Bio-Inspired Teleoperation Control: Unified Rapid Tracking, Compliant and Safe Interaction
Abstract
1. Introduction
- (1)
- Rapid Trajectory Tracking: ensures the synchronization of master-slave tracking across varying velocities, while reducing overshoot under unpredictable motions.
- (2)
- Compliant Interaction Control: dynamically adjusts stiffness and damping based on real-time force feedback, enabling smooth and safe contact with objects.
- (3)
- Collision Reflex Mechanism: mimics human reflexes by triggering an emergency retraction when abrupt force changes (e.g., collisions) are detected, preventing excessive interaction forces.
2. Related Work
2.1. Adaptive Tracking and Compliance Control
2.2. Safety Mechanism Under Collision Situation
3. Method
- Fidelity: When the slave device makes initial contact with the environment or an object, it is important to maintain accurate force feedback to ensure the high fidelity of the interaction.
- Compliance: During prolonged contact, following the servo tracking command may lead to a rapid increase in interaction forces, which poses a risk of damaging the equipment. In such cases, compliant control must be introduced to ensure safe and sustained interaction.
- Safety: In the event of operator error or unexpected external collisions, a rapid stress-response mechanism is required to minimize impact forces and ensure the safety of both the slave device and the interacting objects.
3.1. Rapid Tracking Control
3.2. Unified Interaction Control: Contact Compliance and Collision Safety
Algorithm 1 Collision safety module |
|
4. Experiments and Results
4.1. Setup
- (1)
- Unconstrained Tracking Experiment: The operator manipulates the slave manipulator via the master device (Dobot Xtrainer) to perform back-and-forth lateral movements. The tracking speed and precision of the slave manipulator’s trajectory following the master command are compared under different control methods.
- (2)
- Slow Contact Experiment: The operator guides the slave manipulator to make gradual contact with a soft material while incrementally increasing the contact depth. This tests the following factors: Force Fidelity: the accuracy of the slave manipulator’s force feedback during initial contact. Compliance Performance: the adaptability of the slave manipulator to maintain smooth interaction as contact depth increases.
- (3)
- Rapid Collision Experiment: The operator drives the slave manipulator to collide with an object at high speed. This evaluates the system’s safety response capability under extreme interaction scenarios across different control methods.
4.2. The Unconstrained Tracking Experiment
4.3. The Slow Contact Experiment
- Trial 1: The end of the master device moves at an operational speed of 0.5 mm/s, with a target penetration depth of 1 cm below the contact surface.
- Trial 1: The end of the master device moves at an operational speed of 1 mm/s, with a target penetration depth of 1 cm below the contact surface.
- Trial 3: The end of the master device moves at an operational speed of 1 mm/s, with a target penetration depth of 1.5 cm below the contact surface.
4.4. The Collision Reflex Experiment
5. Discussion
5.1. Scalability to High-DOF Manipulators and High-Latency Networks
5.2. Robustness in Unstructured Environments with High Disturbances
5.3. Limitations
- 1.
- Trajectory-Aware Reflex: We will develop a more sophisticated collision reaction strategy where the reflex motion is not arbitrary but is constrained to retreat along the recent trajectory of the end-effector. This will minimize unpredictable movements and further reduce the risk of secondary collisions.
- 2.
