Improved Black-Winged Kite Algorithm with Multi-Strategy Optimization for Identifying Dendrobium huoshanense
Abstract
:1. Introduction
- During initialization, an opposition-based learning strategy was incorporated to generate a higher-quality initial population.
- For the migration phase, a differential mutation strategy was integrated to facilitate information exchange among population members, mitigate the tendency of blind leader-following behavior, enhance convergence precision, and achieve an optimal balance between exploration and exploitation capabilities.
- Regarding boundary handling, the conventional absorption boundary method was replaced by a random boundary approach to increase population diversity and subsequently improve the algorithm’s search capabilities.
2. Black-Winged Kite Optimization
2.1. Initialization Stage
2.2. Attacking Stage
2.3. Migratory Stage
3. Improved Black-Winged Kite Optimization
3.1. Opposition-Based Elite Initialization Method
3.2. Differential Mutation Strategy
3.3. Stochastic Boundary Method
4. Simulation Experiments and Results Analysis
4.1. Experiments on Four Benchmark Function Sets
4.2. Nonparametric Test Analysis
4.3. Experiment on Engineering Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwakye, B.D.; Li, Y.; Mohamed, H.H.; Baidoo, E. Particle guided metaheuristic algorithm for global optimization and feature selection problems. Expert Syst. Appl. 2024, 248, 123362. [Google Scholar]
- Cai, C.; Jia, C.; Nie, Y.; Zhang, J.; Li, L. A path planning method using modified harris hawks optimization algorithm for mobile robots. PeerJ Comput. Sci. 2023, 9, e1473. [Google Scholar]
- Saha, A. Application of sparrow search swarm intelligence optimization algorithm in identifying the critical surface in slope-stability. Discov. Geosci. 2024, 2, 80. [Google Scholar]
- Dai, J.; Fu, L. Application of dynamic baseline adjustment based on swarm intelligence optimization in the signal processing of FIBER SPR sensors. J. Sens. Technol. 2023, 36, 1092–1102. [Google Scholar]
- An, W.; Shao, Y. Wireless sensor network routing protocol based on improved gray wolf optimization algorithm. J. Sens. Technol. 2022, 35, 676–682. [Google Scholar]
- He, X.; Yang, J.; Zhu, Z.; Yang, B.; Tan, T. VMD-HPCA-GRU ultra-short-termvind power forecasting based on COOT algorithm. J. Beijing Univ. Aeronaut. Astronaut. 2023, 2, 1–13. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar]
- Hamad, R.K.; Rashid, A.T. GOOSE algorithm: A powerful optimization tool for real-world engineering challenges and beyond. Evol. Syst. 2024, 15, 1249–1274. [Google Scholar]
- Yuan, C.; Zhao, D.; Heidari, A.A.; Liu, L. Artemisinin optimization based on malaria therapy_ Algorithm and applications to medical image segmentation. Displays 2024, 84, 102740. [Google Scholar]
- Mohammed, H.; Rashid, T. FOX: A FOX-inspired optimization algorithm. Appl. Intell. Int. J. Artif. Intell. Neural Netw. Complex Probl. Solving Technol. 2023, 53, 1030–1050. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Alijarah, I. Harris Hawks Optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar]
