What Inspires Biomimicry in Construction? Patterns, Trends, and Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Sources
- Publications from the last ten years (2013–2023);
- Peer-reviewed journal articles, reviews, and documented case studies;
- The explicit application of biomimicry principles in materials, structures, or building systems.
2.2. Research Methods and Processes
- Phase 1: Compilation and Screening
- Phase 2: Classification of Imitation Criteria
- Phase 3: Systematization and Synthesis
3. Results
3.1. Category Type and Application
Connections Between Architectural Applications, Biological Categories, and Imitation Criteria
3.2. Imitation Criteria by Category
3.3. Patterns and Trends Identified
3.3.1. Observed Patterns
3.3.2. Emerging Design Trends
4. Discussion
4.1. Applied Perspectives on Biomimicry
4.2. Proposed Framework for Implementing Biomimicry in Construction Industry
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Røstvik, H.N. Sustainable Architecture—What’s Next? Encyclopedia 2021, 1, 293–313. [Google Scholar] [CrossRef]
- Pugalenthi, A.M.; Khlie, K.; Ahmed, F.H. Harnessing the Power of Biomimicry for Sustainable Innovation in Construction Industry. J. Infrastruct. Policy Dev. 2024, 8, 6663. [Google Scholar] [CrossRef]
- Abeywardhana, A.S. Green Building and Energy Efficient Design. World J. Adv. Res. Rev. 2024, 23, 1621–1629. [Google Scholar] [CrossRef]
- Rahubadda, A.; Kulatunga, U. Harnessing Nature’s Blueprint: Biomimicry in Urban Building Design for Sustainable and Resilient Cities. In Proceedings of the 12th World Construction Symposium, Moratuwa, Sri Lanka, 9–10 August 2024; pp. 532–543. [Google Scholar]
- Zhang, Z.; Wang, X. Bioinspired Adaptive Landscape Design: Environmental Responsiveness Strategy Based on Biomimetic Principles—Driven Molecular and Cellular Biomechanics. MCB Mol. Cell. Biomech. 2025, 22, 485. [Google Scholar] [CrossRef]
- Al-Masri, A.; Abdulsalam, M.; Hashaykeh, N.; Salameh, W. Bio-Mimicry in Architecture: An Explorative Review of Innovative Solution toward Sustainable Buildings. Najah Univ. J. Res.—A Nat. Sci. 2025, 39, 39–46. [Google Scholar] [CrossRef]
- Danish, M.; Noor, M.Z.M.; Azeqa, A. Biomimicry in Malaysian Architecture: Crafting A Modular Framework for Sustainable Design. Int. J. Acad. Res. Bus. Soc. Sci. 2024, 14, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Claggett, N.; Surovek, A.; Capehart, W.; Shahbazi, K. Termite Mounds: Bioinspired Examination of the Role of Material and Environment in Multifunctional Structural Forms. J. Struct. Eng. 2018, 144, 7. [Google Scholar] [CrossRef]
- Elsakksa, A.; Marouf, O.; Madkour, M. Biomimetic Approach for Thermal Performance Optimization in Sustainable Architecture. Case Study: Office Buildings in Hot Climate Countries. IOP Conf. Ser. Earth Environ. Sci. 2022, 1113, 012004. [Google Scholar] [CrossRef]
- Chen, D.A.; Klotz, L.E.; Ross, B.E. Mathematically Characterizing Natural Systems for Adaptable, Biomimetic Design. Procedia Eng. 2016, 145, 497–503. [Google Scholar] [CrossRef]
- Ergün, R.; Aykal, F.D. The Use of Biomimicry in Architecture for Sustainable Building Design: A Systematic Review. Alam Cipta 2022, 15, 24–37. [Google Scholar] [CrossRef]
- Regassa, Y.; Lemu, H.G.; Sirabizuh, B.; Rahimeto, S. Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures. J. Compos. Sci. 2021, 5, 57. [Google Scholar] [CrossRef]
