Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review
2.1.1. Information Sources
2.1.2. Search Strategy
2.1.3. Eligibility Criteria
2.1.4. Selection Process
2.1.5. Data Extraction
2.1.6. Data Items
2.1.7. Statistical Analysis
2.1.8. NIH Quality Assessment
2.2. Literature Review
2.2.1. Search Strategy
2.2.2. Study Selection
2.2.3. Data Extraction/Synthesis
3. Results
3.1. Systematic Review
3.1.1. Study Selection
3.1.2. Study Characteristics
3.1.3. Suture Anchor Properties: Types of Anchors Used
3.1.4. Strength
3.1.5. Degradation
3.1.6. Biocompatibility
3.2. Literature Review
3.2.1. First-Generation Suture Anchors
3.2.2. Biomechanics of Suture Anchors
3.2.3. Biodegradable and Biocomposite Materials
3.2.4. Evolution of SA Appearance
3.2.5. Suture Anchors in Specific Surgical Applications
3.2.6. Innovations and Future Directions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ravin, A.G.; Gonyon, D.L.; Levin, L.S. Use of suture anchors in the reconstruction of soft tissue defects with pedicled muscle flaps. Ann. Plast. Surg. 2005, 55, 389–392. [Google Scholar] [CrossRef]
- Visscher, L.E.; Jeffery, C.; Gilmour, T.; Anderson, L.; Couzens, G. The history of suture anchors in orthopaedic surgery. Clin. Biomech. 2019, 61, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Bae, K.-C.; Kim, D.-H. Biomaterials used for suture anchors in orthopedic surgery. Clin. Orthop. Surg. 2021, 13, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Itthipanichpong, T.; Tangboonnitiwong, N.; Limskul, D.; Tanpowpong, T.; Kuptniratsaikul, S.; Thamrongskulsiri, N. Arthroscopic Anterior Cruciate Ligament Primary Repair with Synthetic Augmentation and Fixation With the Knotless Suture Anchor. Arthrosc. Technol. 2023, 12, e1009–e1013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Speer, K.P.; Warren, R.F.; Pagnani, M.; Warner, J.J.P. An arthroscopic technique for anterior stabilization of the shoulder with a bioabsorbable tack*. J. Bone Jt. Surg. 1996, 78, 1801–1807. [Google Scholar] [CrossRef]
- Ana, P. “Polyetherketones.” Polyetherketones—An Overview|ScienceDirect Topics. 2012. Available online: www.sciencedirect.com/topics/materials-science/polyetherketones (accessed on 1 October 2024).
- Yang, Y.; Shih, C.; Fang, C.; Huang, T.; Hsu, K.; Kuan, F.; Su, W.; Hong, C. Biomechanical comparison of different suture anchors used in rotator cuff repair surgery–all-suture anchors are equivalent to other suture anchors: A systematic review and network meta-analysis. J. Exp. Orthop. 2023, 10, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hesaraki, S.; Saba, G.; Shahrezaee, M.; Nezafati, N.; Orshesh, Z.; Roshanfar, F.; Borhan, S.; Glasmacher, B.; Makvandi, P.; Xu, Y. Reinforcing β-tricalcium phosphate scaffolds for potential applications in bone tissue engineering: Impact of functionalized multi-walled carbon nanotubes. Sci. Rep. 2024, 14, 19055. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Hasturk, O.; Falcucci, T.; Kaplan, D.L. Silk chemistry and biomedical material designs. Nat. Rev. Chem. 2023, 7, 302–318. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Schonebaum, D.I.; Escobar-Domingo, M.J.; Lin, S.J. Comparing Different Biomaterials Used in Suture Anchors. PROSPERO 2024; CRD42024578743. ProSPERO: International Prospective Register of Systematic Reviews. ProSPERO. Available online: https://www.crd.york.ac.uk/prospero/ (accessed on 1 December 2024).
- Covidence: A Systematic Review Software. Covidence. Available online: https://www.covidence.com/ (accessed on 1 December 2024).