- Zhong, C.; Li, G.; Meng, Z. Eeluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 2022, 251, 109215. [Google Scholar]
- Wang, J.; Wang, W.; Hu, X.; Qiu, L.; Zang, H. Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems. Artif. Intell. Rev. 2024, 57, 98. [Google Scholar]
- Nadimi-Shahraki, M.H.; Zamani, H.; Asghari Varzaneh, Z.; Mirjalili, S. A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations. Arch. Comput. Methods Eng. 2023, 30, 4113–4159. [Google Scholar] [CrossRef]
- Dai, C.; Ma, L.; Jiang, H.; Li, H. An improved whale optimization algorithm based on multiple strategies. Comput. Eng. Sci. 2024, 46, 1635–1647. [Google Scholar]
- Cheng, Y.; Li, S. Snake optimization algorithm based on chaotic reverse and Levy flight. Comput. Eng. Sci. 2024, 45, 2658–2668. [Google Scholar]
- Deng, H.; Liu, L.; Fang, J.; Qu, B.; Huang, Q. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm. Math. Comput. Simul. 2023, 205, 794–817. [Google Scholar] [CrossRef]
- Li, G.; Zhang, T.; Tsai, C.-Y.; Lu, Y.; Yang, J.; Yao, L. Modified crayfish optimization algorithm with adaptive spiral elite greedy opposition-based learning and search-hide strategy for global optimization. J. Comput. Des. Eng. 2024, 11, 249–305. [Google Scholar] [CrossRef]
- Özbay, F.A.; Özbay, E.; Gharehchopogh, F.S. An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem. Comput. Model. Eng. Sci. 2024, 141, 1067–1110. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Yang, Y.; Sun, Y.; Ning, J.; Zhang, Y.; Zhang, C.; Guo, Y. An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm. Comput. Mater. Contin. 2024, 79, 5201–5223. [Google Scholar] [CrossRef]
- Taher, A.M.; Kamel, S.; Jurado, F.; Ebeed, M. Modified grasshopper optimization framework for optimal power flow solution. Electr. Eng. 2019, 101, 121–148. [Google Scholar]
- Zhou, Y.; Pei, Z.; Wang, P.; Chen, B. Aquila optimizer based on phasor operator and flow direction operator. J. Zhejiang Univ. (Eng. Sci.) 2024, 58, 304–316. [Google Scholar]
- Ahmed, M.A.; Ammar, M.; Mahmoud, A.; Niveen, B. An Enhanced Genetic Algorithm using Directional-Based Crossover and normal mutation For Global Optimization Problems. Stat. Optim. Inf. Comput. 2023, 12, 446–462. [Google Scholar]
- Binanda, M.; Saptadeep, B.; El-Shamir, E.A.; Kumar, B.U.; Alzahrani, A.I.; Alblehai, F.; Abualigah, L. Enhanced crayfish optimization algorithm with differential evolution’s mutation and crossover strategies for global optimization and engineering applications. Artif. Intell. Rev. 2025, 58, 58–69. [Google Scholar]
- Li, S.; Li, Z.; Cheng, W.; Qi, C.; Li, L. Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation. Comput. Mater. Contin. 2024, 80, 2049–2063. [Google Scholar]
- Gauri, T.; Ashok, P.; Nitin, M.; Rajiv, A.; Salgotra, R. Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems. Mathematics 2024, 12, 1470–1503. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neuro Comput. 2016, 260, 302–312. [Google Scholar]
- Murugan, R.; Seyedali, M.; Morteza, N.-H.; Sundari, P.D.; Arunachalam, S.; Rajan, C.G.C.A. A hybrid Grasshopper Optimization Algorithm and Harris Hawks Optimizer for Combined Heat and Power Economic Dispatch problem. Eng. Appl. Artif. Intell. 2022, 111, 104753. [Google Scholar]