- Sedira, N.; Pinto, J.; Ginja, M.; Gomes, A.P.; Nepomuceno, M.C.S.; Pereira, S. Investigating the Architecture and Characteristics of Asian Hornet Nests: A Biomimetics Examination of Structure and Materials. Materials 2023, 16, 7027. [Google Scholar] [CrossRef] [PubMed]
- Bulit, F.; Massoni, V. Arquitectura de Los Nidos de La Golondrina Ceja Blanca (Tachycineta leucorrhoa) Construidos En Cajas Nido. El Hornero 2004, 19, 69–76. [Google Scholar] [CrossRef]
- Klein, J. Las Lecciones de Construcción Que Podemos Aprender de Las Termitas. New York Times, 29 March 2019. [Google Scholar]
- Olabi, B.; Selcuk, S.A.; Avinc, G.M. A Discussion on The Eden Project within The Light of Biomimicry and Performalism Concepts. In Proceedings of the ICSAS 2nd International Conference on Applied Sciences, Erzurum, Turkey, 19–21 April 2024. [Google Scholar]
- Knippers, J.; Jungjohann, H.; Scheible, F.; Oppe, M. Bio-Inspired Kinetic GFRP-Façade for the Thematic Pavilion of the EXPO 2012 in Yeosu. In Proceedings of the IASS-APCS-Symposium (IASS 2012), Seoul, Republic of Korea, 21–24 May 2012; Volume 90, pp. 341–347. [Google Scholar]
- Biloria, N.; Thakkar, Y. Integrating Algae Building Technology in the Built Environment: A Cost and Benefit Perspective. Front. Archit. Res. 2020, 9, 370–384. [Google Scholar] [CrossRef]
- Stucke, I.; Vedoya, D.E.; Morán, R.G. The Sustainable Architectural Design Based on Natural Processes. Arquitecno 2019, 14, 2–8. [Google Scholar]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis Campbell Systematic Reviews. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Gertik, A.; Karaman, A. The Fractal Approach in the Biomimetic Urban Design: Le Corbusier and Patrick Schumacher. Sustainability 2023, 15, 7682. [Google Scholar] [CrossRef]
- Blanco, E.; Cruz, E.; Lequette, C.; Raskin, K.; Clergeau, P. Biomimicry in French Urban Projects: Trends and Perspectives from the Practice. Biomimetics 2021, 6, 27. [Google Scholar] [CrossRef]
- Othmani, N.I.; Mohd Yunos, M.Y.; Ramlee, N.; Abdul Hamid, N.H.; Mohamed, S.A.; Yeo, L.B. Biomimicry Levels as Design Inspiration in Design. Int. J. Acad. Res. Bus. Soc. Sci. 2022, 12, 1094–1107. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Blanco, E.; Kohsaka, R. Application of Biomimetics to Architectural and Urban Design: A Review across Scales. Sustainability 2020, 12, 9813. [Google Scholar] [CrossRef]
- Othmani, N.I.; Mohamed, S.A.; Abdul Hamid, N.H.; Ramlee, N.; Yeo, L.B.; Mohd Yunos, M.Y. Reviewing Biomimicry Design Case Studies as a Solution to Sustainable Design. Environ. Sci. Pollut. Res. 2022, 29, 69327–69340. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Stefańska, A. Bio-Logic, a Review on the Biomimetic Application in Architectural and Structural Design. Ain Shams Eng. J. 2023, 14, 101822. [Google Scholar] [CrossRef]
- du Plessis, A.; Babafemi, A.J.; Paul, S.C.; Panda, B.; Tran, J.P.; Broeckhoven, C. Biomimicry for 3D Concrete Printing: A Review and Perspective. Addit. Manuf. 2021, 38, 101823. [Google Scholar] [CrossRef]
- Samra, M.A.; Gendy, N.G.A. Mapping Biomimicry Design Strategies to Achieving Thermal Regulation Efficiency in Egyptian Hot Environments. Int. J. Archit. Eng. Urban. Res. 2021, 4, 261–279. [Google Scholar] [CrossRef]
- Shashwat, S.; Zingre, K.T.; Thurairajah, N.; Kumar, D.K.; Panicker, K.; Anand, P.; Wan, M.P. A Review on Bioinspired Strategies for an Energy-Efficient Built Environment. Energy Build. 2023, 296, 113382. [Google Scholar] [CrossRef]