- National Heart Lung and Blood Institute; U.S. Department of Health and Human Services. Study Quality Assessment Tools; July 2021. Available online: www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 1 October 2024).
- Carpenter, J.E.; Fish, D.N.; Huston, L.J.; Goldstein, S.A. Pull-out strength of five suture anchors. Arthroscopy 1993, 9, 109–113. [Google Scholar] [CrossRef]
- Warme, W.J.; Arciero, R.A.; Savoie, F.H.; Uhorchak, J.M.; Walton, M. Nonabsorbable versus absorbable suture anchors for open Bankart repair. A prospective, randomized comparison. Am. J. Sports Med. 1999, 27, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, M.F.; Froehlich, V.; Ficklscherer, A.; Wegener, B.; Jansson, V.; Müller, P.E. Biomechanical testing of a new knotless suture anchor compared with established anchors for rotator cuff repair. J. Shoulder Elb. Surg. 2008, 17, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Sgroi, M.; Friesz, T.; Schocke, M.; Reichel, H.; Kappe, T. Biocomposite Suture Anchors Remain Visible Two Years After Rotator Cuff Repair. Clin. Orthop. Relat. Res. 2019, 477, 1469–1478. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.-H.; Lee, Y.-B. Clinical and Radiologic Outcomes of Combined Use of Biocomposite and PEEK Suture Anchors during Arthroscopic Rotator Cuff Repair: A Prospective Observational Study. J. Clin. Med. 2020, 9, 2545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haneveld, H.; Hug, K.; Diederichs, G.; Scheibel, M.; Gerhardt, C. Arthroscopic double-row repair of the rotator cuff: A comparison of bio-absorbable and non-resorbable anchors regarding osseous reaction. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, P.; Lassandro, N.; Beltrame, A.; Mancuso, F.; Giardini, P.; Causero, A. Reliability of open architecture anchors in biocomposite material: Medium term clinical and MRI evaluation. Our experience. Acta Biomed. 2020, 91, 189–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, S.W.; Lee, Y.-S.; Kim, J.-Y.; Lee, J.-H.; Ki, S.-Y.; Oh, K.-S.; Yoon, J.P.; Kim, J.Y. Changes in Perianchor Cyst Formation Over Time After Rotator Cuff Repair: Influential Factors and Outcomes. Am. J. Sports Med. 2018, 47, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Pietschmann, M.F.; Fröhlich, V.; Ficklscherer, A.; Gülecyüz, M.F.; Wegener, B.; Jansson, V.; Müller, P.E. Suture anchor fixation strength in osteopenic versus non-osteopenic bone for rotator cuff repair. Arch. Orthop. Trauma. Surg. 2009, 129, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, Y.; Liu, C.; Su, X.; Liao, W.; Li, Z. Arthroscopic Fixation of Tibial Eminence Fractures: A Biomechanical Comparative Study of Screw, Suture, and Suture Anchor. Arthroscopy 2018, 34, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sharma, A.; Akoh, C.C.; Kadakia, R.; Parekh, S.G. Clinical Safety and Efficacy of a Novel Ultrasound-Assisted Bioabsorbable Suture Anchor in Foot and Ankle Surgeries. Foot Ankle Int. 2020, 41, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Milewski, M.D.; Diduch, D.R.; Hart, J.M.; Tompkins, M.; Ma, S.-Y.; Gaskin, C.M. Bone replacement of fast-absorbing biocomposite anchors in arthroscopic shoulder labral repairs. Am. J. Sports Med. 2012, 40, 1392–1401. [Google Scholar] [CrossRef] [PubMed]
