Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments
Abstract
:1. Introduction
2. Related Works
2.1. Trajectory Planning for Energy-Saving Data Collection
2.2. Trajectory Planning for Fast Data Collection
3. System Model and Problem Description
4. Problem Analysis and Approach
4.1. Hyperion Algorithm
Algorithm 1: Hyperion |
Algorithm 2: ENavi |
4.2. Complexity Analysis
5. Experiments
5.1. Preliminary
5.2. Introduction to Baselines
5.3. Comparisons and Analysis
5.3.1. Trajectory
5.3.2. Battery
5.3.3. Completion Rate
5.3.4. Time Cost
6. Learning-Based Planning Model
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Tomar, A.; Hazra, A. Edge computing for industry 5.0: Fundamental, applications and research challenges. IEEE Internet Things J. 2024, 11, 19070–19093. [Google Scholar] [CrossRef]
- Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge computing in industrial internet of things: Architecture, advances and challenges. IEEE Commun. Surv. Tutorials 2020, 22, 2462–2488. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge computing for autonomous driving: Opportunities and challenges. Proc. IEEE 2019, 107, 1697–1716. [Google Scholar] [CrossRef]
- Kerle, N.; Heuel, S.; Pfeifer, N. Real-time data collection and information generation using airborne sensors. In Geospatial Information Technology for Emergency Response; CRC Press: Boca Raton, FL, USA, 2008; pp. 59–90. [Google Scholar]
- Raza, S.; Wang, S.; Ahmed, M.; Anwar, M.R. A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions. Wirel. Commun. Mob. Comput. 2019, 2019, 3159762. [Google Scholar] [CrossRef]
- Merone, M.; Graziosi, A.; Lapadula, V.; Petrosino, L.; d’Angelis, O.; Vollero, L. A practical approach to the analysis and optimization of neural networks on embedded systems. Sensors 2022, 22, 7807. [Google Scholar] [CrossRef] [PubMed]
- Graziosi, A.; Iannello, G.; Lapadula, V.; Merone, M.; Sabatini, M.; Vollero, L. Edge computing optimization method. Analyzed task: Crowd counting. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), Virtual, 7–9 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 397–401. [Google Scholar]
- Hua, H.; Li, Y.; Wang, T.; Dong, N.; Li, W.; Cao, J. Edge computing with artificial intelligence: A machine learning perspective. ACM Comput. Surv. 2023, 55, 1–35. [Google Scholar] [CrossRef]
- Xiang, Z.; Xue, X.; Zheng, Z.; Gao, H.; Chen, Y.; Dustdar, S. Enabling Sustainable and Unmanned Facial Detection and Recognition Services with Adaptive Edge Resource. IEEE Trans. Consum. Electron. 2024. Early Access. [Google Scholar] [CrossRef]
- Huang, C.; Fang, S.; Wu, H.; Wang, Y.; Yang, Y. Low-altitude intelligent transportation: System architecture, infrastructure, and key technologies. J. Ind. Inf. Integr. 2024, 42, 100694. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Idries, A.; Mohammed, F. Unmanned aerial vehicles applications in future smart cities. Technol. Forecast. Soc. Change 2020, 153, 119293. [Google Scholar] [CrossRef]
- Samir, M.; Sharafeddine, S.; Assi, C.M.; Nguyen, T.M.; Ghrayeb, A. UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Trans. Wirel. Commun. 2019, 19, 34–46. [Google Scholar] [CrossRef]
- Pérez-Carabaza, S.; Scherer, J.; Rinner, B.; López-Orozco, J.A.; Besada-Portas, E. UAV trajectory optimization for Minimum Time Search with communication constraints and collision avoidance. Eng. Appl. Artif. Intell. 2019, 85, 357–371. [Google Scholar] [CrossRef]
- Ponda, S.; Kolacinski, R.; Frazzoli, E. Trajectory optimization for target localization using small unmanned aerial vehicles. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009; p. 6015. [Google Scholar]
- Jungnickel, D.; Jungnickel, D. The greedy algorithm. In Graphs, Networks and Algorithms; Springer: Berlin/Heidelberg, Germany, 1999; pp. 129–153. [Google Scholar]
- Li, S.; Wu, F.; Luo, S.; Fan, Z.; Chen, J.; Fu, S. Dynamic online trajectory planning for a UAV-enabled data collection system. IEEE Trans. Veh. Technol. 2022, 71, 13332–13343. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, X.; Han, S. Energy-efficient UAV trajectory planning for data collection and computation in mMTC networks. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Zhu, B.; Bedeer, E.; Nguyen, H.H.; Barton, R.; Henry, J. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning. IEEE Trans. Veh. Technol. 2021, 70, 9540–9554. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Bai, B.; Dai, H. Age-optimal trajectory planning for UAV-assisted data collection. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 553–558. [Google Scholar]