- Dong, X.; Yao, L.; Liu, H.; Ding, Y. Dragonfly-Inspired 3D Bionic Folding Grid Structure Design. Appl. Sci. 2025, 15, 1673. [Google Scholar] [CrossRef]
- Lietz, C.; Schaber, C.F.; Gorb, S.N.; Rajabi, H. The Damping and Structural Properties of Dragonfly and Damselfly Wings during Dynamic Movement. Commun. Biol. 2021, 4, 737. [Google Scholar] [CrossRef]
- Lin, C.; Teng, T.; Chang, H.; Chen, P. Desert Beetle-Inspired Hybrid Wettability Surfaces for Fog Collection Fabricated by 3D Printing and Atmospheric Pressure Plasma Treatment. Biomimetics 2025, 10, 143. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z. Hybrid Engineered Materials with High Water-Collecting Efficiency Inspired by Namib Desert Beetles. Chem. Commun. 2016, 52, 6809–6812. [Google Scholar] [CrossRef]
- Yu, Z.; Yun, F.F.; Wang, Y.; Yao, L.; Dou, S.; Liu, K.; Jiang, L.; Wang, X. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting. Small 2017, 13, 1701403. [Google Scholar] [CrossRef]
- Bai, H.; Wang, L.; Ju, J.; Sun, R.; Zheng, Y.; Jiang, L. Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns. Adv. Mater. 2014, 26, 5025–5030. [Google Scholar] [CrossRef] [PubMed]
- Gurera, D.; Bhushan, B. Optimization of Bioinspired Conical Surfaces for Water Collection from Fog. J. Colloid. Interface Sci. 2019, 551, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, S.; Wei, M.; Huang, J.; Xu, H.; Lu, Y.; Song, W. Flexible Passive Radiative Cooling Inspired by Saharan Silver Ants. Sol. Energy Mater. Sol. Cells 2020, 210, 110512. [Google Scholar] [CrossRef]
- Shi, N.N.; Tsai, C.C.; Camino, F.; Bernard, G.D.; Yu, N.; Wehner, R. Keeping Cool: Enhanced Optical Reflection and Radiative Heat Dissipation in Saharan Silver Ants. Science 2015, 349, 298–301. [Google Scholar] [CrossRef]
- Zimmerl, M.; Kaltenböck, P.; Gebeshuber, I.C. Utilizing Passive Radiative Properties of Silver Ants. Proceedings 2024, 107, 45. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Chen, X.; Yan, H.; Yang, Y. Passive Daytime Radiative Cooling: Fundamentals, Material Designs, and Applications. EcoMat 2022, 4, e12153. [Google Scholar] [CrossRef]
- Hassan, F.H.F.; Ali, K.A.Y.; Ahmed, S.A.M. Biomimicry as an Approach to Improve Daylighting Performance in Office Buildings in Assiut City, Egypt. J. Daylighting 2023, 10, 1–16. [Google Scholar] [CrossRef]
- Bui, D.K.; Nguyen, T.N.; Ghazlan, A.; Ngo, T.D. Biomimetic Adaptive Electrochromic Windows for Enhancing Building Energy Efficiency. Appl. Energy 2021, 300, 117341. [Google Scholar] [CrossRef]
- López, M.; Rubio, R.; Martín, S.; Croxford, B. How Plants Inspire Façades. From Plants to Architecture: Biomimetic Principles for the Development of Adaptive Architectural Envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Brzezicki, M.; Kutnar, A. State of the Art in Building Façades. In Bio-Based Building Skin. Environmental Footprints and Eco-Design of Products and Processes; Springer: Singapore, 2019; ISBN 9789811337468. [Google Scholar]
- De Luca, F.; Sepúlveda, A.; Varjas, T. Static Shading Optimization for Glare Control and Daylight. Proc. Int. Conf. Educ. Res. Comput. Aided Archit. Des. Eur. 2021, 2, 419–428. [Google Scholar] [CrossRef]
- Prabhakaran, R.; Spear, M.; Curling, S.; Wooten-Beard, P.; Jones, P.; Donnison, I.; Ormondroyd, G. Plants and Architecture: The Role of Biology and Biomimetics in Materials Development for Buildings. Intell. Build. Int. 2019, 30, 1145–1154. [Google Scholar] [CrossRef]
