Bonding Strategies for Zirconia Fixed Restorations: A Scoping Review of Surface Treatments, Cementation Protocols, and Long-Term Durability
Abstract
1. Introduction
- Yet clinical adoption remains inconsistent due to conflicting evidence, technique sensitivity, and a lack of consensus on optimal protocols [46]. For example, while airborne-particle abrasion with alumina enhances bond strength, excessive pressure may compromise the mechanical integrity of translucent zirconia [47,48,49,50]. Similarly, the efficacy of MDP primers varies with zirconia composition and surface treatment, underscoring the need for standardized guidelines [51,52,53,54,55].
2. Materials and Methods
2.1. PRISMA-ScR Compliance
2.2. Objective
2.3. Search Strategy
2.4. Eligibility Criteria
- Bond strength measurements (shear/microtensile in MPa);
- Clinical performance metrics (survival/debonding rates);
- Durability assessments (thermocycling, water storage, or chewing simulation results);
- Failure mode analyses (adhesive/cohesive/mixed fractures).
2.5. Literature Screening and Prioritization
- Lack of bond strength measurements;
- Absence of an aging protocol;
- No comparison between MDP and the defined* silica-based approaches;
- Animal or in vitro studies lacking clinical applicability;
- Not focused on zirconia bonding;
- Review articles or editorials;
- No standardized bonding protocol.
2.6. Quality Assessment of References
3. Results
3.1. Included Studies
3.2. Outline of Included Studies
3.3. Overview of Key Findings
3.3.1. Surface Treatments
3.3.2. Cementation Protocols
3.3.3. Long-Term Durability
3.4. Summary of Key Findings About Zirconia-Based FDP Restorations: Parameters and Performance
4. Discussion
4.1. Surface Pretreatments: Efficacy and Trade-Offs
4.2. Cementation Chemistry: MDP’s Dominance and Alternatives
4.3. Manufacturing and Veneering: Digital vs. Traditional
4.4. Aging and Clinical Translation: Bench-to-Bedside Gaps
4.5. Limitations of This Scoping Review
4.6. Future Directions
- RCTs on novel primers/lasers: Compare zirconia primers (e.g., Z-Prime Plus) and Er:YAG debonding efficacy in clinical settings [99].
- Bio-inspired Interfacial Design: Future research should prioritize the development of truly biomimetic interfaces. This includes investigating functionally graded primers that create a stiffness gradient between zirconia and dentin, mimicking the EDJ. Furthermore, exploring bio-adhesive concepts, such as synthetic polymers inspired by mussel adhesive proteins (e.g., catechol-containing polymers), could lead to novel primers with superior binding to zirconia in the wet oral environment [100,101].
4.7. Clinical Recommendations
- For High-Strength Zirconia (3Y-TZP): According to large clinical studies, airborne-particle abrasion (APA) with alumina (e.g., 50-μm, at low pressure) combined with an MDP-based monomer (e.g., Panavia V5) remains the clinically validated gold standard due to its extensive long-term success data [77]. Tribochemical silica coating + MDP cement shows high bond strengths in vitro and can be considered a promising alternative, but its clinical validation is less robust, and it should not yet be viewed as a superior replacement for APA.
- For AM Zirconia: Prioritize milled designs until AM process optimization is validated [3] (Huang et al., 2024).
5. Conclusions
- Clinical Recommendations: Airborne-particle abrasion with alumina + MDP-based resin cements remains the gold standard with the strongest clinical evidence. A tribochemical silica coating combined with MDP is a promising laboratory strategy but requires more robust long-term clinical validation before it can be universally recommended
- Research Gaps: Standardized aging protocols, bio-inspired interfacial designs, and RCTs comparing novel lasers/primers are needed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDP | 10-methacryloyloxydecyl dihydrogen phosphate |
ZrO2 | zirconia |
MPa | megapascal |
FDPs | fixed dental prostheses |
EDJ | enamel–dentin junction |
3D | three-dimensional |
FRC | fiber-reinforced composite |
RBFDP | resin-Bonded Fixed Dental Prosthesis |
AM | additively manufactured |
3Y-TZP | 3 mol% yttria-stabilized tetragonal zirconia polycrystal |
4Y-PSZ | 4 mol% Yttria-stabilized Partially Stabilized Zirconia |
5Y-PSZ | 5 mol% yttria-partially stabilized zirconia |
NAC | nanostructured Alumina Coating |
References