- Deng, W.; Ma, X.; Qiao, W. A Hybrid Intelligent Optimization Algorithm Based on a Learning Strategy. Mathematics 2024, 12, 2570–2586. [Google Scholar] [CrossRef]
- Truong, T.V.; Nayyar, A. System performance and optimization in NOMA mobile edge computing surveillance network using GA and PSO. Comput. Netw. 2023, 223, 109575. [Google Scholar]
- Sahoo, H.B.; Rao, D.C. Optimal Resource Allocation in Cloud Computing using Novel ACO-DE algorithm. In Proceedings of the International Conference on Aritificial Intelligence on Textile and Apparel, Bengaluru, India, 11–12 August 2023; pp. 443–455. [Google Scholar]
- Chen, W.; Mahdi, P.; Hamid, R.P. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. Catena 2017, 157, 310–324. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, J.; Tao, Q.; Chen, C. Elite Golden Jackal optimization based on multi-strategy improvement and its application in engineering problems. Comput. Eng. Sci. 2024, 1, 110. [Google Scholar]
- Cheng, H.; Zhou, H.; Shen, Y. An improved grey wolf optimization algorithm based on bounded subpopulation research strategy. In Proceedings of the International Conference on Mechatronics, Automation and Intelligent Control, Chengdu, China, 27–29 September 2024; pp. 1–9. [Google Scholar]
- Feng, H.; Cao, K.; Huang, G.; Liu, H. ABWOA: Adaptive boundary whale optimization algorithm for large-scale digital twin network construction. J. Cloud Comput. 2024, 13, 110–126. [Google Scholar]
- Yu, K.; Liu, Y.; Zhang, H.; Gao, S. An improved whale algorithm for real-time boundary processing and its convergence analysis. In Proceedings of the Electrochemical Society, Changchun, China, 14–16 June 2024; p. 012034. [Google Scholar]
- Xuan, Y.; Xuan, S. Grey Wolf Optimization algorithm with random local optimal regulation and first-element dominance. Egypt. Inform. J. 2024, 27, 100486. [Google Scholar]
- Huang, H.; Wu, R.; Huang, H.; Wei, J.; Han, Z.; Wen, L.; Yuan, Y. Multi-strategy improved artificial rabbit optimization algorithm based on fusion centroid and elite guidance mechanisms. Comput. Methods Appl. Mech. Eng. 2024, 425, 116915. [Google Scholar]
- Wang, F.; Jia, B.; Dai, J.; Song, X.; Li, X.; Gao, H.; Yan, H.; Han, B. Qualitative classification of Dendrobium huoshanense (Feng dou) using fast non-destructive hand-held near infrared spectroscopy. J. Near Infrared Spectrosc. 2022, 30, 147–153. [Google Scholar]
- Wang, F.; Hou, T.; Luo, S.; Geng, C.; Chen, C.; Liu, D.; Han, B.; Gao, L. Rapid and Green Methods for Qualitative Classification of Polygonati Rhizoma and Polygonati Odorati Rhizoma Using a Handheld near Infrared Instrument. J. Chem. 2023, 2023, 4888557. [Google Scholar]
Function | BKAIM | BKA | WOA | GOOSE | AO | FOX | HHO | BWO | |
---|---|---|---|---|---|---|---|---|---|
F1 | Best | 8.5047 × 102 | 3.2580 × 104 | 3.2721 × 107 | 4.8507 × 103 | 9.1541 × 106 | 4.2118 × 102 | 4.4725 × 105 | 3.8488 × 109 |
Std | 7.4898 × 108 | 1.2300 × 109 | 1.5191 × 108 | 1.6964 × 109 | 1.5442 × 108 | 1.5123 × 109 | 2.6048 × 107 | 5.3647 × 109 | |
Avg | 1.9998 × 108 | 2.3829 × 108 | 1.4640 × 108 | 1.8745 × 109 | 1.4224 × 108 | 1.4063 × 109 | 1.3158 × 107 | 1.4621 × 1010 | |