- Force-Direction Weighting: The reflex method will be extended to incorporate a weighted consideration of the contact force’s normal direction, allowing for a more intelligent and compliant withdrawal from the collision.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Tuning Methodology
Parameter Categories | Parameter Symbol | Parameter Meaning |
---|---|---|
Tracking Control Parameters | Tracking control gain coefficient | |
Master-slave position error-induced tracking gain coefficient | ||
Master-slave velocity error-induced tracking gain coefficient | ||
Master-slave acceleration error-induced tracking gain coefficient | ||
Contact Compliance Parameters | Contact compliance control gain coefficient | |
Mapping coefficient from threshold-normalized interaction force to velocity control output | ||
Sustained contact force threshold | ||
l | Sustained interaction force index gain | |
D | Damping coefficient | |
n | Non-Newtonian fluid velocity term index gain coefficient | |
K | Stiffness coefficient | |
m | Non-Newtonian fluid position term index gain coefficient | |
Collision reaction parameters | Collision reaction control gain coefficient | |
Collision detection threshold | ||
Collision reaction force attenuation coefficient |
References
- Jiang, Z.; Ma, Y.; Cao, X.; Shen, M.; Yin, C.; Liu, H.; Cui, J.; Sun, Z.; Huang, X.; Li, H. FC-EODR: Immersive Humanoid Dual-Arm Dexterous Explosive Ordnance Disposal Robot. Biomimetics 2023, 8, 67. [Google Scholar] [CrossRef]
- Cheng, C.; Dai, W.; Wu, T.; Chen, X.; Wu, M.; Yu, J.; Jiang, J.; Lu, H. Efficient and Precise Homo-Hetero Teleoperation Based on an Optimized Upper Limb Exoskeleton. IEEE/Asme Trans. Mechatronics, 2024; early access. [Google Scholar] [CrossRef]
- Saafi, H.; Laribi, M.A.; Zeghloul, S. Forward Kinematic Model Resolution of a Special Spherical Parallel Manipulator: Comparison and Real-Time Validation. Robotics 2020, 9, 62. [Google Scholar] [CrossRef]
- Artigas, J.; Balachandran, R.; Riecke, C.; Stelzer, M.; Weber, B.; Ryu, J.H.; Albu-Schaeffer, A. KONTUR-2: Force-feedback teleoperation from the international space station. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1166–1173. [Google Scholar] [CrossRef]
- Pei, X.; Liu, S.; Wei, A.; Shi, R.; Dai, Z. Bioinspired Rigid–Flexible Coupled Adaptive Compliant Motion Control of Robot Gecko for Space Stations. Biomimetics 2023, 8, 415. [Google Scholar] [CrossRef] [PubMed]
- Hogan, N. Impedance Control: An Approach to Manipulation. In Proceedings of the American Control Conference, San Diego, CA, USA, 6–8 June 1984; pp. 304–313. [Google Scholar] [CrossRef]
- Colgate, E.; Hogan, N. An analysis of contact instability in terms of passive physical equivalents. In Proceedings of the International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; Volume 1, pp. 404–409. [Google Scholar] [CrossRef]
- Chang, Y.H.; Yang, C.Y.; Lin, H.W. Robust Adaptive-Sliding-Mode Control for Teleoperation Systems with Time-Varying Delays and Uncertainties. Robotics 2024, 13, 89. [Google Scholar] [CrossRef]
- Zhai, D.H.; Xia, Y. Adaptive Control of Semi-Autonomous Teleoperation System with Asymmetric Time-Varying Delays and Input Uncertainties. IEEE Trans. Cybern. 2017, 47, 3621–3633. [Google Scholar] [CrossRef]
- Vorndamme, J.; Melone, A.; Kirschner, R.; Figueredo, L.; Haddadin, S. Safe Robot Reflexes: A Taxonomy-Based Decision and Modulation Framework. IEEE Trans. Robot. 2025, 41, 982–1001. [Google Scholar] [CrossRef]