- Vonhoegen, J.; John, D.; Hägermann, C. Osteoconductive resorption characteristics of a novel biocomposite suture anchor material in rotator cuff repair. J. Orthop. Surg. Res. 2019, 14, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ejerhed, L.; Kartus, J.; Funck, E.; Köhler, K.; Sernert, N.; Karlsson, J. Absorbable implants for open shoulder stabilization: A clinical and serial radiographic evaluation. J. Shoulder Elbow. Surg. 2000, 9, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, L.; Ejerhed, L.; Rostgård, L.; Sernert, N.; Kartus, J. Absorbable implants for open shoulder stabilization. A 7–8-year clinical and radiographic follow-up. Knee Surg Sports Traumatol Arthrosc. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kartus, J.; Ejerhed, L.; Funck, E.; Köhler, K.; Sernert, N.; Karlsson, J. Arthroscopic and open shoulder stabilization using absorbable implants. A clinical and radiographic comparison of two methods. Knee Surg. Sports Traumatol. Arthrosc. 1998, 6, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yang, S.H.; Rhee, S.-M.; Lee, K.J.; Kim, H.S.; Oh, J.H. The formation of perianchor fluid associated with various suture anchors used in rotator cuff repair: All-suture, polyetheretherketone, and biocomposite anchors. Bone Jt. J. 2019, 101-B, 1506–1511. [Google Scholar] [CrossRef] [PubMed]
- Goble, E.M.; Somers, W.K.; Clark, R.; Olsen, R.E. The Development of Suture Anchors for Use in Soft Tissue Fixation to Bone. Am. J. Sports Med. 1994, 22, 236–239. [Google Scholar] [CrossRef]
- Richmond, J.C.; Donaldson, W.R.; Fu, F.; Harner, C.D. Modification of the Bankart reconstruction with a suture anchor. Am. J. Sports Med. 1991, 19, 343–346. [Google Scholar] [CrossRef]
- Barber, F.A.; Cawley, P.; Prudich, J.F. Suture anchor failure strength—An in vivo study. Arthroscopy 1993, 9, 647–652. [Google Scholar] [CrossRef]
- Gerber, C.; Schneeberger, A.G.; Beck, M.; Schlegel, U. Mechanical strength of repairs of the rotator cuff. J. Bone Jt. Surg. Br. 1994, 76, 371–380. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A. Suture anchors—Update 1999. Arthroscopy 1999, 15, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Barber, F.A.; Herbert, M.A.; Click, J.N. Internal fixation strength of suture anchors—Update 1997. Arthroscopy 1997, 13, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Barber, F.A.; Herbert, M.A.; Richards, D.P. Sutures and suture anchors: Update 2003. Arthroscopy 2003, 19, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Barber, F.A.; Deck, M.A. The in vivo histology of an absorbable suture anchor: A preliminary report. Arthroscopy 1995, 11, 77–81. [Google Scholar] [CrossRef]
- Barber, F.A. Complications of Biodegradable Materials: Anchors and Interference Screws. Sports Med. Arthrosc. Rev. 2015, 23, 149–155. [Google Scholar] [CrossRef]
- Demirhan, M.; Kilicoglu, O.; Akpinar, S.; Akman, S.; Atalar, A.C.; Göksan, M.A. Time-dependent reduction in load to failure of wedge-type polyglyconate suture anchors. Arthroscopy 2000, 16, 383–390. [Google Scholar] [CrossRef]
- Papalia, R.; Franceschi, F.; Diaz Balzani, L.; D’Adamio, S.; Denaro, V.; Maffulli, N. The arthroscopic treatment of shoulder instability: Bioabsorbable and standard metallic anchors produce equivalent clinical results. Arthroscopy 2014, 30, 1173–1183. [Google Scholar] [CrossRef]
- Meyer, D.C.; Fucentese, S.F.; Ruffieux, K.; Jacob, H.A.; Gerber, C. Mechanical testing of absorbable suture anchors. Arthroscopy 2003, 19, 188–193. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A.; Beavis, R.C.; Barrera Oro, F. Suture anchor materials, eyelets, and designs: Update 2008. Arthroscopy 2008, 24, 859–867. [Google Scholar] [CrossRef]
