Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Actuation Kinematics
2.2. Proposed CDE DMD Algorithm
3. Results
3.1. The Eel Robot
3.2. CDE DMD Analysis Results
3.3. CDE DMD’s Noise Handling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wang, Y.; Chen, H.; Law, J.; Du, X.; Yu, J. Ultrafast miniature robotic swimmers with upstream motility. Cyborg. Bionic. Syst. 2023, 4, 0015. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Li, B.; Bai, R.; Xie, K.; Chen, G. A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots. Research 2023, 6, 0116. [Google Scholar] [CrossRef]
- Wu, M.; Afridi, W.H.; Wu, J.; Afridi, R.H.; Wang, K.; Zheng, X.; Wang, C.; Xie, G. Octopus-inspired underwater soft robotic gripper with crawling and swimming capabilities. Research 2024, 7, 0456. [Google Scholar] [CrossRef] [PubMed]
- van Ginneken, V.; Antonissen, E.; Müller, U.K.; Booms, R.; Eding, E.; Verreth, J.; van den Thillart, G. Eel migration to the Sargasso: Remarkably high swimming efficiency and low energy costs. J. Exp. Biol. 2005, 208, 1329–1335. [Google Scholar] [CrossRef]
- Vorus, W.S.; Taravella, B.M. Anguilliform fish propulsion of highest hydrodynamic efficiency. J. Mar. Sci. Appl. 2011, 10, 163–174. [Google Scholar] [CrossRef]
- Sayahkarajy, M.; Witte, H.; Faudzi, A.A.M. Chorda Dorsalis System as a Paragon for Soft Medical Robots to Design Echocardiography Probes with a New SOM-Based Steering Control. Biomimetics 2024, 9, 199. [Google Scholar] [CrossRef]
- Sayahkarajy, M.; Witte, H. Analysis of Robot–Environment Interaction Modes in Anguilliform Locomotion of a New Soft Eel Robot. Actuators 2024, 13, 406. [Google Scholar] [CrossRef]
- Tytell, E.D.; Hsu, C.-Y.; Williams, T.L.; Cohen, A.H.; Fauci, L.J. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming. Proc. Natl. Acad. Sci. USA 2010, 107, 19832–19837. [Google Scholar] [CrossRef]
- McMillen, T.; Holmes, P. An elastic rod model for anguilliform swimming. J. Math. Biol. 2006, 53, 843–886. [Google Scholar] [CrossRef]
- Feeny, B. A complex orthogonal decomposition for wave motion analysis. J. Sound Vib. 2008, 310, 77–90. [Google Scholar] [CrossRef]
- Gemmell, B.J.; Fogerson, S.M.; Costello, J.H.; Morgan, J.R.; Dabiri, J.O.; Colin, S.P. How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust. J. Exp. Biol. 2016, 219, 3884–3895. [Google Scholar] [CrossRef] [PubMed]
- Fies, J.; Gemmell, B.J.; Fogerson, S.M.; Morgan, J.R.; Tytell, E.D.; Colin, S.P. Swimming kinematics and performance of spinal transected lampreys with different levels of axon regeneration. J. Exp. Biol. 2021, 224, jeb242639. [Google Scholar] [CrossRef]
- Crespi, A.; Badertscher, A.; Guignard, A.; Ijspeert, A.J. AmphiBot I: An amphibious snake-like robot. Robot. Auton. Syst. 2005, 50, 163–175. [Google Scholar] [CrossRef]
- Crespi, A.; Ijspeert, A.J. AmphiBot II: An amphibious snake robot that crawls and swims using a central pattern generator. In Proceedings of the 9th international conference on climbing and walking robots (CLAWAR 2006), Brussels, Belgium, 12–14 September 2006; pp. 19–27. [Google Scholar]
- Liu, Y.; Liu, Z.; Fang, Y.; Liu, H.; Guo, X. A Novel Design Methodology of CPG Model for a Salamander-like Robot. IEEE Robot. Autom. Lett. 2024, 9, 6115–6122. [Google Scholar] [CrossRef]
- Milana, E.; Van Raemdonck, B.; Cornelis, K.; Dehaerne, E.; De Clerck, J.; De Groof, Y.; De Vil, T.; Gorissen, B.; Reynaerts, D. EELWORM: A bioinspired multimodal amphibious soft robot. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 766–771. [Google Scholar]
- Nguyen, D.Q. Kinematic evaluation of a series of soft actuators in designing an eel-inspired robot. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 1288–1293. [Google Scholar]