- Aldhuwayhi, S. Zirconia in Dental Implantology: A Review of the Literature with Recent Updates. Bioengineering 2025, 12, 543. [Google Scholar] [CrossRef]
- Singh, P.V.; Reche, A.; Paul, P.; Agarwal, S.; Singh, P.V.; Reche, A.; Paul, P.; Agarwal, S. Zirconia Facts and Perspectives for Biomaterials in Dental Implantology. Cureus 2023, 15, e46828. [Google Scholar] [CrossRef]
- Huang, B.; Chen, M.; Wang, J.; Zhang, X. Advances in Zirconia-Based Dental Materials: Properties, Classification, Applications, and Future Prospects. J. Dent. 2024, 147, 105111. [Google Scholar] [CrossRef]
- Dhamande, M.M.; Beri, A.; Sathe, S.; Jaiswal, T.; Dubey, S.A. Transforming Smiles: A Case Study on Monolithic Zirconia Prosthetic Solutions. Cureus 2024, 16, e57889. [Google Scholar] [CrossRef]
- Hamza, T.A.; Sherif, R.M. Fracture Resistance of Monolithic Glass-Ceramics Versus Bilayered Zirconia-Based Restorations. J. Prosthodont. 2019, 28, e259–e264. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules 2022, 27, 1699. [Google Scholar] [CrossRef]
- Gautam, C.; Joyner, J.; Gautam, A.; Rao, J.; Vajtai, R. Zirconia Based Dental Ceramics: Structure, Mechanical Properties, Biocompatibility and Applications. Dalton Trans. 2016, 45, 19194–19215. [Google Scholar] [CrossRef]
- Golriz, N.; Hosseinabadi, N. Additive Manufacturing of Ceria and Yttria Incorporated Toughened Monolithic Zirconia Dental Ceramic Crowns: In Vitro Simulated Aging Behavior. J. Prosthet. Dent. 2024, 132, 624.e1–624.e12. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.-W.; Park, K.; Daher, R.; Kwon, H.-B.; Han, J.-S.; Lee, J.-H. Comparison of the Clinical Outcomes of Resin-Modified Glass Ionomer and Self-Adhesive Resin Cementations for Full-Coverage Zirconia Restorations. J. Dent. 2023, 135, 104558. [Google Scholar] [CrossRef] [PubMed]
- Benalcázar-Jalkh, E.B.; Bergamo, E.T.P.; Campos, T.M.B.; Coelho, P.G.; Sailer, I.; Yamaguchi, S.; Alves, L.M.M.; Witek, L.; Tebcherani, S.M.; Bonfante, E.A. A Narrative Review on Polycrystalline Ceramics for Dental Applications and Proposed Update of a Classification System. Materials 2023, 16, 7541. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/Cementation to Zirconia and Other Non-Silicate Ceramics: Where Are We Now? Dent. Mater. 2011, 27, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Ghosh, A. Current Scenario on Adhesion to Zirconia; Surface Pretreatments and Resin Cements: A Systematic Review. J. Indian Prosthodont. Soc. 2022, 22, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.N.; Foxton, R.M.; Watson, T.F.; Oliveira, M.T.; Giannini, M.; Marchi, G.M. Bond Strength of Resin Cements to a Zirconia Ceramic with Different Surface Treatments. Oper. Dent. 2009, 34, 280–287. [Google Scholar] [CrossRef]
- Duplák, J.; Mikuláško, S.; Dupláková, D.; Yeromina, M.; Kaščák, R. Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application. Biomimetics 2024, 9, 473. [Google Scholar] [CrossRef]
- Xu, C.; Yao, X.; Walker, M.P.; Wang, Y. Chemical/Molecular Structure of the Dentin–Enamel Junction Is Dependent on the Intratooth Location. Calcif. Tissue Int. 2009, 84, 221–228. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Zhao, D.; Yang, Y.; Liu, Q.; Zhang, Y.; Wu, J.; Dong, Z. Digital Light Printing of Zirconia/Resin Composite Material with Biomimetic Graded Design for Dental Application. Dent. Mater. 2025, 41, 16–27. [Google Scholar] [CrossRef]
- Maravic, T.; Mazzitelli, C.; Mayer-Santos, E.; Mancuso, E.; Gracis, S.; Breschi, L.; Fuzzi, M. Current Trends for Cementation in Prosthodontics: Part 1—The Substrate. Polymers 2025, 17, 566. [Google Scholar] [CrossRef]
- Barwacz, C.A.; Hernandez, M.; Husemann, R.H. Minimally Invasive Preparation and Design of a Cantilevered, All-Ceramic, Resin-Bonded, Fixed Partial Denture in the Esthetic Zone: A Case Report and Descriptive Review. J. Esthet. Restor. Dent. 2014, 26, 314–323. [Google Scholar] [CrossRef]
- Alomran, W.K.; Nizami, M.Z.I.; Xu, H.H.K.; Sun, J. Evolution of Dental Resin Adhesives—A Comprehensive Review. J. Funct. Biomater. 2025, 16, 104. [Google Scholar] [CrossRef]
- Roy, A.K.; Prasad, G.N.; Bhagat, T.V.; Chaturvedi, S.; Gurumurthy, V.; Vyas, R.; Vaddamanu, S.K.; Das, G. Analysis of Surface Conditioning Methods on Core-Veneer Bond Strength of CAD/CAM Zirconia Restorations. Technol. Health Care 2021, 29, 467–477. [Google Scholar] [CrossRef]
- Inokoshi, M.; Yoshihara, K.; Nagaoka, N.; Nakanishi, M.; De Munck, J.; Minakuchi, S.; Vanmeensel, K.; Zhang, F.; Yoshida, Y.; Vleugels, J.; et al. Structural and Chemical Analysis of the Zirconia–Veneering Ceramic Interface. J. Dent. Res. 2016, 95, 102–109. [Google Scholar] [CrossRef]