- Barber, F.A.; Dockery, W.D. Long-term absorption of poly-L-lactic Acid interference screws. Arthroscopy 2006, 22, 820–826. [Google Scholar] [CrossRef]
- Tamai, N.; Myoui, A.; Tomita, T.; Nakase, T.; Tanaka, J.; Ochi, T.; Yoshikawa, H. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 2002, 59, 110–117. [Google Scholar] [CrossRef]
- Daculsi, G.; Goyenvalle, E.; Cognet, R.; Aguado, E.; Suokas, E.O. Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials 2011, 32, 3166–3177. [Google Scholar] [CrossRef]
- Hecker, A.T.; Shea, M.; Hayhurst, J.O.; Myers, E.R.; Meeks, L.W.; Hayes, W.C. Pull-out strength of suture anchors for rotator cuff and Bankart lesion repairs. Am. J. Sports Med. 1993, 21, 874–879. [Google Scholar] [CrossRef]
- Wolf, E.M. Arthroscopic capsulolabral repair using suture anchors. Orthop. Clin. N. Am. 1993, 24, 59–69. [Google Scholar] [CrossRef]
- Pederson, B.; Tesoro, D.; Wertheimer, S.J.; Coraci, M. Mitek Anchor System: A new technique for tenodesis and ligamentous repair of the foot and ankle. J. Foot Surg. 1991, 30, 48–51. [Google Scholar] [PubMed]
- Rehak, D.C.; Sotereanos, D.G.; Bowman, M.W.; Herndon, J.H. The Mitek bone anchor: Application to the hand, wrist and elbow. J. Hand Surg. Am. 1994, 19, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Barber, F.A.; Herbert, M.A.; Click, J.N. Suture anchor strength revisited. Arthroscopy 1996, 12, 32–38. [Google Scholar] [CrossRef]
- Rupp, S.; Georg, T.; Gauss, C.; Kohn, D.; Seil, R. Fatigue testing of suture anchors. Am. J. Sports Med. 2002, 30, 239–247. [Google Scholar] [CrossRef]
- Böstman, O.; Pihlajamäki, H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: A review. Biomaterials 2000, 21, 2615–2621. [Google Scholar] [CrossRef]
- Thal, R. A knotless suture anchor. Design, function, and biomechanical testing. Am. J. Sports Med. 2001, 29, 646–649, Erratum in Am. J. Sports Med. 2001, 29, 794. [Google Scholar] [CrossRef]
- Barber, F.A.; Herbert, M.A. All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode. Arthroscopy 2017, 33, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Foppiani, J.A.; Taritsa, I.C.; Foster, L.; Patel, A.; Alvarez, A.H.; Lee, D.; Lin, G.J.; Lee, T.C.; Gavlasova, D.; Escobar-Domingo, M.J.; et al. Redefining Surgical Materials: Applications of Silk Fibroin in Osteofixation and Fracture Repair. Biomimetics 2024, 9, 286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guo, C.; Li, C.; Vu, H.V.; Hanna, P.; Lechtig, A.; Qiu, Y.; Mu, X.; Ling, S.; Nazarian, A.; Lin, S.J.; et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 2020, 19, 102–108. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81. [Google Scholar] [CrossRef]
- Perrone, G.S.; Leisk, G.G.; Lo, T.J.; Moreau, J.E.; Haas, D.S.; Papenburg, B.J.; Golden, E.B.; Partlow, B.P.; Fox, S.E.; Ibrahim, A.M.S.; et al. The use of silk-based devices for fracture fixation. Nat. Commun. 2014, 5, 3385. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.J.; Escobar-Domingo, M.J.; Foppiani, J.; Posso, A.N.; Schonebaum, D.I.; Garbaccio, N.; Smith, J.E.; Foster, L.; Mustoe, A.K.; Tobin, M.; et al. Mechanical Properties of Cocoon Silk Derivatives for Biomedical Application: A Systematic Review. Biomimetics 2024, 9, 675. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Cortes, K.A.F.; Li, C.; Wang, Y.; Guo, C.; Momenzadeh, K.; Yeritsyan, D.; Hanna, P.; Lechtig, A.; Nazarian, A.; et al. Tuning the Biodegradation Rate of Silk Materials via Embedded Enzymes. ACS Biomater. Sci. Eng. 2024, 10, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