- Fan, J.; Chen, X.; Liang, X. UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased. Expert Syst. Appl. 2023, 213, 119137. [Google Scholar] [CrossRef]
- Zhu, B.; Bedeer, E.; Nguyen, H.H.; Barton, R.; Gao, Z. UAV trajectory planning for AoI-minimal data collection in UAV-aided IoT networks by transformer. IEEE Trans. Wirel. Commun. 2022, 22, 1343–1358. [Google Scholar] [CrossRef]
- Javed, S.; Hassan, A.; Ahmad, R.; Ahmed, W.; Alam, M.M.; Rodrigues, J.J. UAV trajectory planning for disaster scenarios. Veh. Commun. 2023, 39, 100568. [Google Scholar] [CrossRef]
- Demiane, F.; Sharafeddine, S.; Farhat, O. An optimized UAV trajectory planning for localization in disaster scenarios. Comput. Netw. 2020, 179, 107378. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef]
- Chai, R.; Tsourdos, A.; Savvaris, A.; Wang, S.; Xia, Y.; Chai, S. Fast generation of chance-constrained flight trajectory for unmanned vehicles. IEEE Trans. Aerosp. Electron. Syst. 2020, 57, 1028–1045. [Google Scholar] [CrossRef]
- Lee, G.; Kim, K.; Jang, J. Real-time path planning of controllable UAV by subgoals using goal-conditioned reinforcement learning. Appl. Soft Comput. 2023, 146, 110660. [Google Scholar] [CrossRef]
- Cha, H.; Lee, C.; Xie, C.; Lu, Q.C.; Eun, J.; Cheong, T. An Exact A*-Based Tree Search Algorithm for TSP with Sequence-and-Load Dependent Risk. IEEE Trans. Intell. Transp. Syst. 2024, 25, 10817–10834. [Google Scholar] [CrossRef]
- Jasim, A.N.; Fourati, L.C. Guided genetic algorithm for solving capacitated vehicle routing problem with unmanned-aerial-vehicles. IEEE Access 2024, 12, 106333–106358. [Google Scholar] [CrossRef]
- Hu, H.; Xiong, K.; Qu, G.; Ni, Q.; Fan, P.; Letaief, K.B. AoI-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks. IEEE Internet Things J. 2020, 8, 1211–1223. [Google Scholar] [CrossRef]
- Maag, V.; Berger, M.; Winterfeld, A.; Küfer, K.H. A novel non-linear approach to minimal area rectangular packing. Ann. Oper. Res. 2010, 179, 243–260. [Google Scholar] [CrossRef]
- Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S.J.; Dragan, A. Inverse Reward Design. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30. [Google Scholar]
- Cappart, Q.; Moisan, T.; Rousseau, L.M.; Prémont-Schwarz, I.; Cire, A.A. Combining reinforcement learning and constraint programming for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 3677–3687. [Google Scholar]
- Prestwich, S.; Rossi, R.; Tarim, A. Stochastic constraint programming as reinforcement learning. arXiv 2017, arXiv:1704.07183. [Google Scholar]
- Tassel, P.; Gebser, M.; Schekotihin, K. An end-to-end reinforcement learning approach for job-shop scheduling problems based on constraint programming. In Proceedings of the International Conference on Automated Planning and Scheduling, Prague, Czech Republic, 8–13 July 2023; Volume 33, pp. 614–622. [Google Scholar]
- Iqball, T.; Wani, M.A. Weighted ensemble model for image classification. Int. J. Inf. Technol. 2023, 15, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiong, Y.; She, J. UAV path planning for target coverage task in dynamic environment. IEEE Internet Things J. 2023, 10, 17734–17745. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, H.; Zhang, X.; Chang, Z.; Jäntti, R.; Yang, K. Towards autonomous multi-UAV wireless network: A survey of reinforcement learning-based approaches. IEEE Commun. Surv. Tutorials 2023, 25, 3038–3067. [Google Scholar] [CrossRef]
Item | Value | Item | Value |
---|---|---|---|
B | 1000.0 | N | 8 |
scope_min | 0.1 | scope_max | 0.5 |
cluster_min | 0.1 | cluster_max | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Z.; Ying, F.; Xue, X.; Peng, X.; Zhang, Y. Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments. Biomimetics 2025, 10, 109. https://doi.org/10.3390/biomimetics10020109
Xiang Z, Ying F, Xue X, Peng X, Zhang Y. Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments. Biomimetics. 2025; 10(2):109. https://doi.org/10.3390/biomimetics10020109
Chicago/Turabian StyleXiang, Zhengzhe, Fuli Ying, Xizi Xue, Xiaorui Peng, and Yufei Zhang. 2025. "Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments" Biomimetics 10, no. 2: 109. https://doi.org/10.3390/biomimetics10020109
APA StyleXiang, Z., Ying, F., Xue, X., Peng, X., & Zhang, Y. (2025). Unmanned-Aerial-Vehicle Trajectory Planning for Reliable Edge Data Collection in Complex Environments. Biomimetics, 10(2), 109. https://doi.org/10.3390/biomimetics10020109