F3 | Best | 3.0009 × 102 | 3.0100 × 102 | 2.2410 × 103 | 7.5080 × 102 | 1.1791 × 103 | 7.0245 × 102 | 3.6467 × 102 | 6.6852 × 103 |
Std | 1.6156 × 103 | 3.0713 × 103 | 1.1127 × 104 | 1.4804 × 104 | 1.5438 × 103 | 3.7196 × 103 | 8.3279 × 102 | 2.9780 × 103 | |
Avg | 8.8188 × 102 | 1.2944 × 103 | 1.1306 × 104 | 1.3820 × 104 | 4.6284 × 103 | 3.3950 × 103 | 2.2084 × 103 | 1.2630 × 104 | |
F4 | Best | 4.0033 × 102 | 4.0008 × 102 | 4.0485 × 102 | 4.0401 × 102 | 4.0698 × 102 | 4.0020 × 102 | 4.0293 × 102 | 9.4217 × 102 |
Std | 2.0195 × 101 | 3.1380 × 101 | 6.5805 × 101 | 1.1838 × 102 | 1.9343 × 101 | 1.2817 × 102 | 3.8479 × 101 | 6.7983 × 102 | |
Avg | 4.1039 × 102 | 4.1925 × 102 | 4.8351 × 102 | 5.2462 × 102 | 4.2561 × 102 | 5.4198 × 102 | 4.4685 × 102 | 1.8914 × 103 | |
F5 | Best | 5.0597 × 102 | 5.1101 × 102 | 5.2276 × 102 | 5.4577 × 102 | 5.1849 × 102 | 5.3781 × 102 | 5.1824 × 102 | 5.9576 × 102 |
Std | 1.1833 × 101 | 1.2963 × 101 | 2.0303 × 101 | 2.8085 × 101 | 1.0102 × 101 | 2.9144 × 101 | 2.4412 × 101 | 1.3536 × 101 | |
Avg | 5.2840 × 102 | 5.3602 × 102 | 5.6759 × 102 | 5.8361 × 102 | 5.3374 × 102 | 5.8556 × 102 | 5.6299 × 102 | 6.2322 × 102 | |
F6 | Best | 6.0523 × 102 | 6.0603 × 102 | 6.1077 × 102 | 6.4119 × 102 | 6.0726 × 102 | 6.3094 × 102 | 6.1697 × 102 | 6.4110 × 102 |
Std | 5.0381 × 10⁰ | 7.9189 × 10⁰ | 1.3752 × 101 | 1.3303 × 101 | 8.4823 × 10⁰ | 1.0133 × 101 | 1.1560 × 101 | 7.4097 × 10⁰ | |
Avg | 6.1587 × 102 | 6.2746 × 102 | 6.3903 × 102 | 6.5932 × 102 | 6.2313 × 102 | 6.5696 × 102 | 6.4107 × 102 | 6.6206 × 102 | |
F7 | Best | 7.1743 × 102 | 7.3274 × 102 | 7.6562 × 102 | 8.0530 × 102 | 7.3046 × 102 | 8.0563 × 102 | 7.5358 × 102 | 8.0513 × 102 |
Std | 1.5992 × 101 | 1.4459 × 101 | 1.8286 × 101 | 1.7579 × 102 | 1.6132 × 101 | 7.0224 × 10⁰ | 1.8240 × 101 | 1.3876 × 101 | |
Avg | 7.4677 × 102 | 7.5777 × 102 | 7.9210 × 102 | 1.0210 × 103 | 7.5861 × 102 | 8.1716 × 102 | 7.9528 × 102 | 8.3263 × 102 | |
F8 | Best | 8.0597 × 102 | 8.0600 × 102 | 8.2183 × 102 | 8.2985 × 102 | 8.1130 × 102 | 8.3383 × 102 | 8.0967 × 102 | 8.4267 × 102 |
Std | 8.3534 × 10⁰ | 9.1981 × 10⁰ | 1.5162 × 101 | 2.1949 × 101 | 7.9554 × 10⁰ | 1.5566 × 101 | 1.1040 × 101 | 7.1202 × 10⁰ | |
Avg | 8.2153 × 102 | 8.2164 × 102 | 8.4877 × 102 | 8.6216 × 102 | 8.2793 × 102 | 8.4968 × 102 | 8.3312 × 102 | 8.5992 × 102 | |
F9 | Best | 9.0599 × 102 | 9.3589 × 102 | 9.3985 × 102 | 1.5526 × 103 | 9.2700 × 102 | 1.4989 × 103 | 1.0525 × 103 | 1.2630 × 103 |
Std | 9.5970 × 101 | 1.6041 × 102 | 3.5577 × 102 | 5.1820 × 102 | 1.4632 × 102 | 7.1298 × 101 | 2.3244 × 102 | 2.3550 × 102 | |
Avg | 1.0441 × 103 | 1.1400 × 103 | 1.5604 × 103 | 2.0114 × 103 | 1.1110 × 103 | 1.7399 × 103 | 1.4706 × 103 | 1.8658 × 103 | |
F10 | Best | 1.2661 × 103 | 1.4641 × 103 | 1.8026 × 103 | 1.7589 × 103 | 1.5100 × 103 | 1.6692 × 103 | 1.6945 × 103 | 2.4028 × 103 |
Std | 2.7799 × 102 | 1.8277 × 102 | 2.5617 × 102 | 3.4515 × 102 | 2.7854 × 102 | 3.4032 × 102 | 2.2175 × 102 | 1.4932 × 102 | |
Avg | 1.8207 × 103 | 1.8395 × 103 | 2.2466 × 103 | 2.4697 × 103 | 2.1120 × 103 | 2.3285 × 103 | 2.0766 × 103 | 1.6539 × 103 | |
F11 | Best | 1.1127 × 103 | 1.1032 × 103 | 1.1394 × 103 | 1.1180 × 103 | 1.1433 × 103 | 1.1336 × 103 | 1.1081 × 103 | 1.2358 × 103 |