Database | Search |
---|---|
PubMed/ MEDLINE (AB = ) | (((anchor, suture[MeSH Terms]) OR (anchors, suture[MeSH Terms]) OR (Suture Anchor[Title/Abstract]) OR (Anchor, Suture[Title/Abstract]) OR (Anchors, Suture[Title/Abstract]) OR (All soft suture anchor[Title/Abstract])) AND ((biomaterials[MeSH Terms]) OR (biomaterial[Title/Abstract]) OR (bioabsorbable[Title/Abstract]) OR (bioresorbable[Title/Abstract]) OR (poly-lactic acid[Title/Abstract]) OR (polyglycolic acid[Title/Abstract]) OR (ultra-high-molecular-weight polyethylene[Title/Abstract]) OR (biomaterials[Title/Abstract]))) |
Web of Science (AB = ) | AB=(“suture anchor” OR “suture anchors” OR “anchor, suture” OR “anchors, suture” OR “all soft suture anchor”) AND AB=(“biomaterials” OR “biomaterial” OR “bioabsorbable” OR “bioresorbable” OR “poly-lactic acid” OR “polyglycolic acid” OR “ultra-high-molecular-weight polyethylene”) |
Web of Science (TI = ) | TI=(“suture anchor” OR “suture anchors” OR “anchor, suture” OR “anchors, suture” OR “all soft suture anchor”) AND TI=(“biomaterials” OR “biomaterial” OR “bioabsorbable” OR “bioresorbable” OR “poly-lactic acid” OR “polyglycolic acid” OR “ultra-high-molecular-weight polyethylene”) |
Cochrane Central Register (AB+TI+AK = ) | (“suture anchor” OR “suture anchors” OR “anchor, suture” OR “anchors, suture” OR “all soft suture anchor”) AND (“biomaterials” OR “biomaterial” OR “bioabsorbable” OR “bioresorbable” OR “poly-lactic acid” OR “polyglycolic acid” OR “ultra-high-molecular-weight polyethylene”) |
Article | Author | Score |
---|---|---|
Clinical and Radiologic Outcomes of Combined Use of Biocomposite and PEEK Suture Anchors During Arthroscopic Rotator Cuff Repair | J. Lee | Fair |
Arthroscopic Double-Row Repair of the Rotator Cuff Using Bioabsorbable and Nonresorbable Anchors | H. Haneveld | Fair |
Nonabsorbable Versus Absorbable Suture Anchors for Open Bankart Repair | W. Warme | Good |
Biomechanical Testing of a Knotless Anchor Compared with Established Anchors for Rotator Cuff Repair | M. Pietschmann | Fair |
Biocomposite Suture Anchors Remain Visible Two Years After Rotator Cuff Repair | M. Sgroi | Good |
Reliability of Open Architecture Anchors in Biocomposite Material: Medium-Term Clinical and MRI Evaluation | P. Di Benedetto | Fair |
Changes in Perianchor Cyst Formation Over Time After Rotator Cuff Repair | S. Chung | Good |
Suture Anchor Fixation Strength in Osteopenic Versus Non-Osteopenic Bone for Rotator Cuff Repair | M. Pietschmann | Fair |
Clinical Safety and Efficacy of a Novel Ultrasound-Assisted Bioabsorbable Suture Anchor in Foot and Ankle Surgeries | J. Chen | Good |
Bone Replacement of Fast-Absorbing Biocomposite Anchors in Arthroscopic Shoulder Labral Repairs | M. Milewski | Fair |
Arthroscopic and Open Shoulder Stabilization Using Absorbable Implants: A Clinical and Radiographic Comparison of Two Methods | J. Kartus | Fair |
Absorbable Implants for Open Shoulder Stabilization: A 7–8 Year Clinical and Radiographic Follow-Up | L. Magnussen | Fair |
Osteoconductive Resorption Characteristics of a Novel Biocomposite Suture Anchor Material in Rotator Cuff Repair | J. Vonhoegen | Good |