- Naji, G.A.-H.; Omar, R.A.; Yahya, R. Influence of Sodalite Zeolite Infiltration on the Coefficient of Thermal Expansion and Bond Strength of All-Ceramic Dental Prostheses. J. Mech. Behav. Biomed. Mater. 2017, 67, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Fornaini, C.; Poli, F.; Merigo, E.; Lutey, A.; Cucinotta, A.; Chevalier, M.; Mckee, S.; Brulat, N.; Rocca, J.-P.; Trevisi, G. Nanosecond Pulsed Fiber Laser Irradiation for Enhanced Zirconia Crown Adhesion: Morphological, Chemical, Thermal and Mechanical Analysis. J. Photochem. Photobiol. B Biol. 2021, 219, 112189. [Google Scholar] [CrossRef] [PubMed]
- Kurtulmus-Yilmaz, S.; Aktore, H. Effect of the Application of Surface Treatments before and after Sintering on the Flexural Strength, Phase Transformation and Surface Topography of Zirconia. J. Dent. 2018, 72, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Bergemann, C.; Duske, K.; Nebe, J.B.; Schöne, A.; Bulnheim, U.; Seitz, H.; Fischer, J. Microstructured Zirconia Surfaces Modulate Osteogenic Marker Genes in Human Primary Osteoblasts. J. Mater. Sci. Mater. Med. 2015, 26, 26. [Google Scholar] [CrossRef]
- Al-Amari, A.S.; Saleh, M.S.; Albadah, A.A.; Almousa, A.A.; Mahjoub, W.K.; Al-Otaibi, R.M.; Alanazi, E.M.; Alshammari, A.K.; Malki, A.T.; Alghelaiqah, K.F.; et al. A Comprehensive Review of Techniques for Enhancing Zirconia Bond Strength: Current Approaches and Emerging Innovations. Cureus 2024, 16, e70893. [Google Scholar] [CrossRef]
- Awad, M.M.; Alhalabi, F.; Alzahrani, K.M.; Almutiri, M.; Alqanawi, F.; Albdiri, L.; Alshehri, A.; Alrahlah, A.; Ahmed, M.H. 10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP)-Containing Cleaner Improves Bond Strength to Contaminated Monolithic Zirconia: An In-Vitro Study. Materials 2022, 15, 1023. [Google Scholar] [CrossRef]
- Jo, E.-H.; Huh, Y.-H.; Ko, K.-H.; Park, C.-J.; Cho, L.-R. Effect of Liners and Primers on Tensile Bond Strength between Zirconia and Resin-Based Luting Agent. J. Adv. Prosthodont. 2018, 10, 374. [Google Scholar] [CrossRef]
- Llerena-Icochea, A.; Costa, R.; Borges, A.; Bombonatti, J.; Furuse, A. Bonding Polycrystalline Zirconia with 10-MDP–Containing Adhesives. Oper. Dent. 2017, 42, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, R.H.; Lee, S.C.; Lee, T.K.; Hayashi, M.; Yu, B.; Jo, D.-W. Evaluation of Tensile Bond Strength between Self-Adhesive Resin Cement and Surface-Pretreated Zirconia. Materials 2022, 15, 3089. [Google Scholar] [CrossRef]
- Koko, M.; Takagaki, T.; Abdou, A.; Wada, T.; Nikaido, T.; Tagami, J. Influence of 10-Methacryloyloxydecyl Dihydrogen Phosphate (MDP) Incorporated Experimental Cleaners on the Bonding Performance of Saliva-Contaminated Zirconia Ceramic. Clin. Oral Investig. 2022, 26, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, M.M.; Souza, L.V.S.; Magno, M.B.; Song, X.; Maia, L.C.; Cury, A.A.D.B.; Zhang, Y. Is Additive Manufacturing of Dental Zirconia Comparable to Subtractive Methods When Considering Printing Orientation and Layer Thickness? A Systematic Review and Meta-Analysis. J. Esthet. Restor. Dent. 2025; early view. [Google Scholar] [CrossRef]
- Alageel, O.; Alfrisany, N.; Alshamrani, A.; Alsadon, O. The Impact of Additive and Subtractive Manufacturing on the Adhesion and Durability of Titanium–Zirconia Restorative Materials. J. Funct. Biomater. 2025, 16, 257. [Google Scholar] [CrossRef]
- Li, Q.-L.; Jiang, Y.-Y.; Wei, Y.-R.; Swain, M.V.; Yao, M.-F.; Li, D.-S.; Wei, T.; Jian, Y.-T.; Zhao, K.; Wang, X.-D. The Influence of Yttria Content on the Microstructure, Phase Stability and Mechanical Properties of Dental Zirconia. Ceram. Int. 2022, 48, 5361–5368. [Google Scholar] [CrossRef]
- da Silva, A.O.; Fiorin, L.; Faria, A.C.L.; Ribeiro, R.F.; Rodrigues, R.C.S. Translucency and Mechanical Behavior of Partially Stabilized Monolithic Zirconia after Staining, Finishing Procedures and Artificial Aging. Sci. Rep. 2022, 12, 16094. [Google Scholar] [CrossRef]
- Alghauli, M.A.; Alqutaibi, A.Y.; Wille, S.; Kern, M. The Physical-Mechanical Properties of 3D-Printed versus Conventional Milled Zirconia for Dental Clinical Applications: A Systematic Review with Meta-Analysis. J. Mech. Behav. Biomed. Mater. 2024, 156, 106601. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-M.; Jeong, C.-S.; Lee, H.-J.; Bae, J.-M.; Choi, E.-J.; Kim, S.-T.; Park, Y.-B.; Oh, S.-H. A Comparative Study of Additive and Subtractive Manufacturing Techniques for a Zirconia Dental Product: An Analysis of the Manufacturing Accuracy and the Bond Strength of Porcelain to Zirconia. Materials 2022, 15, 5398. [Google Scholar] [CrossRef]