- Yeler, G.M. Mimari Strüktürlerde Canlı Dünyanın Etkilerine Analitik Bir Bakış. Uludağ Univ. J. Fac. Eng. 2015, 20, 23. [Google Scholar] [CrossRef]
- Nanaa, Y. The Lotus Flower: Biomimicry Solutions in the Built Environment. Sustain. Dev. Plan. VII 2015, 1, 1085–1093. [Google Scholar] [CrossRef]
- Collins, C.M.; Safiuddin, M. Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures 2022, 7, 46. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Qian, H.; Li, X. Superhydrophobic Surfaces for Corrosion Protection: A Review of Recent Progresses and Future Directions. J. Coat. Technol. Res. 2016, 13, 11–29. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, W.; Dong, C. Biomimetic Self-Cleaning Surfaces: Synthesis, Mechanism and Applications. J. R. Soc. Interface 2016, 13, 20160300. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, W.; Mou, J.; Zheng, S.; Jiang, L.; Sun, Z.; Wang, E. Research Progress of Biomimetic Superhydrophobic Surface Characteristics, Fabrication, and Application. Adv. Mech. Eng. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nishikawa, N.; Mayama, H.; Nonomura, Y.; Yokojima, S.; Nakamura, S.; Uchida, K. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf. Langmuir 2015, 31, 7355–7363. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zhang, D.; Li, L.; Zhu, Y. Preparation and Characterization of Superhydrophobic Surface Based on Polydimethylsiloxane (PDMS). J. Adhes. Sci. Technol. 2019, 33, 1870–1881. [Google Scholar] [CrossRef]
- Yang, H.; Liang, F.; Chen, Y.; Wang, Q.; Qu, X.; Yang, Z. Lotus Leaf Inspired Robust Superhydrophobic Coating from Strawberry-like Janus Particles. NPG Asia Mater. 2015, 7, e176. [Google Scholar] [CrossRef]
- Huang, Z.; Cai, C.; Kuai, L.; Li, T.; Huttula, M.; Cao, W. Leaf-Structure Patterning for Antireflective and Self-Cleaning Surfaces on Si-Based Solar Cells. Sol. Energy 2018, 159, 733–741. [Google Scholar] [CrossRef]
- Kong, T.; Luo, G.; Zhao, Y.; Liu, Z. Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications. Adv. Funct. Mater. 2019, 29, 1808012. [Google Scholar] [CrossRef]
- Charpentier, V.; Hannequart, P.; Adriaenssens, S.; Baverel, O.; Viglino, E.; Eisenman, S. Kinematic Amplification Strategies in Plants and Engineering. Smart Mater. Struct. 2017, 26, 130. [Google Scholar] [CrossRef]
- Avinç, G.M. Biomimetic Approach for Adaptive, Responsive and Kinetic Building Facades: A Bibliometric Review of Emerging Trends. New Des. Ideas 2024, 8, 567–580. [Google Scholar] [CrossRef]
- Cheng, T.; Tahouni, Y.; Sahin, E.S.; Ulrich, K.; Lajewski, S.; Bonten, C.; Wood, D.; Rühe, J.; Speck, T.; Menges, A. Weather-Responsive Adaptive Shading through Biobased and Bioinspired Hygromorphic 4D- Printing (under Review). Nat. Commun. 2024, 15, 10366. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wang, Y.; Shi, X. Adaptive Façades: Review of Designs, Performance Evaluation, and Control Systems. Buildings 2022, 12, 2112. [Google Scholar] [CrossRef]
- Morales-Guzmán, C.C. Diseño y Construcción de Un Paraguas Plegable Para Espacios Arquitectónicos. Rev. Arquit. 2019, 21, 76–89. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Fadli, F.; Mohammadi, M. Biomimetic Kinetic Shading Facade Inspired by Tree Morphology for Improving Occupant’s Daylight Performance. J. Daylighting 2021, 8, 65–82. [Google Scholar] [CrossRef]
- El-Rahman, S.M.A.; Esmail, S.I.; Khalil, H.B.; El-Razaz, Z. Biomimicry Inspired Adaptive Building Envelope in Hot Climate. J. Eng. Res. 2020, 166, A1–A17. [Google Scholar] [CrossRef]
