Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Cell Culture
2.3. Reagents for Hydrogels
2.4. Preparation of Cell-Laden Hydrogels
2.5. Measurement of Cell Viability
2.6. Observation of Cell Clusters: Counting the Number of Cells Within Clusters
2.7. Observation of Cell Clusters: Assessing the Spatial Confinement of Cells Within Clusters
3. Results
3.1. Cell Viability in Alginate–ECM Hydrogels
3.2. Cell Viability in Alginate–Methylcellulose–ECM Hydrogels
3.3. Observation of Cell Clusters in Alginate–ECM Hydrogels
3.4. Observation of Cell Clusters in Alginate–Methylcellulose–ECM Hydrogels
3.5. Spatial Confinement of Alginate–ECM Hydrogels
3.6. Spatial Confinement of Alginate–Methylcellulose–ECM Hydrogels
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andersen, T.; Auk-Emblem, P.; Dornish, M. 3D Cell Culture in Alginate Hydrogels. Microarrays 2015, 4, 133–161. [Google Scholar] [CrossRef] [PubMed]
- Cummins, K.A.; Bitterman, P.B.; Tschumperlin, D.J.; Wood, D.K. A Scalable 3D Tissue Culture Pipeline to Enable Functional Therapeutic Screening for Pulmonary Fibrosis. APL Bioeng 2021, 5, 046102. [Google Scholar] [CrossRef] [PubMed]
- Cofiño, C.; Perez-Amodio, S.; Semino, C.E.; Engel, E.; Mateos-Timoneda, M.A. Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting. Macromol. Mater. Eng. 2019, 304, 1900353. [Google Scholar] [CrossRef]
- Malektaj, H.; Drozdov, A.D.; de Claville Christiansen, J. Mechanical Properties of Alginate Hydrogels Cross-Linked with Multivalent Cations. Polymers 2023, 15, 3012. [Google Scholar] [CrossRef]
- Draget, K.; Taylor, C. Chemical, Physical and Biological Properties of Alginates and Their Biomedical Implications. Food Hydrocoll. 2009, 25, 251–256. [Google Scholar] [CrossRef]
- Cao, L.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Egg-Box Model-Based Gelation of Alginate and Pectin: A Review. Carbohydr. Polym. 2020, 242, 116389. [Google Scholar] [CrossRef]
- Sikorski, P.; Mo, F.; Skjåk-Bræk, G.; Stokke, B.T. Evidence for Egg-Box-Compatible Interactions in Calcium–Alginate Gels from Fiber X-Ray Diffraction. Biomacromolecules 2007, 8, 2098–2103. [Google Scholar] [CrossRef]
- Siboro, S.A.P.; Anugrah, D.S.B.; Ramesh, K.; Park, S.-H.; Kim, H.-R.; Lim, K.T. Tunable Porosity of Covalently Crosslinked Alginate-Based Hydrogels and Its Significance in Drug Release Behavior. Carbohydr. Polym. 2021, 260, 117779. [Google Scholar] [CrossRef]
- Jang, J.; Seol, Y.-J.; Ji Kim, H.; Kundu, J.; Kim, S.W.; Cho, D.-W. Effects of Alginate Hydrogel Cross-Linking Density on Mechanical and Biological Behaviors for Tissue Engineering. J. Mech. Behav. Biomed. Mater. 2014, 37, 69–77. [Google Scholar] [CrossRef]
- dos Santos, K.S.; Oliveira, L.T.; de Lima Fontes, M.; Migliato, K.F.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S.; Moroz, A. Alginate-Based 3D A549 Cell Culture Model to Study Paracoccidioides Infection. J. Fungi 2023, 9, 634. [Google Scholar] [CrossRef]
- Alallam, B.; Oo, M.K.; Ibrahim, W.N.; Doolaanea, A.A. 3D Culture of Cancer Cells in Alginate Hydrogel Beads as an Effective Technique for Emergency Cell Storage and Transportation in the Pandemic Era. J. Cell. Mol. Med. 2021, 26, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Placht, A.-M.; Paul, B.; Brüggemeier, S.; Gelinsky, M.; Lode, A. Three-Dimensional Plotting of a Cell-Laden Alginate/Methylcellulose Blend: Towards Biofabrication of Tissue Engineering Constructs with Clinically Relevant Dimensions: 3D Plotting of a Cell-Laden Alginate/Methylcellulose Blend. Tissue Eng. Regen. Med. 2015, 11, 1574–1587. [Google Scholar] [CrossRef]
- Ahlfeld, T.; Cubo-Mateo, N.; Cometta, S.; Guduric, V.; Vater, C.; Bernhardt, A.; Akkineni, A.R.; Lode, A.; Gelinsky, M. A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs. ACS Appl. Mater. Interfaces 2020, 12, 12557–12572. [Google Scholar] [CrossRef]
- Li, H.; Tan, Y.J.; Leong, K.F.; Li, L. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS Appl. Mater. Interfaces 2017, 9, 20086–20097. [Google Scholar] [CrossRef] [PubMed]
- Duin, S.; Schütz, K.; Ahlfeld, T.; Lehmann, S.; Lode, A.; Ludwig, B.; Gelinsky, M. 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Adv. Healthc. Mater. 2019, 8, e1801631. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Chen, X.B.; Schreyer, D.J. Influence of Calcium Ions on Cell Survival and Proliferation in the Context of an Alginate Hydrogel. Int. Sch. Res. Not. 2012, 2012, 516461. [Google Scholar] [CrossRef]
- Waymouth, C. Osmolality of Mammalian Blood and of Media for Culture of Mammalian Cells. In Vitro 1970, 6, 109–127. [Google Scholar] [CrossRef]
- Freshney, R.I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications; Wiley: Hoboken, NJ, USA, 2010; ISBN 978-0-470-64936-7. [Google Scholar]
- Specification Sheet M2279 2024. Available online: https://www.sigmaaldrich.com/US/en/specification-sheet/SIGMA/M2279 (accessed on 27 November 2024).