- Conner, C.; Andretti, F.; Hernandez, A.I.; Rojas-Rueda, S.; Azpiazu-Flores, F.X.; Morrow, B.R.; Garcia-Godoy, F.; Jurado, C.A.; Alshabib, A. Surface Evaluation of a Novel Acid-Etching Solution for Zirconia and Lithium Disilicate. Materials 2025, 18, 2912. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.B.W.; Leite, J.V.C.; Santos, J.V.D.N.; Barbosa, L.M.M.; Neto, H.N.M.; Da Silva, J.G.R.; Muniz, I.D.A.F.; Campos, D.E.S.; De Souza, G.M. Tribochemical Silica-Coating or Alumina Blasting for Zirconia Bonding? A Systematic Review of in Vitro Studies. Int. J. Adhes. Adhes. 2024, 129, 103554. [Google Scholar] [CrossRef]
- Wongkamhaeng, K.; Poomparnich, K.; Chitkraisorn, T.; Boonpitak, K.; Tosiriwatanapong, T. Effect of Combining Different 10-MDP-Containing Primers and Cement Systems on Shear Bond Strength between Resin Cement and Zirconia. BMC Oral Health 2025, 25, 206. [Google Scholar] [CrossRef]
- Li, X.; Liang, S.; Inokoshi, M.; Zhao, S.; Hong, G.; Yao, C.; Huang, C. Different Surface Treatments and Adhesive Monomers for Zirconia-Resin Bonds: A Systematic Review and Network Meta-Analysis. Jpn. Dent. Sci. Rev. 2024, 60, 175–189. [Google Scholar] [CrossRef]
- Prado, P.H.C.O.; Dapieve, K.S.; Campos, T.M.B.; Valandro, L.F.; Melo, R.M.D. Effect of Hydrothermal and Mechanical Aging on the Fatigue Performance of High-Translucency Zirconias. Dent. Mater. 2022, 38, 1060–1071. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H. Effects of Thermal Aging on the Cyclic Thermal Shock Behavior of Oxide/Oxide Ceramic Matrix Composites. Mater. Sci. Eng. A 2020, 769, 138494. [Google Scholar] [CrossRef]
- Unalan Degirmenci, B.; Degirmenci, A.; Seyfioglu Polat, Z. The Influence of Thermocycling and Ultraviolet Aging on Surface Characteristics and the Repair Bond Strength of CAD/CAM Resin Nanoceramics. J. Funct. Biomater. 2025, 16, 156. [Google Scholar] [CrossRef]
- Kyaw, O.; Inokoshi, M.; Kanazawa, M. Tribological Aspects of Enamel Wear Caused by Zirconia and Lithium Disilicate: A Meta-Narrative Review. Jpn. Dent. Sci. Rev. 2024, 60, 258–270. [Google Scholar] [CrossRef]
- Sanon, C.; Chevalier, J.; Douillard, T.; Cattani-Lorente, M.; Scherrer, S.S.; Gremillard, L. A New Testing Protocol for Zirconia Dental Implants. Dent. Mater. 2015, 31, 15–25. [Google Scholar] [CrossRef]
- Camposilvan, E.; Leone, R.; Gremillard, L.; Sorrentino, R.; Zarone, F.; Ferrari, M.; Chevalier, J. Aging Resistance, Mechanical Properties and Translucency of Different Yttria-Stabilized Zirconia Ceramics for Monolithic Dental Crown Applications. Dent. Mater. 2018, 34, 879–890. [Google Scholar] [CrossRef]
- Schepke, U.; Meijer, H.J.; Vermeulen, K.M.; Raghoebar, G.M.; Cune, M.S. Clinical Bonding of R Esin N Ano C Eramic Restorations to Zirconia Abutments: A Case Series Within a Randomized Clinical Trial. Clin. Implant Dent. Relat. Res. 2016, 18, 984–992. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Stellini, E.; Ludovichetti, F.S.; Signoriello, A.G.; Positello, P.; Bertolini, R.; Pezzato, L.; Gracco, A.A. Paedodontic Preformed Crowns in Primary Teeth and Relative Degree of Dental Wear. Eur. J. Paediatr. Dent. 2024, 25, 1. [Google Scholar] [CrossRef]
- Özcan, M.; Jonasch, M. Effect of Cyclic Fatigue Tests on Aging and Their Translational Implications for Survival of All-Ceramic Tooth-Borne Single Crowns and Fixed Dental Prostheses. J. Prosthodont. 2018, 27, 364–375. [Google Scholar] [CrossRef]
- Jung, R.E.; Grohmann, P.; Sailer, I.; Steinhart, Y.; Fehér, A.; Hämmerle, C.; Strub, J.R.; Kohal, R. Evaluation of a One-piece Ceramic Implant Used for Single-tooth Replacement and Three-unit Fixed Partial Dentures: A Prospective Cohort Clinical Trial. Clin. Oral Implant Res. 2016, 27, 751–761. [Google Scholar] [CrossRef]
- Gunge, H.; Ogino, Y.; Kihara, M.; Tsukiyama, Y.; Koyano, K. Retrospective Clinical Evaluation of Posterior Monolithic Zirconia Restorations after 1 to 3.5 Years of Clinical Service. J. Oral Sci. 2018, 60, 154–158. [Google Scholar] [CrossRef]
- Pilo, R.; Harel, N.; Nissan, J.; Levartovsky, S. The Retentive Strength of Cemented Zirconium Oxide Crowns after Dentin Pretreatment with Desensitizing Paste Containing 8% Arginine and Calcium Carbonate. Int. J. Mol. Sci. 2016, 17, 426. [Google Scholar] [CrossRef]