Absorbable implants for open shoulder stabilization: A clinical and serial radiographic evaluation | L. Ejerhed | Fair |
The Formation of Perianchor Fluid Associated With Various Suture Anchors Used in Rotator Cuff Repair | S. Kim | Good |
Arthroscopic Fixation of Tibial Eminence Fractures: A Biomechanical Comparative Study of Screw, Suture, and Suture Anchor | J. Li | Good |
Title of Publication | First Author, Country | Year | Study Type | Product |
---|---|---|---|---|
Nonabsorbable Versus Absorbable Suture Anchors for Open Bankart Repair | Winston, W.; USA | 1999 | In Vivo | Polyacetyl PGA/PLA copolymer |
Biomechanical testing of a new knotless suture anchor compared with established anchors for rotator cuff repair | Pietschmann, M.; Germany | 2008 | Ex Vivo | UltraSorb: PLLA SuperRevo: Titanium BioKnotless: PLA |
Biocomposite Suture Anchors Remain Visible Two Years After Rotator Cuff Repair | Sgroi, M.; Germany | 2019 | In Vivo | 85% PLLA and 15% bTCP |
Clinical and Radiologic Outcomes of Combined Use of Biocomposite and PEEK Suture Anchors during Arthroscopic Rotator Cuff Repair | Lee, J.; South Korea | 2020 | In Vivo | PEEK Biocomposite: PLLA/PGA 70% + bTCP 30% |
Arthroscopic double-row repair of the rotator cuff: a comparison of bio-absorbable and non-resorbable anchors regarding osseous reaction | Haneveld, H.; Germany | 2013 | In Vivo | PLLA PEEK |
Reliability of Open Architecture Anchors in Biocomposite Material: Medium-Term Clinical and MRI Evaluation | Di Benedetto, P.; Italy | 2020 | In Vivo | PEEK PGA/bTCP |
Changes in Perianchor Cyst Formation Over Time After Rotator Cuff Repair: Influential Factors and Outcomes | Chung S.; South Korea | 2018 | In Vivo | Bio-composite (PLLA/PGA/bTCP) |
Suture Anchor Fixation Strength in Osteopenic vs. Non-Osteopenic Bone for Rotator Cuff Repair | Pietschmann, M.; Germany | 2009 | Ex Vivo | SPIRALOK: PLLA UltraSorb: PLA SuperRevo: Titanium |
Clinical Safety and Efficacy of a Novel Ultrasound-Assisted Bioabsorbable Suture Anchor in Foot and Ankle Surgeries | Chen, J.; USA | 2020 | Case Series | PLDLLA (Poly(L-lactide-co-D, L-lactide) |
Bone Replacement of Fast-Absorbing Biocomposite Anchors in Arthroscopic Shoulder Labral Repairs | Milewski, M.; USA | 2012 | Case Series | PLGA 70%/bTCP 30% |
Absorbable Implants for Open Shoulder Stabilization: A Clinical and Serial Radiographic Evaluation | Ejerhed, L.; Sweden | 2000 | In Vivo | TAG: PGA and bTCP |
Arthroscopic and Open Shoulder Stabilization Using Absorbable Implants: A Clinical and Radiographic Comparison of Two Methods | Kartus, J.; Sweden | 1998 | In Vivo | TAG and Suratac: PGA bTCP |
Absorbable Implants for Open Shoulder Stabilization: A 7–8-Year Clinical and Radiographic Follow-Up | Magnusson, L.; Sweden | 2006 | In Vivo | TAG: PGA and bTCP |
Osteoconductive Resorption Characteristics of a Novel Biocomposite Suture Anchor Material in Rotator Cuff Repair | Vonhoegen, J.; Germany | 2019 | In Vivo | 65% PLGA, 15% bTCP and 20% calcium sulfate |
The Formation of Perianchor Fluid Associated With Various Suture Anchors Used in Rotator Cuff Repair | Kim, S.; South Korea | 2019 | In Vivo | Anchor A: 30% β-TCP + 70% PLGA Anchor B: All-suture Anchor C: 23% micro β-TCP + 77% PLA Anchor D: PEEK |
Arthroscopic Fixation of Tibial Eminence Fractures: A Biomechanical Comparative Study of Screw, Suture, and Suture Anchor | Li, J.; China | 2018 | In Vitro | PLLA |