Std | 5.1406 × 101 | 3.2965 × 101 | 9.6683 × 101 | 1.7548 × 103 | 3.1673 × 102 | 2.4641 × 103 | 8.4895 × 101 | 9.0255 × 103 | |
Avg | 1.1535 × 103 | 1.1550 × 103 | 1.2767 × 103 | 1.9439 × 103 | 1.4019 × 103 | 2.5207 × 103 | 1.2016 × 103 | 1.4129 × 104 | |
F12 | Best | 2.8282 × 103 | 2.1200 × 103 | 1.3561 × 104 | 7.4961 × 103 | 1.6594 × 104 | 1.8050 × 104 | 2.7366 × 104 | 3.5946 × 107 |
Std | 1.7019 × 105 | 1.0131 × 105 | 5.7040 × 106 | 2.0869 × 106 | 4.5933 × 106 | 2.7235 × 106 | 5.0532 × 106 | 4.0763 × 108 | |
Avg | 6.6963 × 104 | 4.0724 × 104 | 5.9423 × 106 | 1.7595 × 106 | 4.5425 × 106 | 2.4228 × 106 | 5.0300 × 106 | 6.4098 × 108 | |
F13 | Best | 1.4027 × 103 | 1.4708 × 103 | 2.6412 × 103 | 2.4010 × 103 | 5.0447 × 103 | 1.9525 × 103 | 1.6496 × 103 | 4.2785 × 105 |
Std | 4.8410 × 102 | 3.5566 × 103 | 1.2962 × 104 | 1.4569 × 104 | 1.4387 × 104 | 1.0908 × 104 | 1.2486 × 104 | 4.9530 × 107 | |
Avg | 1.9005 × 103 | 3.6688 × 103 | 1.5336 × 104 | 1.9462 × 104 | 1.7994 × 104 | 1.6310 × 104 | 1.6709 × 104 | 3.2462 × 107 | |
F14 | Best | 1.4262 × 103 | 1.4221 × 103 | 1.5440 × 103 | 1.5553 × 103 | 1.5854 × 103 | 1.5625 × 103 | 1.4695 × 103 | 1.6098 × 103 |
Std | 2.3930 × 101 | 3.8163 × 101 | 2.1474 × 103 | 7.2346 × 103 | 1.2847 × 103 | 7.2755 × 103 | 1.7012 × 103 | 1.3609 × 103 | |
Avg | 1.4555 × 103 | 1.4869 × 103 | 3.5269 × 103 | 9.4409 × 103 | 2.6901 × 103 | 9.1025 × 103 | 2.7303 × 103 | 2.2717 × 103 | |
F15 | Best | 1.5158 × 103 | 1.5541 × 103 | 1.6996 × 103 | 2.3123 × 103 | 2.8423 × 103 | 2.2049 × 103 | 2.4793 × 103 | 5.7332 × 103 |
Std | 4.8849 × 101 | 1.1281 × 102 | 1.6056 × 104 | 5.3159 × 104 | 6.3406 × 103 | 3.0200 × 104 | 5.0525 × 103 | 1.5759 × 103 | |
Avg | 1.5761 × 103 | 1.6808 × 103 | 1.6815 × 104 | 4.7746 × 104 | 9.9744 × 103 | 3.9172 × 104 | 1.0107 × 104 | 1.0254 × 104 | |
F16 | Best | 1.6016 × 103 | 1.6054 × 103 | 1.6972 × 103 | 1.7403 × 103 | 1.6512 × 103 | 1.7323 × 103 | 1.7375 × 103 | 1.8066 × 103 |
Std | 1.1340 × 102 | 1.2520 × 102 | 1.4470 × 102 | 2.2768 × 102 | 1.5754 × 102 | 1.9669 × 102 | 1.3533 × 102 | 1.5274 × 102 | |
Avg | 1.7213 × 103 | 1.8082 × 103 | 1.9193 × 103 | 2.2551 × 103 | 1.9295 × 103 | 2.1776 × 103 | 1.9566 × 103 | 2.2190 × 103 | |
F17 | Best | 1.6335 × 103 | 1.7281 × 103 | 1.7738 × 103 | 1.7937 × 103 | 1.7474 × 103 | 1.7635 × 103 | 1.7441 × 103 | 1.7912 × 103 |
Std | 2.1180 × 101 | 2.9817 × 101 | 7.8686 × 101 | 1.7231 × 102 | 2.7053 × 101 | 1.7871 × 102 | 6.5043 × 101 | 5.0915 × 101 | |
Avg | 1.7587 × 103 | 1.7689 × 103 | 1.8611 × 103 | 2.0857 × 103 | 1.7819 × 103 | 2.0557 × 103 | 1.8022 × 103 | 1.8661 × 103 | |
F18 | Best | 1.6450 × 103 | 1.6839 × 103 | 1.1212 × 103 | 2.0454 × 103 | 1.5868 × 103 | 1.9427 × 103 | 1.5436 × 103 | 1.6630 × 107 |
Std | 4.7913 × 103 | 4.4599 × 103 | 1.1039 × 104 | 1.4725 × 104 | 5.7316 × 104 | 1.5825 × 104 | 8.2694 × 103 | 5.2919 × 108 | |
Avg | 3.9620 × 103 | 4.3429 × 103 | 2.1393 × 104 | 1.9384 × 104 | 6.1519 × 104 | 2.4959 × 104 | 1.3455 × 104 | 5.6499 × 108 | |
F19 | Best | 1.9070 × 103 | 1.9072 × 103 | 2.5496 × 103 | 2.5193 × 103 | 2.2079 × 103 | 2.2460 × 103 | 2.2642 × 103 | 1.1439 × 104 |