- Rathmann, F.; Bömicke, W.; Rammelsberg, P.; Ohlmann, B. Veneered Zirconia Inlay-Retained Fixed Dental Prostheses: 10-Year Results from a Prospective Clinical Study. J. Dent. 2017, 64, 68–72. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Steiner, R.; Heiss-Kisielewsky, I.; Schwarz, V.; Schnabl, D.; Dumfahrt, H.; Laimer, J.; Steinmassl, O.; Steinmassl, P. Zirconia Primers Improve the Shear Bond Strength of Dental Zirconia. J. Prosthodont. 2020, 29, 62–68. [Google Scholar] [CrossRef]
- Celik, S.; Ucar, Y.; Ekren, O. Effect of Coloring Liquids on Color of Zirconia Frameworks and Bond Strength of Zirconia/Veneering Ceramic. J. Prosthet. Dent. 2020, 124, 110–115. [Google Scholar] [CrossRef]
- Franz, A.; Winkler, O.; Lettner, S.; Öppinger, S.; Hauser, A.; Haidar, M.; Moritz, A.; Watts, D.C.; Schedle, A. Optimizing the Fitting-Surface Preparation of Zirconia Restorations for Bonding to Dentin. Dent. Mater. 2021, 37, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Yazigi, C.; Kern, M. Clinical Evaluation of Zirconia Cantilevered Single-Retainer Resin-Bonded Fixed Dental Prostheses Replacing Missing Canines and Posterior Teeth. J. Dent. 2022, 116, 103907. [Google Scholar] [CrossRef] [PubMed]
- Malgaj, T.; Abram, A.; Kocjan, A.; Jevnikar, P. Influence of Nanostructured Alumina Coating on the Clinical Performance of Zirconia Cantilevered Resin-Bonded Fixed Dental Prostheses: Up to 3-Year Results of a Prospective, Randomized, Controlled Clinical Trial. J. Prosthet. Dent. 2023, 129, 725–731. [Google Scholar] [CrossRef]
- Kim, H.-J.; Ferracane, J.L.; Park, M.; Choi, K.-K. Effect of Ethyl Cellulose Coating as an Evaluation Agent against Contamination on the Bond Strength of Zirconia Restorations: An in Vitro Study. J. Prosthet. Dent. 2022, 127, 766.e1–766.e9. [Google Scholar] [CrossRef]
- Yagawa, S.; Komine, F.; Fushiki, R.; Kubochi, K.; Kimura, F.; Matsumura, H. Effect of Priming Agents on Shear Bond Strengths of Resin-Based Luting Agents to a Translucent Zirconia Material. J. Prosthodont. Res. 2018, 62, 204–209. [Google Scholar] [CrossRef]
- Zandinejad, A.; Khanlar, L.N.; Barmak, A.B.; Ikeda, M.; Tagami, J.; Masri, R. Shear Bond Strength of Porcelain to Milled and Stereolithography Additively Manufactured Zirconia with and without Surface Treatment: An in Vitro Study. J. Prosthet. Dent. 2025, 133, 273–279. [Google Scholar] [CrossRef]
- Teng, W.S.; Yew, H.Z.; Jamadon, N.H.; Qamaruz Zaman, J.; Meor Ahmad, M.I.; Muchtar, A. Effect of Porcelain Veneering Technique in Bilayered Zirconia on Bond Strength and Residual Stress Distribution. J. Mech. Behav. Biomed. Mater. 2024, 151, 106361. [Google Scholar] [CrossRef] [PubMed]
- Hansson, M.; Ågren, M. Shear Bond Strength of Adhesive Cement to Zirconia: Effect of Added Proportion of Yttria for Stabilization. J. Prosthet. Dent. 2024, 131, 934.e1–934.e7. [Google Scholar] [CrossRef] [PubMed]
- Cadore-Rodrigues, A.C.; Machry, R.V.; Zucuni, C.P.; Pereira, G.K.R.; Valandro, L.F. Grinding and Polishing of the Inner Surface of Monolithic Simplified Restorations Made of Zirconia Polycrystals and Lithium Disilicate Glass-Ceramic: Effects on the Load-Bearing Capacity under Fatigue of the Bonded Restorations. J. Mech. Behav. Biomed. Mater. 2021, 124, 104833. [Google Scholar] [CrossRef]
- Hensel, J.; Reise, M.; Liebermann, A.; Buser, R.; Stawarczyk, B. Impact of Multiple Firings on Thermal Properties and Bond Strength of Veneered Zirconia Restorations. J. Mech. Behav. Biomed. Mater. 2022, 128, 105134. [Google Scholar] [CrossRef] [PubMed]
- Suliman, S.; Sulaiman, T.A.; Deeb, J.G.; Abdulmajeed, A.; Abdulmajeed, A.; Närhi, T. Er:YAG Laser Debonding of Zirconia and Lithium Disilicate Restorations. J. Prosthet. Dent. 2024, 131, 253.e1–253.e6. [Google Scholar] [CrossRef]
- Sato, T.; Hosaka, K.; Tagami, J.; Tashiro, H.; Miki, H.; Otani, K.; Nishimura, M.; Takahashi, M.; Shimada, Y.; Ikeda, M. Clinical Evaluation of Direct Composite versus Zirconia Resin-Bonded Fixed Dental Prostheses for a Single Missing Anterior Tooth: A Short-Term Multicenter Retrospective Study. J. Dent. 2024, 151, 105401. [Google Scholar] [CrossRef]
- Kern, M.; Türp, L.; Yazigi, C. Long-Term Outcome of Anterior Cantilever Zirconia Ceramic Resin-Bonded Fixed Dental Prostheses: Influence of the Pontic Location. J. Prosthet. Dent. 2025, 133, 1017–1023. [Google Scholar] [CrossRef]