Total | % | |
---|---|---|
No. of Publications Included | 16 | 100 |
Year Range | 1998–2020 | |
Countries Publications Drawn From (%) | ||
USA | 3 | 18.8 |
Europe | 9 | 56.2 |
Asia | 4 | 25.0 |
Experimental Approach (%) | ||
In vivo | 11 | 68.7 |
Ex vivo | 2 | 12.5 |
In vitro | 1 | 6.3 |
Case series | 2 | 12.5 |
Length of Follow-up (months) | ||
Range, median | 6–90 | 25 |
Type of Surgery (%) | ||
Rotator Cuff Repair | 9 | 56.2 |
Open Bankart reconstruction | 4 | 25.0 |
Other | 3 | 18.8 |
Article Title | 1st Author; Year of Publication | Material of SA | Strength of SA |
---|---|---|---|
Biomechanical testing of a new knotless suture anchor compared with established anchors for rotator cuff repair | Pietschmann, M.; 2008 | UltraSorb: PLLA SuperRevo: Titanium BioKnotless: PLA | Ultimate failure loads ranged from 90N (UltraSorb) to 225 N (BIOKNOTLESS RC and Super Revo) with an average of 150N; differences were not statistically significant |
Arthroscopic double-row repair of the rotator cuff: a comparison of bio-absorbable and non-resorbable anchors regarding osseous reaction | Haneveld, H.; 2013 | PLLA PEEK | No specific values mentioned but pull-out strength was similar for both materials |
Suture Anchor Fixation Strength in Osteopenic vs. Non-Osteopenic Bone for Rotator Cuff Repair | Pietschmann, M.; 2009 | SPIRALOK: PLLA UltraSorb: PLA SuperRevo: Titanium | Ultimate failure load non-osteopenic bone: SPIRALOK: 274 N (significantly higher); Super Revo: 188 N; UltraSorb: 192 N Osteopenic bone: SPIRALOK: 171 N; Super Revo: 150 N; UltraSorb: 151 N Significant difference in pullout strength for SPIRALOK based on bone density |
Clinical Safety and Efficacy of a Novel Ultrasound-Assisted Bioabsorbable Suture Anchor in Foot and Ankle Surgeries | Chen, J.; 2020 | PLDLLA (Poly(L-lactide-co-D, L-lactide) | No specific number but they mention that pull out strength was measured by the manufacturer and they compared it to their standard bio absorbable SA. The PLDLLA SA had a greater pull out strength. |
Arthroscopic Fixation of Tibial Eminence Fractures: A Biomechanical Comparative Study of Screw, Suture, and Suture Anchor | Li, J.; 2018 | PLLA | Ultimate failure load: Suture anchor: 365.83 N, Screw: 195.93 N; Yield load: Suture anchor: 281.83 N, Screw: 178.75 N |
Article Title | 1st Author; Year of Publication | Material of SA | Type of Imaging | Degradation |
---|---|---|---|---|
Nonabsorbable Versus Absorbable Suture Anchors for Open Bankart Repair | Warme, W.; 1999 | Polyacetyl (non-absorbable) PGA/PLA copolymer | Radiographs | 12 and 24 months: PLA/PGA copolymer SA’s fully resorbed Polyacetyl SA’s showed no sign of absorption. |
Biocomposite Suture Anchors Remain Visible Two Years After Rotator Cuff Repair | Sgroi, M.; 2019 | 85% PLLA and 15% bTCP | MRI | 90% of implants still visible after two years. |
Clinical and Radiologic Outcomes of Combined Use of Biocomposite and PEEK Suture Anchors during Arthroscopic Rotator Cuff Repair | Lee, J.; 2020 | PEEK Biocomposite: PLLA/PGA 70% + bTCP 30% | MRI | No resorption seen on PEEK and Biocomposite SA at 3 and 6 months post operatively |
Arthroscopic double-row repair of the rotator cuff: a comparison of bio-absorbable and non-resorbable anchors regarding osseous reaction | Haneveld, H.; 2013 | PLLA and PEEK | MRI | Average of 34% degradation after 28 months for the PLLA SA’s; PEEK maintained structure. |