- Kahramanoğlu, B.; Çakici Alp, N. Kinetik Sistemli Bina Cephelerinin Modelleme Yöntemlerinin İncelenmesi. AURUM J. Eng. Syst. Archit. 2021, 5, 119–138. [Google Scholar] [CrossRef]
- Kuru, A. Biomimetic Adaptive Building Skins: An Approach towards Multifunctionality. Ph.D. Thesis, University of New South Wale, Sydney, Australia, 2022. [Google Scholar]
- Mohammed, A. A Systematic Design Technique of Biomimicry to Correlate and Integrate Architecture and Biology to Attain Green Buildings. JES. J. Eng. Sci. 2023, 5, 240–259. [Google Scholar] [CrossRef]
- Webb, M. Biomimetic Building Facades Demonstrate Potential to Reduce Energy Consumption for Different Building Typologies in Different Climate Zones. Clean. Technol. Environ. Policy 2022, 24, 493–518. [Google Scholar] [CrossRef] [PubMed]
- Faragalla, A.M.A.; Asadi, S. Biomimetic Design for Adaptive Building Façades: A Paradigm Shift towards Environmentally Conscious Architecture. Energies 2022, 15, 5390. [Google Scholar] [CrossRef]
- Maslov, D.; Cruz, F.; Pinheiro, M.; Miranda, T.; Valente, I.B.; Ferreira, V.; Pereira, E. Functional Conception of Biomimetic Artificial Reefs Using Parametric Design and Modular Construction. J. Mar. Sci. Eng. 2024, 12, 1682. [Google Scholar] [CrossRef]
- Vivier, B.; Dauvin, J.C.; Navon, M.; Rusig, A.M.; Mussio, I.; Orvain, F.; Boutouil, M.; Claquin, P. Marine Artificial Reefs, a Meta-Analysis of Their Design, Objectives and Effectiveness. Glob. Ecol. Conserv. 2021, 27, e01538. [Google Scholar] [CrossRef]
- Pham, L.T.; Huang, J.Y. 3D Printed Artificial Coral Reefs: Design and Manufacture. Low-Carbon. Mater. Green. Constr. 2024, 2, 23. [Google Scholar] [CrossRef]
- Chen, D.A.; Ross, B.E.; Klotz, L.E. Lessons from a Coral Reef: Biomimicry for Structural Engineers. J. Struct. Eng. 2015, 141, 4. [Google Scholar] [CrossRef]
- La Magna, R.; Gabler, M.; Reichert, S.; Schwinn, T.; Waimer, F.; Menges, A.; Knippers, J. From Nature to Fabrication: Biomimetic Design Principles for the Production of Complex Spatial Structures. In Advances in Architectural Geometry 2012; Springer: Vienna, Austria, 2013; pp. 107–122. [Google Scholar] [CrossRef]
- Grun, T.B.; von Scheven, M.; Geiger, F.; Schwinn, T.; Sonntag, D.; Bischoff, M.; Knippers, J.; Menges, A.; Nebelsick, J.H. Building Principles and Structural Design of Sea Urchins: Examples of Bio-Inspired Constructions. In Biomimetics for Architecture: Learning from Nature; Knippers, J., Schmid, U., Speck, T., Eds.; Birkhäuser: Berlin, Boston, 2019; pp. 104–115. [Google Scholar] [CrossRef]
- Shapkin, N.P.; Papynov, E.K.; Panasenko, A.E.; Khalchenko, I.G.; Mayorov, V.Y.; Drozdov, A.L.; Maslova, N.V.; Buravlev, I.Y. Synthesis of Porous Biomimetic Composites: A Sea Urchin Skeleton Used as a Template. Appl. Sci. 2021, 11, 8897. [Google Scholar] [CrossRef]
- Perricone, V.; Grun, T.B.; Marmo, F.; Langella, C.; Candia Carnevali, M.D. Constructional Design of Echinoid Endoskeleton: Main Structural Components and Their Potential for Biomimetic Applications. Bioinspiration Biomim. 2021, 16, 011001. [Google Scholar] [CrossRef]
- Öztürk, B.; Mutlu-Avinç, G.; Arslan-Selçuk, S. Enhancing Energy Efficiency in Glass Facades Through Biomimetic Design Strategies. Habitat. Sustentable 2024, 14, 34–43. [Google Scholar] [CrossRef]
- Paar, M.J.; Petutschnigg, A. Biomimetic Inspired, Natural Ventilated Facade A Conceptual Study. J. Facade Des. Eng. 2017, 4, 131–142. [Google Scholar] [CrossRef]