- Carafoli, E. Calcium Signaling: A Tale for All Seasons. Proc. Natl. Acad. Sci. USA 2002, 99, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Pratt, S.J.; Hernandez-Ochoa, E.; Martin, S.S. Calcium Signaling: Breast Cancer’s Approach to Manipulation of Cellular Circuitry. Biophys. Rev. 2020, 12, 1343–1359. [Google Scholar] [CrossRef] [PubMed]
- Ahlfeld, T.; Guduric, V.; Duin, S.; Akkineni, A.R.; Schütz, K.; Kilian, D.; Emmermacher, J.; Cubo-Mateo, N.; Dani, S.; Witzleben, M.v.; et al. Methylcellulose—A Versatile Printing Material That Enables Biofabrication of Tissue Equivalents with High Shape Fidelity. Biomater. Sci. 2020, 8, 2102–2110. [Google Scholar] [CrossRef]
- 16HBE14o- Human Bronchial Epithelial Cell Line 2018. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/383/493/20320773.pdf (accessed on 27 November 2024).
- Gruenert, D.C.; Finkbeiner, W.E.; Widdicombe, J.H.; Shah, K.; McCormack, C.E.; Bradbury, N.A.; Ramachandran, S.; Krishnamurthy, S.; Jacobi, A.M.; Wohlford-Lenane, C.; et al. Culture and Transformation of Human Airway Epithelial Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 1995, 268, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, D.; Sáenz-Robles, T.; Pipas, J.M. SV40 Large T Antigen Targets Multiple Cellular Pathways to Elicit Cellular Transformation. Oncogene 2005, 24, 7729–7745. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, D.; Bodinier, B.; Dagnino, S.; Whitaker, M.; Karimi, M.; Campanella, G.; Haugdahl Nøst, T.; Polidoro, S.; Palli, D.; Krogh, V.; et al. Epigenetic Mechanisms of Lung Carcinogenesis Involve Differentially Methylated CpG Sites beyond Those Associated with Smoking. Eur. J. Epidemiol. 2022, 37, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.; Todaro, G.; Smith, B.; Szakal, A.; Nelson-Rees, W. A Continuous Tumor-cell Line from a Human Lung Carcinoma with Properties of Type II Alveolar Epithelial Cells. Int. J. Cancer 1976, 17, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Hodder, E.; Duin, S.; Kilian, D.; Ahlfeld, T.; Seidel, J.; Nachtigall, C.; Bush, P.; Covill, D.; Gelinsky, M.; Lode, A. Investigating the Effect of Sterilisation Methods on the Physical Properties and Cytocompatibility of Methyl Cellulose Used in Combination with Alginate for 3D-Bioplotting of Chondrocytes. J. Mater. Sci. Mater. Med. 2019, 30, 10. [Google Scholar] [CrossRef]
- Dong, H.; Hu, F.; Ma, X.; Yang, J.; Pan, L.; Xu, J. Collective Cell Radial Ordered Migration in Spatial Confinement. Adv. Sci. 2024, 11, 2307487. [Google Scholar] [CrossRef]
- Distler, T.; Schaller, E.; Steinmann, P.; Boccaccini, A.R.; Budday, S. Alginate-Based Hydrogels Show the Same Complex Mechanical Behavior as Brain Tissue. J. Mech. Behav. Biomed. Mater. 2020, 111, 103979. [Google Scholar] [CrossRef] [PubMed]
- Tam, R.Y.; Yockell-Lelièvre, J.; Smith, L.J.; Julian, L.M.; Baker, A.E.G.; Choey, C.; Hasim, M.S.; Dimitroulakos, J.; Stanford, W.L.; Shoichet, M.S. Rationally Designed 3D Hydrogels Model Invasive Lung Diseases Enabling High-Content Drug Screening. Adv. Mater. 2018, 31, e1806214. [Google Scholar] [CrossRef] [PubMed]