Reliability of Open Architecture Anchors in Biocomposite Material: Medium-Term Clinical and MRI Evaluation | Di Benedetto, P.; 2020 | PEEK PGA/bTCP | MRI | PGA/bTCP SA’s: 12 months 18% of suture anchors still visible (Grade 2) 82% Barely visible, partially edematous bleaching. (Grade 3) |
Changes in Perianchor Cyst Formation Over Time After Rotator Cuff Repair: Influential Factors and Outcomes | Chung S.; 2018 | Bio-composite (PLLA/PGA/bTCP) | MRI | 6 months: no resorption 18 months: 73.7% fully resorbed and 26.3% partially resorbed |
Bone Replacement of Fast-Absorbing Biocomposite Anchors in Arthroscopic Shoulder Labral Repairs | Milewski, M.; 2012 | PLGA 70%/bTCP 30% | MRI and CT | 12 months: 68% resorption 24 months: 98% resorption |
Absorbable Implants for Open Shoulder Stabilization: A Clinical and Serial Radiographic Evaluation | Ejerhed, L.; 2000 | TAG: PGA and bTCP | Radiographs | 7 months: 44% fully absorbed, 56% visible or cystic drill holes 33 months: 56% fully absorbed, 44% visible or cystic drill holes |
Arthroscopic and Open Shoulder Stabilization Using Absorbable Implants: A Clinical and Radiographic Comparison of Two Methods | Kartus, J.; 1998 | TAG and Suratac: PGA bTCP | Radiographs | Group A: Open surgery, Group B: Arthroscopy 24 months group A and B: 27.8% invisible drill holes 33.3% hardly visible drill holes 13.9% visible drill holes 25% visible drill holes with cystic formation Group A had significantly more visible drill holes at 24 months. |
Absorbable Implants for Open Shoulder Stabilization: A 7–8-Year Clinical and Radiographic Follow-Up | Magnusson, L.; 2006 | TAG: PGA and bTCP | Radiographs | 7-month: 11% invisible/hardly visible 89% visible/cystic 90-month: 66% invisible/hardly visible 34% visible/cystic Degradation occurred more slowly than in-vivo material testing of 25% degradation/week |
Osteoconductive Resorption Characteristics of a Novel Biocomposite Suture Anchor Material in Rotator Cuff Repair | Vonhoegen, J.; 2019 | 65% PLGA, 15% bTCP and 20% calcium sulfate | MRI | 21 months: 50% fully absorbed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schonebaum, D.I.; Garbaccio, N.; Escobar-Domingo, M.J.; Wood, S.; Smith, J.E.; Foster, L.; Mehdizadeh, M.; Cordero, J.J.; Foppiani, J.A.; Choudry, U.; et al. Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review. Biomimetics 2025, 10, 175. https://doi.org/10.3390/biomimetics10030175
Schonebaum DI, Garbaccio N, Escobar-Domingo MJ, Wood S, Smith JE, Foster L, Mehdizadeh M, Cordero JJ, Foppiani JA, Choudry U, et al. Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review. Biomimetics. 2025; 10(3):175. https://doi.org/10.3390/biomimetics10030175
Chicago/Turabian StyleSchonebaum, Dorien I., Noelle Garbaccio, Maria J. Escobar-Domingo, Sasha Wood, Jade. E. Smith, Lacey Foster, Morvarid Mehdizadeh, Justin J. Cordero, Jose A. Foppiani, Umar Choudry, and et al. 2025. "Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review" Biomimetics 10, no. 3: 175. https://doi.org/10.3390/biomimetics10030175
APA StyleSchonebaum, D. I., Garbaccio, N., Escobar-Domingo, M. J., Wood, S., Smith, J. E., Foster, L., Mehdizadeh, M., Cordero, J. J., Foppiani, J. A., Choudry, U., Kaplan, D. L., & Lin, S. J. (2025). Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review. Biomimetics, 10(3), 175. https://doi.org/10.3390/biomimetics10030175