. 2016, 6, 38990–39000. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Tang, S.; Zhu, Z.; Qin, X.; Qu, R.; Deng, Y.; Wu, L.; Li, J.; Haarberg, G.M. Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2017, 28, 18022–18030. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, H.A.; El-Deen, A.G.; Souaya, E.R.; Allam, N.K. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58–69. [Google Scholar] [CrossRef]
- Fite, M.C.; Imae, T. Capacitance Enhancement of Nitrogen-doped Graphene Oxide/Magnetite with Polyaniline or Carbon dots Under External Magnetic Field: Supported by Theoretical Estimation. J. Colloid Interface Sci. 2021, 594, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Isogai, A. Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018, 94, 161–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- He, K.; Xu, C.Y.; Zhen, L.; Shao, W.Z. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity. Mater. Lett. 2007, 61, 3159–3162. [Google Scholar] [CrossRef]
- Devadas, B.; Imae, T. Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustain. Chem. Eng. 2018, 6, 127–134. [Google Scholar] [CrossRef]
- Krathumkhet, N.; Kao, C.-Y.; Imae, T.; Rodriguez-Abreu, C. Electrocatalytic Pt-embedded ZIF-8 on nanocellulose-based flexible conductive electrodes for hydrogen evolution reaction. Cellulose 2023, 30. [Google Scholar] [CrossRef]
- Ahangaran, F.; Hassanzadeh, A.; Nouri, S. Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 2013, 3, 23. [Google Scholar] [CrossRef]
- Sui, L.; Tang, S.; Dai, Z.; Zhu, Z.; Huangfu, H.; Qin, X.; Deng, Y.; Haarberg, G.M. Supercapacitive behavior of an asymmetric supercapacitor based on a Ni(OH)2/XC-72 composite. New J. Chem. 2015, 39, 9363–9371. [Google Scholar] [CrossRef]
- Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9, 5198–5207. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.; Zhang, Q.; Yang, F.; Dong, H.; Sui, J.; Dong, L. One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage. J. Electroanal. Chem. 2019, 837, 108–115. [Google Scholar] [CrossRef]
- Yang, S.; Cheng, K.; Ye, K.; Li, Y.; Qu, J.; Yin, J.; Wang, G.; Cao, D. A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials. J. Electroanal. Chem. 2015, 741, 93–99. [Google Scholar] [CrossRef]
- Dai, C.-S.; Chien, P.-Y.; Lin, J.-Y.; Chou, S.-W.; Wu, W.-K.; Li, P.-H.; Wu, K.-Y.; Lin, T.-W. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 12168–12174. [Google Scholar] [CrossRef]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical interpretations of Nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 2010, 195, 3041–3045. [Google Scholar] [CrossRef]
Asymmetric Device * | Electrolyte | Potential Window (V) | Gravimetric Capacitance (F/g) | Energy Density (Wh/kg) | Power Density (W/kg) | Capacitance Retention (%) (Cycle Number) | Rs (Ω) | Rct (Ω) | Ref. |
---|---|---|---|---|---|---|---|---|---|
AC/Co(OH)2/Ni foam | 6 M KOH | 1.6 | 59.2 | 20.3 | 90.6 | 69 (1000) | - | 2.20 | 33 |
AC/Ni(OH)2/XC-72 | 6 M KOH | 1.6 | 92.2 | 36 | 490.7 | 85 (1000) | 0.18 | 0.10 | 30 |
Ni3S2/MWCNT-NC//AC | 2 M KOH | 1.6 | 55.8 | 19.8 | 798 | 90 (5000) | - | 0.70 | 34 |
AC//Ni(OH)2/EG | 6 M KOH | 1.6 | 64.6 | 32.3 | 504.7 | 79 (1000) | 0.16 | - | 21 |
MnO2/rGO//AC | 1 M H2SO4 | 2.0 | 255 | 119.3 | 500 | 84.5 (10,000) | - | - | 32 |
GF-CNT@Fe2O3//GF-CoMoO4 | 2 M KOH | 1.6 | 210 | 74.7 | 1400 | 95.4 (50,000) | - | - | 31 |
VS2//AC | 6 M KOH | 1.4 | 155 | 42 | 700 | 99 (5000) | 2.97 | - | 20 |
V2O5@3DGr//Fe3O4@3DGr | 1 M Na2SO4 | 1.8 | 122 | 54.9 | 898 | 89.6 (10,000) | - | - | 22 |
(NG/Fe3O4)/(NG/Cdots/Fe3O4) | 1 M NaCl | 1.6 | 252.2 | 90.1 | 400.0 | 90.8 (5000) | 28.0 | 5.8 | present |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fite, M.C.; Wang, P.-J.; Imae, T. Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite. Batteries 2023, 9, 162. https://doi.org/10.3390/batteries9030162
Fite MC, Wang P-J, Imae T. Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite. Batteries. 2023; 9(3):162. https://doi.org/10.3390/batteries9030162
Chicago/Turabian StyleFite, Misganu Chewaka, Po-Jen Wang, and Toyoko Imae. 2023. "Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite" Batteries 9, no. 3: 162. https://doi.org/10.3390/batteries9030162
APA StyleFite, M. C., Wang, P. -J., & Imae, T. (2023). Symmetric and Asymmetric Supercapacitors of ITO Glass and Film Electrodes Consisting of Carbon Dot and Magnetite. Batteries, 9(3), 162. https://doi.org/10.3390/batteries9030162