- Caliari, S.R.; Vega, S.L.; Kwon, M.; Soulas, E.M.; Burdick, J.A. Dimensionality and Spreading Influence MSC YAP/TAZ Signaling in Hydrogel Environments. Biomaterials 2016, 103, 314–323. [Google Scholar] [CrossRef]
- Hettiaratchi, M.H.; Schudel, A.; Rouse, T.; García, A.J.; Thomas, S.N.; Guldberg, R.E.; McDevitt, T.C. A Rapid Method for Determining Protein Diffusion through Hydrogels for Regenerative Medicine Applications. APL Bioeng. 2018, 2, 026110. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, F.A.A.; King, J.; Swapnasrita, S.; Giselbrecht, S.; Truckenmüller, R.; LaPointe, V.L.S.; Baker, M.B.; Carlier, A. Optimization of Media Change Intervals through Hydrogels Using Mathematical Models. Biomacromolecules 2023, 24, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Ayarza, J.; Coello, Y.; Nakamatsu, J. SEM–EDS Study of Ionically Cross-Linked Alginate and Alginic Acid Bead Formation. Int. J. Polym. Anal. Charact. 2016, 22, 1–10. [Google Scholar] [CrossRef]
- Tamo, A.K.; Tran, T.A.; Doench, I.; Jahangir, S.; Lall, A.; David, L.; Peniche-Covas, C.; Walther, A.; Osorio-Madrazo, A. 3D Printing of Cellulase-Laden Cellulose Nanofiber/Chitosan Hydrogel Composites: Towards Tissue Engineering Functional Biomaterials with Enzyme-Mediated Biodegradation. Materials 2022, 15, 6039. [Google Scholar] [CrossRef]
Hydrogel | Crosslinking Solution, Duration | Result | Reference |
---|---|---|---|
Alginate (1.5% w/v) | 102 mM CaCl2; N/A | 75% viability of A549 alveolar adenocarcinoma. | [10] |
Alginate (1% w/v) | 1% (w/v) CaCl2; N/A | More than 80% viability of A549, U2OS, and HepG2. | [11] |
Alginate (2% w/v) | 100 mM, 500 mM, 1 M CaCl2; 5, 10, 30 min. | As calcium chloride concentration or duration of crosslinking increases, viability and proliferation of Schwann cells decreases. | [16] |
Alginate–methylcellulose (3:9% w/v) | 100 mM CaCl2; 10 min. | 65% viability of human mesenchymal stem cells. | [12] |
Alginate–methylcellulose (3:9% w/v) | 100 mM CaCl2; 10 min. | 77.6% viability of human mesenchymal stem cells. | [13] |
Alginate–methylcellulose (3:1, 3:3, 3:9% w/v) | 3 mg mL−1 CaCl2; N/A | More than 95% viability of L929 mouse fibroblasts. | [14] |
Alginate–methylcellulose (3:9% w/v) | 70 mM SrCl2; 10 min. | 60–80% viability in mouse pancreatic islets. | [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, N.; Doria, E.I.; Rahman, T.T.; Li, W.; Pei, Z.; Qin, H. Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels. Biomimetics 2025, 10, 40. https://doi.org/10.3390/biomimetics10010040
Wood N, Doria EI, Rahman TT, Li W, Pei Z, Qin H. Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels. Biomimetics. 2025; 10(1):40. https://doi.org/10.3390/biomimetics10010040
Chicago/Turabian StyleWood, Nathan, Esther I. Doria, Taieba Tuba Rahman, Wanhe Li, Zhijian Pei, and Hongmin Qin. 2025. "Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels" Biomimetics 10, no. 1: 40. https://doi.org/10.3390/biomimetics10010040
APA StyleWood, N., Doria, E. I., Rahman, T. T., Li, W., Pei, Z., & Qin, H. (2025). Effects of Calcium Chloride Crosslinking Solution Concentration on the Long-Term Cell Viability of 16HBE14o- Human Bronchial Cells Embedded in Alginate-Based Hydrogels. Biomimetics, 10(1), 40. https://doi.org/10.3390/biomimetics10010040