- Yang, C.; Ganesh, G.; Haddadin, S.; Parusel, S.; Albu-Schaeffer, A.; Burdet, E. Human-Like Adaptation of Force and Impedance in Stable and Unstable Interactions. IEEE Trans. Robot. 2011, 27, 918–930. [Google Scholar] [CrossRef]
- Haddadin, S.; De Luca, A.; Albu-Schäffer, A. Robot Collisions: A Survey on Detection, Isolation, and Identification. IEEE Trans. Robot. 2017, 33, 1292–1312. [Google Scholar] [CrossRef]
- Tomić, T.; Ott, C.; Haddadin, S. External Wrench Estimation, Collision Detection, and Reflex Reaction for Flying Robots. IEEE Trans. Robot. 2017, 33, 1467–1482. [Google Scholar] [CrossRef]
- Phan-Thien, N.; Dudek, J. Pulsating flow of a plastic fluid. Nature 1982, 296, 843–844. [Google Scholar] [CrossRef]
- Brown, E.; Forman, N.A.; Orellana, C.S.; Zhang, H.; Maynor, B.W.; Betts, D.E.; DeSimone, J.M.; Jaeger, H.M. Generality of shear thickening in dense suspensions. Nat. Mater. 2010, 9, 220–224. [Google Scholar] [CrossRef]
- Keemink, A.Q.; Van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef]
- Ferraguti, F.; Landi, C.T.; Sabattini, L.; Bonfe, M.; Fantuzzi, C.; Secchi, C. A variable admittance control strategy for stable physical human–robot interaction. Int. J. Robot. Res. 2019, 38, 747–765. [Google Scholar] [CrossRef]
- Lu, Z.; Huang, P.; Liu, Z.; Chen, H. Fuzzy-Observer-Based Hybrid Force/Position Control Design for a Multiple-Sampling-Rate Bimanual Teleoperation System. IEEE Trans. Fuzzy Syst. 2019, 27, 1383–1396. [Google Scholar] [CrossRef]
- Du, L.; Lv, J.; Chen, S.; Qiu, L. Adaptive Impedance Modulation-Based Control for Human-Robot Interaction. In Proceedings of the IEEE International Conference on Robotics, Automation and Mechatronics (RAM), Hangzhou, China, 8–11 August 2024; pp. 212–215. [Google Scholar] [CrossRef]
- Xia, W.; Liao, Z.; Lu, Z.; Yao, L. Bio-Signal-Guided Robot Adaptive Stiffness Learning via Human-Teleoperated Demonstrations. Biomimetics 2025, 10, 399. [Google Scholar] [CrossRef]
- Tee, K.P.; Burdet, E.; Chew, C.M.; Milner, T.E. A model of force and impedance in human arm movements. Biol. Cybern. 2004, 90, 368–375. [Google Scholar] [CrossRef]
- Li, Y.; Jarrassé, N.; Burdet, E. Versatile Interaction Control and Haptic Identification in Humans and Robots. In Geometric and Numerical Foundations of Movements; Laumond, J.P., Mansard, N., Lasserre, J.B., Eds.; Springer International Publishing: Cham, Siwtzerland, 2017; pp. 187–206. [Google Scholar] [CrossRef]
- Jin, Z.; Qin, D.; Liu, A.; Zhang, W.a.; Yu, L. Model Predictive Variable Impedance Control of Manipulators for Adaptive Precision-Compliance Tradeoff. IEEE/ASME Trans. Mechatronics 2023, 28, 1174–1186. [Google Scholar] [CrossRef]
- Michel, Y.; Abdelhalem, Y.; Cheng, G. Passivity-Based Teleoperation with Variable Rotational Impedance Control. IEEE Robot. Autom. Lett. 2024, 9, 11658–11665. [Google Scholar] [CrossRef]
- Yang, Y.; Constantinescu, D.; Shi, Y. Robust Four-Channel Teleoperation Through Hybrid Damping-Stiffness Adjustment. IEEE Trans. Control Syst. Technol. 2020, 28, 920–935. [Google Scholar] [CrossRef]
- Michel, Y.; Li, Z.; Lee, D. A Learning-Based Shared Control Approach for Contact Tasks. IEEE Robot. Autom. Lett. 2023, 8, 8002–8009. [Google Scholar] [CrossRef]
- Michel, Y.; Rahal, R.; Pacchierotti, C.; Giordano, P.R.; Lee, D. Bilateral Teleoperation with Adaptive Impedance Control for Contact Tasks. IEEE Robot. Autom. Lett. 2021, 6, 5429–5436. [Google Scholar] [CrossRef]
- Harder, M.; Iskandar, M.; Lee, J.; Dietrich, A. Extensions to Dynamically-Consistent Collision Reaction Control for Collaborative Robots. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 5982–5988. [Google Scholar] [CrossRef]