- Karunakaran, G.; Cho, E.B.; Thirumurugan, K.; Kumar, G.S.; Kolesnikov, E.; Boobalan, S.; Janarthanan, G.; Pillai, M.M.; Rajendran, S. Mesoporous Mn-Doped Hydroxyapatite Nanorods Obtained via Pyridinium Chloride Enabled Microwave-Assisted Synthesis by Utilizing Donax Variabilis Seashells for Implant Applications. Mater. Sci. Eng. C 2021, 126, 112170. [Google Scholar] [CrossRef]
- Castriotto, C.; Giantini, G.; Celani, G. Biomimetic Reciprocal Frames A Design Investigation on Bird’s Nests and Spatial Structures. Proc. Int. Conf. Educ. Res. Comput. Aided Archit. Des. Eur. 2019, 1, 613–620. [Google Scholar] [CrossRef]
- Vitalis, L.; Chayaamor-Heil, N. Forcing Biological Sciences into Architectural Design: On Conceptual Confusions in the Field of Biomimetic Architecture. Front. Archit. Res. 2022, 11, 179–190. [Google Scholar] [CrossRef]
- Wood, M.J.; Brock, G.; Kietzig, A.M. The Penguin Feather as Inspiration for Anti-Icing Surfaces. Cold Reg. Sci. Technol. 2023, 213, 4–9. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of Anti-Icing Surfaces: Smooth, Textured or Slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Oh, S.; Choi, G.S.; Kim, H. Climate-Adaptive Building Envelope Controls: Assessing the Impact on Building Performance. Sustainability 2024, 16, 288. [Google Scholar] [CrossRef]
Category | Type of Organism or Natural System | Part of the Organism or Natural System | Reference for Imitation | Imitation Criteria | Application | Sources | |||
---|---|---|---|---|---|---|---|---|---|
F | f | E | P | ||||||
Insects | Termite mounds | - | Thermal regulation and passive ventilation system | x | x | Ventilation, thermal regulation, and energy efficiency in buildings | [6,21,22,23,24,25,26,27,28,29] | ||
Termites | Appearance and digestive system | Metagenomics | x | x | x | x | Buildings capable of efficiently producing hydrogen using metagenomic principles | [22] | |
Dragonfly | Wings | Geometric patterns | x | x | Lightweight and resistant roofs | [26,30,31] | |||
Fog-harvesting beetle | Exoskeleton | Hydrophilic and hydrophobic surfaces | x | Water collection from fog or humid air through condensation | [25,32,33,34,35,36] | ||||
Sahara silver ant | Microscopic triangular hairs | Reflective, pristine structures | x | x | Radiative cooling systems | [29,37,38,39,40] | |||
Reptiles | Snake | Scales | Passive ventilation and solar reflection | x | x | x | Facades that optimize ventilation and solar reflection | [25,41] | |
Chameleon | Ability to change skin color in response to external stimuli | Dynamic adaptation to the environment and nanocrystal reorganization | x | Reduction in energy consumption; increased indoor thermal comfort; adaptive window systems | [6,28,29,42] | ||||
Plants | General plants | Photosynthesis | Solar energy capture and utilization | x | Solar panels, energy-efficient facades | [21,41,43,44,45,46,47] | |||
Lotus flower | Leaf | Superhydrophobicity | x | Self-cleaning windows and coatings | [23,24,48,49,50,51,52,53,54,55,56,57] | ||||
Strelitzia reginae (Bird of Paradise) | Leaves | Flower opening and closing mechanism during pollination | x | Adaptive shading on facades | [21,58,59,60,61] | ||||
Palm trees and tropical plants | Leaves | Structural flexibility | x | x | Flexible and resistant shading systems; dynamic roofs; modular sunshades | [29,62,63,64,65,66] | |||
Pine | Pinecones | Ability to open and close depending on environmental humidity | x | Systems that automatically adjust to regulate light entry, ventilation, or thermal insulation without the need for electricity | [26] | ||||