- Sim, J.-Y.; Lee, W.-S.; Kim, J.-H.; Kim, H.-Y.; Kim, W.-C. Evaluation of Shear Bond Strength of Veneering Ceramics and Zirconia Fabricated by the Digital Veneering Method. J. Prosthodont. Res. 2016, 60, 106–113. [Google Scholar] [CrossRef]
- Dandoulaki, C.; Rigos, A.E.; Kontonasaki, E.; Karagiannis, V.; Kokoti, M.; Theodorou, G.S.; Papadopoulou, L.; Koidis, P. In Vitro Evaluation of the Shear Bond Strength and Bioactivity of a Bioceramic Cement for Bonding Monolithic Zirconia. J. Prosthet. Dent. 2019, 122, 167.e1–167.e10. [Google Scholar] [CrossRef]
- Torabi Ardakani, M.; Giti, R.; Taghva, M.; Javanmardi, S. Effect of a Zirconia Primer on the Push-out Bond Strength of Zirconia Ceramic Posts to Root Canal Dentin. J. Prosthet. Dent. 2015, 114, 398–402. [Google Scholar] [CrossRef]
- Kelly, J.R.; Benetti, P.; Rungruanganunt, P.; Bona, A.D. The Slippery Slope—Critical Perspectives on in Vitro Research Methodologies. Dent. Mater. 2012, 28, 41–51. [Google Scholar] [CrossRef]
- Prochnow, F.H.; Weber, K.R.; Rezende, C.E.; Kaizer, M.R.; Gonzaga, C.C. Air Abrasion vs. Tribochemical Silica Coating: Effect on Translucent Zirconia Bond Strength. Eur. J. Prosthodont. Restor. Dent. 2025, 33, 199. [Google Scholar] [CrossRef]
- Kern, M. Bonding to Oxide Ceramics—Laboratory Testing versus Clinical Outcome. Dent. Mater. 2015, 31, 8–14. [Google Scholar] [CrossRef]
- Ohlmann, B.; Rammelsberg, P.; Schmitter, M.; Schwarz, S.; Gabbert, O. All-Ceramic Inlay-Retained Fixed Partial Dentures: Preliminary Results from a Clinical Study. J. Dent. 2008, 36, 692–696. [Google Scholar] [CrossRef]
- Quigley, N.P.; Loo, D.S.S.; Choy, C.; Ha, W.N. Clinical Efficacy of Methods for Bonding to Zirconia: A Systematic Review. J. Prosthet. Dent. 2021, 125, 231–240. [Google Scholar] [CrossRef]
- Wang, L.; Wang, K.; Sheng, Y.; Hao, Z.; Tang, W.; Dou, R. The Effect of Phase Contents on the Properties of Yttria Stabilized Zirconia Dental Materials Fabricated by Stereolithography-Based Additive Manufacturing. J. Mech. Behav. Biomed. Mater. 2024, 150, 106313. [Google Scholar] [CrossRef]
- McLaren, E.A.; Maharishi, A.; White, S.N. Influence of Yttria Content and Surface Treatment on the Strength of Translucent Zirconia Materials. J. Prosthet. Dent. 2023, 129, 638–643. [Google Scholar] [CrossRef]
- Malgaj, T.; Mirt, T.; Kocjan, A.; Jevnikar, P. The Influence of Nanostructured Alumina Coating on Bonding and Optical Properties of Translucent Zirconia Ceramics: In Vitro Evaluation. Coatings 2021, 11, 1126. [Google Scholar] [CrossRef]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-H.; Shimada, Y.; Sadr, A.; Tagami, J.; Tabata, T.; Nakagawa, H.; Yang, S.-E. Effects of Material Thickness and Pretreatment on the Interfacial Gap of Translucent Zirconia Restorations with Self-Adhesive Resin Cement. Oper. Dent. 2022, 47, 535–548. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical Interaction Mechanism of 10-MDP with Zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef]
- Gungormus, M.; Tulumbaci, F. Peptide-Assisted Pre-Bonding Remineralization of Dentin to Improve Bonding. J. Mech. Behav. Biomed. Mater. 2021, 113, 104119. [Google Scholar] [CrossRef]
- Tanış, M.Ç.; Akay, C.; Karakış, D. Resin Cementation of Zirconia Ceramics with Different Bonding Agents. Biotechnol. Biotechnol. Equip. 2015, 29, 363–367. [Google Scholar] [CrossRef]
- Shokry, M.; Al-Zordk, W.; Ghazy, M. Retention Strength of Monolithic Zirconia Crowns Cemented with Different Primer-Cement Systems. BMC Oral Health 2022, 22, 187. [Google Scholar] [CrossRef]
- Guilardi, L.; Pereira, G.; Giordani, J.; Kleverlaan, C.; Valandro, L.; Rippe, M. Cement Choice and the Fatigue Performance of Monolithic Zirconia Restorations. Oper. Dent. 2022, 47, 461–472. [Google Scholar] [CrossRef]
- Aziz, A.M.; El-Mowafy, O. Clinical Evaluation of Zirconia Crowns Cemented with Two Different Resin Cements: A Retrospective Study. J. Oral Rehabil. 2023, 50, 1481–1486. [Google Scholar] [CrossRef]
- Utar, M.; Demirtağ, Z. Four-point Flexural Strength and Microtensile Bond Strength of Digitally and Conventionally Veneered Zirconia. Eur. J. Oral Sci. 2023, 131, e12926. [Google Scholar] [CrossRef]
- Elshiyab, S.H.; Nawafleh, N.; George, R. Survival and Testing Parameters of Zirconia-based Crowns under Cyclic Loading in an Aqueous Environment: A Systematic Review. J. Investig. Clin. Dent. 2017, 8, e12261. [Google Scholar] [CrossRef] [PubMed]
- ISO 29022:2013; Dentistry—Adhesion—Notched-Edge Shear Bond Strength Test. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/45285.html (accessed on 2 July 2025).