- Gao, Z.; Peng, F.; Chen, C.; Zhang, Y.; Wang, Y.; Yan, R.; Tang, X. Event-triggered Hybrid Force Feedback Architecture with Tank-based Stabilization Method for Complicated Bilateral Teleoperation Tasks. Int. J. Control. Autom. Syst. 2024, 22, 2193–2206. [Google Scholar] [CrossRef]
- Vorndamme, J.; Figueredo, L.; Haddadin, S. Robot Contact Reflexes: Adaptive Maneuvers in the Contact Reflex Space. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 6687–6694. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, S.; Zhang, M.; Li, Z.; Liu, J.; Huang, J.; Zhang, Z.Q. Musculoskeletal Model-Based Adaptive Variable Impedance Control With Flexible Prescribed Performance for Rehabilitation Robots. Ieee/Asme Trans. Mechatronics 2025, 30, 2862–2870. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Chen, X.; Lu, H.; Zheng, Y.; Wu, J.; Wang, Y.; Zhang, Z.; Xiong, R. Compliance while resisting: A shear-thickening fluid controller for physical human-robot interaction. Int. J. Robot. Res. 2024, 43, 1731–1769. [Google Scholar] [CrossRef]
- Carpentier, J.; Saurel, G.; Buondonno, G.; Mirabel, J.; Lamiraux, F.; Stasse, O.; Mansard, N. The Pinocchio C++ library—A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives. In Proceedings of the IEEE International Symposium on System Integrations (SII), Paris, France, 14–16 January 2019. [Google Scholar]
OL-VT | PL-VT | Imp-L | Imp-H | V-Imp [27] | BITC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean |
1.01 | 0.53 | 0.67 | 0.25 | 1.26 | 0.46 | 1.20 | 0.72 | 0.69 | 0.41 | 0.48 | 0.23 |
1.79 | 0.84 | 1.31 | 0.67 | 3.21 | 1.58 | 2.22 | 0.88 | 0.96 | 0.55 | 0.94 | 0.49 |
2.35 | 1.18 | 2.60 | 0.82 | 3.68 | 2.07 | 2.28 | 1.40 | 2.66 | 1.01 | 1.52 | 0.69 |
4.77 | 1.91 | 7.14 | 2.40 | 4.91 | 2.80 | 5.61 | 2.25 | 2.91 | 1.47 | 1.91 | 1.08 |
Trial | PL-VT | Imp-L | V-Imp [27] | BITC | |
---|---|---|---|---|---|
Max. | #1 | −2.745 | −0.526 | −0.839 | −1.673 |
Dynamic | #2 | −5.208 | −1.346 | −2.723 | −3.479 |
Force | #3 | −10.26 | −3.409 | −7.590 | −5.312 |
Ave. | #1 | −2.371 | −0.474 | −0.744 | −1.558 |
Static | #2 | −4.632 | −1.182 | −1.927 | −1.893 |
Force | #3 | −9.748 | −3.103 | −2.652 | −1.977 |
Collision | Trial | Imp-L | RCR [30] | BITC |
---|---|---|---|---|
Reaction | #1 | - | 157 ms | 119 ms |
#2 | - | 211 ms | 169 ms | |
Latency | #3 | - | 238 ms | 185 ms |
Collision | #1 | 47.4% | 49.4% | 58.4% |
Force | #2 | 57.3% | 52.6% | 56.2% |
Attenuation | #3 | 49.6% | 56.3% | 65.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Xiao, H.; Dai, W.; Wei, Y.; Chen, Y.; Zhang, H.; Lu, H. Bio-Inspired Teleoperation Control: Unified Rapid Tracking, Compliant and Safe Interaction. Biomimetics 2025, 10, 625. https://doi.org/10.3390/biomimetics10090625
Cheng C, Xiao H, Dai W, Wei Y, Chen Y, Zhang H, Lu H. Bio-Inspired Teleoperation Control: Unified Rapid Tracking, Compliant and Safe Interaction. Biomimetics. 2025; 10(9):625. https://doi.org/10.3390/biomimetics10090625
Chicago/Turabian StyleCheng, Chuang, Haoran Xiao, Wei Dai, Yantong Wei, Yanjie Chen, Hui Zhang, and Huimin Lu. 2025. "Bio-Inspired Teleoperation Control: Unified Rapid Tracking, Compliant and Safe Interaction" Biomimetics 10, no. 9: 625. https://doi.org/10.3390/biomimetics10090625
APA StyleCheng, C., Xiao, H., Dai, W., Wei, Y., Chen, Y., Zhang, H., & Lu, H. (2025). Bio-Inspired Teleoperation Control: Unified Rapid Tracking, Compliant and Safe Interaction. Biomimetics, 10(9), 625. https://doi.org/10.3390/biomimetics10090625