Std | 1.3689 × 102 | 2.9430 × 101 | 1.3846 × 106 | 1.5248 × 104 | 9.3702 × 104 | 2.8529 × 104 | 4.1560 × 104 | 3.0598 × 106 | |
Avg | 1.9241 × 103 | 1.9464 × 103 | 5.1542 × 105 | 1.5836 × 104 | 5.0112 × 104 | 2.5586 × 104 | 3.4830 × 104 | 2.5542 × 106 | |
F20 | Best | 1.7217 × 103 | 1.8405 × 103 | 2.0559 × 103 | 1.2643 × 103 | 2.0554 × 103 | 2.0356 × 103 | 2.0732 × 103 | 2.1829 × 103 |
Std | 2.8340 × 101 | 6.0864 × 101 | 7.5746 × 101 | 1.5827 × 102 | 6.0274 × 101 | 1.3223 × 102 | 9.5625 × 101 | 4.0949 × 101 | |
Avg | 2.0630 × 103 | 2.1243 × 103 | 2.2174 × 103 | 2.3376 × 103 | 2.1460 × 103 | 2.3310 × 103 | 2.2037 × 103 | 2.2839 × 103 | |
F21 | Best | 2.0100 × 103 | 2.0002 × 103 | 2.0186 × 103 | 2.2219 × 103 | 2.0083 × 103 | 2.1000 × 103 | 2.1055 × 103 | 2.1325 × 103 |
Std | 6.0253 × 101 | 6.5619 × 101 | 4.9773 × 101 | 4.9480 × 101 | 4.9355 × 101 | 8.2335 × 101 | 5.5157 × 101 | 6.6866 × 101 | |
Avg | 2.2581 × 103 | 2.2768 × 103 | 2.3387 × 103 | 2.3616 × 103 | 2.2973 × 103 | 2.3540 × 103 | 2.3359 × 103 | 2.3557 × 103 | |
F22 | Best | 2.2280 × 103 | 2.2278 × 103 | 2.2726 × 103 | 2.3397 × 103 | 2.2935 × 103 | 2.2877 × 103 | 2.2790 × 103 | 2.2734 × 103 |
Std | 4.1388 × 101 | 1.4150 × 102 | 4.7118 × 102 | 6.9312 × 102 | 1.5225 × 101 | 5.4399 × 102 | 1.4356 × 101 | 4.3866 × 102 | |
Avg | 2.3193 × 103 | 2.3482 × 103 | 2.4829 × 103 | 2.8338 × 103 | 2.3161 × 103 | 2.8268 × 103 | 2.3164 × 103 | 3.1627 × 103 | |
F23 | Best | 2.6145 × 103 | 2.6137 × 103 | 2.6155 × 103 | 2.6487 × 103 | 2.6136 × 103 | 2.6469 × 103 | 2.6176 × 103 | 2.6959 × 103 |
Std | 1.4646 × 101 | 2.8849 × 101 | 3.0630 × 101 | 5.8074 × 101 | 1.3923 × 101 | 5.7828 × 101 | 3.6208 × 101 | 3.1085 × 101 | |
Avg | 2.6339 × 103 | 2.6430 × 103 | 2.6721 × 103 | 2.7477 × 103 | 2.6465 × 103 | 2.7701 × 103 | 2.6896 × 103 | 2.7509 × 103 | |
F24 | Best | 2.4487 × 103 | 2.7439 × 103 | 2.6367 × 103 | 2.5234 × 103 | 2.5295 × 103 | 2.5554 × 103 | 2.5094 × 103 | 2.6777 × 103 |
Std | 8.4675 × 101 | 3.7398 × 101 | 4.3052 × 101 | 1.2378 × 102 | 6.4195 × 101 | 8.9719 × 101 | 8.7859 × 101 | 1.1052 × 102 | |
Avg | 2.7294 × 103 | 2.7780 × 103 | 2.7977 × 103 | 2.8855 × 103 | 2.7610 × 103 | 2.9085 × 103 | 2.8078 × 103 | 2.8926 × 103 | |
F25 | Best | 2.6213 × 103 | 2.8979 × 103 | 2.9298 × 103 | 2.9037 × 103 | 2.9005 × 103 | 2.8981 × 103 | 2.9046 × 103 | 3.4252 × 103 |
Std | 6.6058 × 101 | 6.5928 × 101 | 4.0212 × 101 | 7.0507 × 101 | 2.7587 × 101 | 4.3195 × 101 | 2.3445 × 101 | 2.7518 × 102 | |
Avg | 2.9298 × 103 | 2.9417 × 103 | 2.9880 × 103 | 3.0181 × 103 | 2.9460 × 103 | 2.9808 × 103 | 2.9516 × 103 | 3.8510 × 103 | |
F26 | Best | 2.6010 × 103 | 2.8056 × 103 | 2.8850 × 103 | 3.2787 × 103 | 2.8639 × 103 | 2.8156 × 103 | 2.6372 × 103 | 3.3010 × 103 |
Std | 2.0657 × 102 | 4.5311 × 102 | 5.4822 × 102 | 4.3862 × 102 | 1.6137 × 102 | 7.1953 × 102 | 5.7104 × 102 | 3.7349 × 102 | |
Avg | 3.0582 × 103 | 3.2337 × 103 | 3.6049 × 103 | 4.3319 × 103 | 3.0971 × 103 | 4.1231 × 103 | 3.6106 × 103 | 3.9067 × 103 | |
F27 | Best | 3.0897 × 103 | 3.0892 × 103 | 3.1000 × 103 | 3.1240 × 103 | 3.0989 × 103 | 3.1624 × 103 | 3.1058 × 103 | 3.1134 × 103 |
Std | 1.7868 × 101 | 2.6097 × 101 | 4.2266 × 101 | 5.8417 × 101 | 5.8198 × 10⁰ | 7.7883 × 101 | 6.2653 × 101 | 5.7165 × 101 | |