- Behr, M.; Hindelang, U.; Rosentritt, M.; Lang, R.; Handel, G. Comparison of Failure Rates of Adhesive-Fixed Partial Dentures for in Vivo and in Vitro Studies. Clin. Oral Investig. 2000, 4, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Behr, M.; Leibrock, A.; Stich, W.; Rammelsberg, P.; Rosentritt, M.; Handel, G. Adhesive-Fixed Partial Dentures in Anterior and Posterior Areas. Clin. Oral Investig. 1998, 2, 31–35. [Google Scholar] [CrossRef]
- Sahoo, N.; Carvalho, O.; Özcan, M.; Silva, F.; Souza, J.C.M.; Lasagni, A.-F.; Henriques, B. Ultrashort Pulse Laser Patterning of Zirconia (3Y-TZP) for Enhanced Adhesion to Resin-Matrix Cements Used in Dentistry: An Integrative Review. J. Mech. Behav. Biomed. Mater. 2023, 143, 105943. [Google Scholar] [CrossRef]
- Cioloca Holban, C.; Tatarciuc, M.; Vitalariu, A.M.; Vasluianu, R.-I.; Antohe, M.; Diaconu, D.A.; Stamatin, O.; Dima, A.M. Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives. J. Clin. Med. 2025, 14, 4837. [Google Scholar] [CrossRef]
- Yoon, J.-Y. Improving Zirconia–Resin Cement Bonding Through Laser Surface Texturing: A Comparative Study. Prosthesis 2025, 7, 19. [Google Scholar] [CrossRef]
- Jiang, L.; Li, X.; Lu, Z.; Yang, S.; Chen, R.; Yu, H. Er:YAG Laser Settings for Debonding Zirconia Restorations: An in Vitro Study. J. Mech. Behav. Biomed. Mater. 2024, 151, 106331. [Google Scholar] [CrossRef]
- Du, J.; Niu, X.; Soboyejo, W. Bioinspired Design of Dental Functionally Graded Multilayer Structures. In Bioinspired Structures and Design; Soboyejo, W., Daniel, L., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 140–166. ISBN 9781139058995. [Google Scholar]
- Yun, J.; Ge, R.; Tsoi, J.K.H.; Lu, Y.; Guo, S.; Guo, J.; Wang, Y. Design and Manufacturing of Bio-Inspired Functionally Graded Ceramic-Reinforced Resin Post-and-Core Restorations. Compos. Part A Appl. Sci. Manuf. 2025, 194, 108889. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria | Rationale |
---|---|---|---|
Study Design | Comparative studies (in vitro with aging protocols, prospective/retrospective clinical studies, RCTs). Systematic reviews (for background only). | Non-comparative studies; opinion papers; editorials; conference abstracts without full data. | Ensures direct comparison of bonding strategies; excludes low-evidence sources. |
Interventions | Clinically applicable and cost-effective surface treatments (e.g., air abrasion with Al2O3, tribochemical silica coating, MDP-containing primers) and resin cements (e.g., MDP-based, self-adhesive). Standard aging protocols (thermocycling, water storage). | Studies without explicit bonding protocols or controls (e.g., no primer/cement details). | Focuses on pre-treatment methods and materials that are widely available and practical for clinical use and represent the current standard of care or near-future options for general dentistry. |
Outcomes | Quantitative bond strength (shear/microtensile, MPa); clinical survival/debonding rates; failure mode analysis. | Qualitative outcomes (e.g., subjective assessments only); studies lacking bond strength/aging data. | Focuses on measurable, clinically relevant adhesive performance. |
Applications | Zirconia crowns, fixed dental prostheses (FDPs), resin-bonded FDPs (RBFDPs). | Non-zirconia materials (e.g., lithium disilicate); temporary/provisional prostheses. | Maintains focus on permanent zirconia restorations with adhesive challenges. |
Publication | Peer-reviewed articles (2015–June 2025); English language. | Non-peer-reviewed (theses, patents); non-English (without translation); pre-2015. | Ensures methodological rigor and relevance to current bonding technologies. |
Author (Year) | Study Type | Study Design | Sample Size (n) | Variables Tested |
---|---|---|---|---|
Steiner et al. (2020) [57] | In vitro | Controlled experiment | 170 specimens | Resin cements (7 types), priming protocols (universal/system-specific) |
Celik et al. (2020) [58] | In vitro | Comparative | 64 specimens | Coloring duration (30s/60s/120s), precolored vs. uncolored zirconia |
Franz et al. (2021) [59] | In vitro | Two-part experiment | Not specified | Air abrasion (Rocatec™), glaze-on, primers (Clearfil, Monobond) |
Yazigi and Kern (2022) [60] | In vivo (prospective cohort) | Clinical follow-up | 27 restorations (21 patients) | Survival rate, debonding events (mean 53 months) |
Malgaj et al. (2023) [61] | In vivo (RCT) | Randomized controlled trial | 31 restorations (27 patients) | Nanostructured alumina vs. airborne abrasion (double-blind) |
Kim et al. (2022) [62] | In vitro | Controlled experiment | 72 specimens | Cleaning methods (ultrasonic, zirconia cleaner, ethyl cellulose) |
Yagawa et al. (2018) [63] | In vitro | Comparative | 308 specimen pairs | Primers (7 types), luting agents (Panavia V5, Opaque) |
Zandinejad et al. (2025) [64] | In vitro | Comparative | Not specified (n = 10/group) | Milled vs. AM zirconia, surface treatments |
Teng et al. (2024) [65] | In vitro | Comparative | 42 specimens | Hand-layering vs. heat-pressing, residual stress |
Hansson et al. (2024) [66] | In vitro | Comparative | 131 specimens | 3Y-PSZ vs. 4Y-PSZ vs. 5Y-PSZ, aging (6 months) |