- Chen, Y.; Wang, T.; Wu, C.; Wang, X. Design, control, and experiments of a fluidic soft robotic eel. Smart Mater. Struct. 2021, 30, 065001. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Ho, V.A. Anguilliform swimming performance of an eel-inspired soft robot. Soft Robot. 2022, 9, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.Q. Evaluation on swimming efficiency of an eel-inspired soft robot with partially damaged body. In Proceedings of the 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 12–16 April 2021; pp. 289–294. [Google Scholar]
- Dang, R.; Gong, H.; Wang, Y.; Huang, T.; Shi, Z.; Zhang, X.; Wu, Y.; Sun, Y.; Qi, P. Bionic body wave control for an eel-like robot based on segmented soft actuator array. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 4261–4266. [Google Scholar]
- Cervera-Torralba, J.; Kang, Y.; Khan, E.M.; Adibnazari, I.; Tolley, M.T. Lost-Core Injection Molding of Fluidic Elastomer Actuators for the Fabrication of a Modular Eel-Inspired Soft Robot. In Proceedings of the 2024 IEEE 7th International Conference on Soft Robotics (RoboSoft), San Diego, CA, USA, 14–17 April 2024; pp. 971–976. [Google Scholar]
- Trinh, H.X.; Nguyen, B.N.; Nguyen, A.T.; Kien, H.T.; Nguyen, Q.D. Dynamics Modeling and Validation of a Bio-Inspired Soft Eel Robots for Underwater Motion. In Proceedings of the 2024 IEEE/SICE International Symposium on System Integration (SII), Ha Long, Vietnam, 8–11 January 2024; pp. 233–238. [Google Scholar]
- Wang, Q.; Hong, Z.; Zhong, Y. Learn to swim: Online motion control of an underactuated robotic eel based on deep reinforcement learning. Biomim. Intell. Robot. 2022, 2, 100066. [Google Scholar] [CrossRef]
- Hall, R.; Espinosa, G.; Chiang, S.-S.; Onal, C.D. Design and Testing of a Multi-Module, Tetherless, Soft Robotic Eel. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 8821–8827. [Google Scholar]
- Schmid, P.J. Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [Google Scholar] [CrossRef]
- Meng, T.; Wang, Y.; Qin, S.; Liu, P.; Wang, Y.; Tao, C.; Liu, Z. Complex flow field analysis in Multi-Shaft stirred Reactors: Dynamics of Wave-Vortex coupling revealed by POD and DMD methods. Chem. Eng. Sci. 2025, 301, 120753. [Google Scholar] [CrossRef]
- Long, Y.; Guo, X.a.; Xiao, T. Research, Application and Future Prospect of Mode Decomposition in Fluid Mechanics. Symmetry 2024, 16, 155. [Google Scholar] [CrossRef]
- Rahmani, M.; Redkar, S. Optimal DMD Koopman Data-Driven Control of a Worm Robot. Biomimetics 2024, 9, 666. [Google Scholar] [CrossRef]
- Du Clos, K.T.; Dabiri, J.O.; Costello, J.H.; Colin, S.P.; Morgan, J.R.; Fogerson, S.M.; Gemmell, B.J. Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers. J. Exp. Biol. 2019, 222, jeb212464. [Google Scholar] [CrossRef]
- Sayahkarajy, M.; Witte, H. Temporal Evolution of the Hydrodynamics of a Swimming Eel Robot Using Sparse Identification: SINDy-DMD. J 2025, 8, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayahkarajy, M.; Witte, H. Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique. Biomimetics 2025, 10, 60. https://doi.org/10.3390/biomimetics10010060
Sayahkarajy M, Witte H. Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique. Biomimetics. 2025; 10(1):60. https://doi.org/10.3390/biomimetics10010060
Chicago/Turabian StyleSayahkarajy, Mostafa, and Hartmut Witte. 2025. "Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique" Biomimetics 10, no. 1: 60. https://doi.org/10.3390/biomimetics10010060
APA StyleSayahkarajy, M., & Witte, H. (2025). Empirical Data-Driven Linear Model of a Swimming Robot Using the Complex Delay-Embedding DMD Technique. Biomimetics, 10(1), 60. https://doi.org/10.3390/biomimetics10010060