Avg | 3.1025 × 103 | 3.1065 × 103 | 3.1525 × 103 | 3.2333 × 103 | 3.1076 × 103 | 3.2621 × 103 | 3.1928 × 103 | 3.2007 × 103 | |
F28 | Best | 2.8085 × 103 | 3.1000 × 103 | 3.2176 × 103 | 3.1352 × 103 | 3.1666 × 103 | 3.1647 × 103 | 3.1165 × 103 | 3.2543 × 103 |
Std | 1.4359 × 102 | 1.9187 × 102 | 1.4439 × 102 | 1.7817 × 102 | 1.0934 × 102 | 1.9829 × 102 | 1.4300 × 102 | 1.6502 × 102 | |
Avg | 3.2155 × 103 | 3.2723 × 103 | 3.5096 × 103 | 3.5096 × 103 | 3.4404 × 103 | 3.5041 × 103 | 3.4301 × 103 | 3.8232 × 103 | |
F29 | Best | 3.1594 × 103 | 3.1584 × 103 | 3.2232 × 103 | 3.1512 × 103 | 3.1722 × 103 | 3.1995 × 103 | 3.2201 × 103 | 3.3327 × 103 |
Std | 3.7381 × 101 | 6.4538 × 101 | 1.0879 × 102 | 1.9343 × 102 | 7.1430 × 101 | 2.2561 × 102 | 9.4104 × 101 | 8.8604 × 101 | |
Avg | 3.2222 × 103 | 3.2631 × 103 | 3.4068 × 103 | 3.5617 × 103 | 3.2795 × 103 | 3.5430 × 103 | 3.3925 × 103 | 3.5211 × 103 | |
F30 | Best | 4.0579 × 103 | 4.7965 × 103 | 1.9462 × 105 | 7.3692 × 103 | 4.2279 × 104 | 2.0383 × 104 | 7.3298 × 103 | 2.2275 × 106 |
Std | 4.9682 × 105 | 1.1250 × 106 | 2.4932 × 106 | 7.5555 × 106 | 2.8637 × 106 | 1.2953 × 107 | 2.4151 × 106 | 7.5472 × 106 | |
Avg | 3.8284 × 105 | 6.7314 × 105 | 2.9339 × 106 | 6.3289 × 106 | 2.4561 × 106 | 1.1326 × 107 | 1.9284 × 106 | 1.0962 × 107 |
Function | BKA | WOA | GOOSE | AO | FOX | HHO | BWO |
---|---|---|---|---|---|---|---|
F1 | 8.2000 × 10−7 | 3.5200 × 10−7 | 1.6400 × 10−5 | 5.1900 × 10−7 | 2.2000 × 10−7 | 1.1100 × 10−6 | 3.0200 × 10−11 |
F3 | 9.0307 × 10−4 | 4.6200 × 10−10 | 4.6200 × 10−10 | 2.3900 × 10−8 | 1.8500 × 10−8 | 8.3500 × 10−8 | 4.0800 × 10−11 |
F4 | 9.5207 × 10−4 | 1.8700 × 10−7 | 7.6900 × 10−8 | 7.6000 × 10−7 | 1.7000 × 10−8 | 1.0300 × 10−6 | 3.0200 × 10−11 |
F5 | 1.1536 × 10−1 | 4.5700 × 10−9 | 5.4600 × 10−9 | 1.2597 × 10−1 | 1.3300 × 10−10 | 2.0200 × 10−8 | 3.3400 × 10−11 |
F6 | 1.1900 × 10−6 | 6.7200 × 10−10 | 3.0200 × 10−11 | 9.0307 × 10−4 | 3.0200 × 10−11 | 4.6200 × 10−10 | 3.0200 × 10−11 |
F7 | 6.4142 × 10−1 | 3.5000 × 10−9 | 3.3400 × 10−11 | 5.8737 × 10−4 | 3.0200 × 10−11 | 1.1700 × 10−9 | 3.3400 × 10−11 |
F8 | 9.4890 × 10−4 | 2.6000 × 10−8 | 1.0900 × 10−10 | 2.8913 × 10−3 | 6.7200 × 10−10 | 7.2000 × 10−5 | 3.3400 × 10−11 |
F9 | 4.2175 × 10−4 | 2.0300 × 10−9 | 3.0200 × 10−11 | 9.6263 × 10−2 | 3.0200 × 10−11 | 1.7800 × 10−10 | 3.0200 × 10−11 |
F10 | 5.1060 × 10−1 | 5.9700 × 10−5 | 1.2000 × 10−8 | 3.6439 × 10−2 | 1.2900 × 10−6 | 1.1143 × 10−3 | 3.0200 × 10−11 |
F11 | 1.0869 × 10−1 | 2.0200 × 10−8 | 4.6200 × 10−10 | 3.8200 × 10−10 | 5.9700 × 10−9 | 1.1738 × 10−3 | 3.0200 × 10−11 |
F12 | 1.6687 × 10−2 | 2.3700 × 10−10 | 5.5700 × 10−10 | 1.0700 × 10−9 | 1.4100 × 10−9 | 2.3700 × 10−10 | 3.0200 × 10−11 |
F13 | 9.7900 × 10−5 | 1.0900 × 10−10 | 3.4700 × 10−10 | 6.0700 × 10−11 | 4.2000 × 10−10 | 8.9900 × 10−11 | 3.0200 × 10−11 |
F14 | 4.4272 × 10−3 | 4.0800 × 10−11 | 4.0800 × 10−11 | 3.0200 × 10−11 | 3.3400 × 10−11 | 6.0700 × 10−11 | 3.0200 × 10−11 |
F15 | 7.6171 × 10−3 | 3.0200 × 10−11 | 3.0200 × 10−11 | 3.0200 × 10−11 | 3.0200 × 10−11 | 3.0200 × 10−11 | 3.0200 × 10−11 |