Cell wall | - | Structure and resistance | x | Material optimization in lightweight yet resistant structures | [24,67] | ||||
General trees | Structure | Multilayer configurations | x | Adaptive kinetic facades | [29,68,69] | ||||
Marine species | Coral reef | Porous and branched structure | Strength and lightness | x | Lightweight structures and resistant roofs | [21,70,71,72,73] | |||
Sea urchin | Skeleton | Modular polygonal plates connected by calcareous projections | x | Resistant and lightweight structures; joints that withstand shear and normal forces, eliminating the need for torsion elements | [74,75,76,77] | ||||
Sand dollar | Plates | Strength, lightness, and material efficiency | x | Material efficiency in lightweight and resistant structures | [74] | ||||
Algae | - | CO2 absorption and oxygen production during growth | x | Bio-facades with bioreactors for thermal regulation and CO2 capture | [23,78,79] | ||||
Jellyfish | Translucent gelatinous structure and ability to interact with light and heat | - | x | x | Thermochromic materials that adjust their light transmission based on the external temperature | [29] | |||
Fungi | Pleurotus ostreatus | - | Biological binding capacity, adaptation to complex surfaces, bioactive mineralization processes | x | x | Design of innovative biocomposites, such as biodigital bricks | [80] | ||
Birds | Nest | Interwoven branches | Adaptation to changing climate conditions for optimal lighting and natural ventilation | x | x | Strong, lightweight buildings that optimize climatic conditions | [13,14,25,81,82] | ||
Penguins | - | Process for adapting to climatic conditions | x | Solutions that minimize heat loss in structures | [23,83,84] | ||||
Arthropods | Spiders | Web | Strength and flexibility and ability to absorb and distribute energy | x | x | Optimization of passive ventilation and structural resistance; flexible facades and roofs | [12,23,26] | ||
Ecosystems | Forests, wetlands, rivers, and local biodiversity areas in urban environments | - | Ecosystem organization and ecosystem functioning to capture and convert solar energy, store water, and participate in natural cycles (carbon, nitrogen) | x | x | x | Sustainable, efficient, and regenerative solutions | [23,24,25,26,29,85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyes-Balladares, A.; Moya-Jiménez, R.; Molina-Dueñas, V.; Chaca-Espinoza, W.; Magal-Royo, T. What Inspires Biomimicry in Construction? Patterns, Trends, and Applications. Biomimetics 2025, 10, 259. https://doi.org/10.3390/biomimetics10050259
Goyes-Balladares A, Moya-Jiménez R, Molina-Dueñas V, Chaca-Espinoza W, Magal-Royo T. What Inspires Biomimicry in Construction? Patterns, Trends, and Applications. Biomimetics. 2025; 10(5):259. https://doi.org/10.3390/biomimetics10050259
Chicago/Turabian StyleGoyes-Balladares, Andrea, Roberto Moya-Jiménez, Víctor Molina-Dueñas, Wilmer Chaca-Espinoza, and Teresa Magal-Royo. 2025. "What Inspires Biomimicry in Construction? Patterns, Trends, and Applications" Biomimetics 10, no. 5: 259. https://doi.org/10.3390/biomimetics10050259
APA StyleGoyes-Balladares, A., Moya-Jiménez, R., Molina-Dueñas, V., Chaca-Espinoza, W., & Magal-Royo, T. (2025). What Inspires Biomimicry in Construction? Patterns, Trends, and Applications. Biomimetics, 10(5), 259. https://doi.org/10.3390/biomimetics10050259