F16 | 4.0127 × 10−2 | 1.0300 × 10−6 | 1.7800 × 10−10 | 3.0059 × 10−4 | 1.6100 × 10−10 | 7.0400 × 10−7 | 4.0800 × 10−11 |
F17 | 4.8252 × 10−1 | 4.4400 × 10−7 | 2.2300 × 10−9 | 4.4592 × 10−4 | 1.7000 × 10−8 | 1.7649 × 10−2 | 4.5000 × 10−11 |
F18 | 5.9969 × 10−1 | 3.5200 × 10−7 | 1.2500 × 10−7 | 5.0700 × 10−10 | 1.1100 × 10−6 | 5.5300 × 10−8 | 3.0200 × 10−11 |
F19 | 1.3703 × 10−3 | 3.0200 × 10−11 | 3.0200 × 10−11 | 3.0200 × 10−11 | 3.3400 × 10−11 | 3.3400 × 10−11 | 3.0200 × 10−11 |
F20 | 2.8389 × 10−4 | 1.1000 × 10−8 | 1.6900 × 10−9 | 4.6900 × 10−8 | 1.9600 × 10−10 | 8.1000 × 10−10 | 3.6900 × 10−11 |
F21 | 4.7460 × 10−2 | 2.7700 × 10−5 | 6.7200 × 10−10 | 1.3703 × 10−3 | 1.0700 × 10−9 | 4.1800 × 10−9 | 8.1500 × 10−5 |
F22 | 4.9178 × 10−1 | 1.1700 × 10−5 | 1.7800 × 10−10 | 2.2800 × 10−5 | 3.2600 × 10−7 | 4.4592 × 10−4 | 8.1500 × 10−11 |
F23 | 2.1702 × 10−1 | 2.2800 × 10−5 | 3.6900 × 10−11 | 3.9881 × 10−4 | 8.9900 × 10−11 | 8.1000 × 10−10 | 3.3400 × 10−11 |
F24 | 9.4890 × 10−4 | 4.3500 × 10−5 | 4.3100 × 10−8 | 1.3703 × 10−3 | 4.6200 × 10−10 | 2.3800 × 10−7 | 2.8700 × 10−10 |
F25 | 6.7350 × 10−1 | 1.3400 × 10−5 | 5.1900 × 10−7 | 1.5178 × 10−3 | 1.3900 × 10−6 | 2.4581 × 10−1 | 3.3400 × 10−11 |
F26 | 3.3874 × 10−2 | 3.5200 × 10−7 | 2.1500 × 10−10 | 2.7549 × 10−3 | 1.5600 × 10−8 | 6.5200 × 10−9 | 3.3400 × 10−11 |
F27 | 5.4699 × 10−3 | 4.6400 × 10−5 | 5.5700 × 10−10 | 1.0233 × 10−1 | 4.9800 × 10−11 | 3.3500 × 10−8 | 5.0000 × 10−9 |
F28 | 9.1171 × 10−1 | 7.2200 × 10−6 | 2.8300 × 10−8 | 1.3100 × 10−8 | 1.1600 × 10−7 | 7.2200 × 10−6 | 3.0200 × 10−11 |
F29 | 1.9527 × 10−3 | 7.3800 × 10−10 | 8.9900 × 10−11 | 2.1300 × 10−5 | 4.6200 × 10−10 | 5.0000 × 10−9 | 3.0200 × 10−11 |
F30 | 2.2360 × 10−2 | 1.8700 × 10−7 | 1.8600 × 10−9 | 3.9600 × 10−8 | 1.4300 × 10−8 | 5.5300 × 10−8 | 3.6900 × 10−11 |
Methods | BKAIM | BKA | WOA | GOOSE | AO | FOX | HHO | BWO |
---|---|---|---|---|---|---|---|---|
Best | 81.58 | 81.58 | 81.58 | 81.58 | 81.58 | 81.58 | 81.58 | 81.58 |
Std | 1.29 | 2.26 | 3.57 | 3.18 | 3.29 | 3.94 | 3.34 | 2.54 |
Avg | 80.66 | 78.95 | 77.5 | 76.97 | 75.66 | 75.92 | 76.71 | 75.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Yang, T.; Fu, M.; Liu, Y.; Zhou, X.; Huang, Z.; Wang, F.; Li, W. Improved Black-Winged Kite Algorithm with Multi-Strategy Optimization for Identifying Dendrobium huoshanense. Biomimetics 2025, 10, 226. https://doi.org/10.3390/biomimetics10040226
Jia C, Yang T, Fu M, Liu Y, Zhou X, Huang Z, Wang F, Li W. Improved Black-Winged Kite Algorithm with Multi-Strategy Optimization for Identifying Dendrobium huoshanense. Biomimetics. 2025; 10(4):226. https://doi.org/10.3390/biomimetics10040226
Chicago/Turabian StyleJia, Chaochuan, Ting Yang, Maosheng Fu, Yu Liu, Xiancun Zhou, Zhendong Huang, Fang Wang, and Wenxia Li. 2025. "Improved Black-Winged Kite Algorithm with Multi-Strategy Optimization for Identifying Dendrobium huoshanense" Biomimetics 10, no. 4: 226. https://doi.org/10.3390/biomimetics10040226
APA StyleJia, C., Yang, T., Fu, M., Liu, Y., Zhou, X., Huang, Z., Wang, F., & Li, W. (2025). Improved Black-Winged Kite Algorithm with Multi-Strategy Optimization for Identifying Dendrobium huoshanense. Biomimetics, 10(4), 226. https://doi.org/10.3390/biomimetics10040226