Cadore-Rodrigues et al. (2021) [67] | In vitro | Controlled experiment | Not specified | Grinding protocols (fine, extra fine), polishing |
Hensel et al. (2022) [68] | In vitro | Controlled experiment | 600 specimens | Firing cycles (2–10), thermocycling |
Suliman et al. (2024) [69] | In vitro | Comparative | 40 crowns | 3Y/4Y/5Y zirconia vs. lithium disilicate, debonding time |
Sato et al. (2024) [70] | In vivo (retrospective) | Multicenter retrospective | 45 patients (17 CR-RBFDP, 28 Zr-RBFDP) | Survival rate (3-year follow-up) |
Kern et al. (2025) [71] | In vivo (prospective cohort) | Clinical follow-up | 328 restorations (258 patients) | 15-year survival rate, pontic location effect |
Sim et al. (2016) [72] | In vitro | Comparative | 50 specimens | Digital veneering vs. conventional methods |
Dandoulaki et al. (2019) [73] | In vitro | Comparative | 240 specimens (120 dentin, 120 zirconia) | Bioceramic vs. glass ionomer cement |
Torabi Ardakani et al. (2015) [74] | In vitro | Comparative | 40 teeth (120 segments) | MDP primer (Z-Prime Plus) vs. no primer |
Author (Year) | Aging Protocol? | MDP/Silica Comparison? | Key Findings |
---|---|---|---|
Steiner et al. (2020) [57] | Yes (water storage + thermocycling) | Yes (MDP vs. non-MDP primers) | Universal and system-specific MDP-based primers significantly improved bond strength (21.8–57.2 MPa) vs. unprimed (2.5–33.2 MPa). Cohesive failures correlated with higher bond strength. |
Celik et al. (2020) [58] | No thermocycling reported | No MDP comparison | Precolored zirconia (PCZ) had higher bond strength (31.5 MPa) vs. colored groups (16.6–31.5 MPa). Coloring liquids reduced bond strength. |
Franz et al. (2021) [59] | Yes (thermocycling) | Yes (MDP vs. no primer) | Air abrasion (Rocatec™ Soft) + MDP primers (Clearfil Ceramic Primer/Monobond S) yielded highest bond strength. Glaze-on techniques were ineffective. |
Yazigi and Kern (2022) [60] | Yes (13–151 months clinical follow-up) | No silica comparison | 100% survival rate (mean 53 months) with MDP-based cementation (Panavia V5). Minimal tooth preparation. |
Malgaj et al. (2023) [61] | Yes (8.3–37.9 months clinical follow-up) | No MDP comparison | Nanostructured alumina (93.8% survival) performed similarly to airborne abrasion (86.7%). |
Kim et al. (2022) [62] | Yes (immediate/short/ long-term aging) | No MDP comparison | Ethyl cellulose coating restored bond strength after contamination (higher than ultrasonic cleaning). |
Yagawa et al. (2018) [63] | Yes (5000 thermocycles) | Yes (MDP vs. non-MDP primers) | MDP-containing primers (Alloy Primer, Clearfil Ceramic Primer) showed highest bond strength (32.4–47.8 MPa) post-aging. |
Zandinejad et al. (2025) [64] | Yes (thermocycling) | No silica/MDP comparison | Milled zirconia had higher bond strength (1.38 MPa) vs. AM zirconia (0.68 MPa). Surface treatments had no significant effect. |
Teng et al. (2024) [65] | No thermocycling | No MDP comparison | Heat-pressed veneering showed comparable bond strength to hand-layering. |
Hansson et al. (2024) [66] | Yes (6-month water storage) | Yes (MDP primer used) | 3Y-PSZ with MDP primer had highest bond strength (31.8 MPa) vs. 4Y/5Y-PSZ. |
Cadore-Rodrigues et al. (2021) [67] | Yes (step-stress fatigue) | No MDP comparison | Grinding reduced fatigue resistance. Polishing had no effect. |
Hensel et al. (2022) [68] | Yes (thermocycling) | No MDP comparison | Leucite-free veneering ceramic (ZRT) had highest bond strength. |
Suliman et al. (2024) [69] | No thermocycling | No MDP comparison | Debonding time decreased with higher yttria content (3Y: 12.46 min; 5Y: 4.03 min). |
Sato et al. (2024) [70] | Yes (3-year follow-up) | No MDP comparison | Similar survival rates for Zr-RBFDPs (91.7%) and CR-RBFDPs (92.3%). |
Kern et al. (2025) [71] | Yes (85-month mean follow-up) | No silica comparison | 97.3% 15-year survival rate with MDP-based cementation (Panavia). |
Sim et al. (2016) [72] | No thermocycling | No MDP comparison | Digital veneering method (28.3 MPa) outperformed conventional methods (17.2–18.9 MPa). |
Dandoulaki et al. (2019) [73] | Yes (30-day water storage) | No MDP comparison | Bioceramic cement had lower bond strength (2.5–5.2 MPa) vs. glass ionomer (4.2–6.6 MPa). |
Torabi Ardakani et al. (2015) [74] | No thermocycling | Yes (MDP vs. no primer) | MDP-based primer (Z-Prime Plus) improved bond strength (Clearfil SA > Panavia F). Coronal > apical bond strength. |
Parameter | Key Result | Reference |
---|---|---|
Primers | Universal primers significantly improve SBS (p < 0.05). MDP-based primers most effective. | [57,63,74] |
Surface Treatments | Air abrasion > glaze-on. Nanostructured alumina comparable to Al2O3 abrasion. Ethyl cellulose prevents contamination. | [59,61,62] |
Veneering Techniques | Digital veneering > heat-pressed > hand-layered. Heat-press comparable to hand-layering. | [65,72] |
Porcelain–Zirconia Bonding | Milled zirconia (1.38 MPa) > AM zirconia (0.68 MPa). Surface treatment (abrasion/liner) had no effect. | [64] |
Coloring Zirconia | Precolored zirconia (PCZ) had higher SBS (31.5 MPa) vs. colored (16.6 MPa). | [58] |
Thermal Cycling and Firings | Multiple firings reduced bond strength. Leucite-free ceramics showed best thermal stability. | [68] |
Bioceramic Cements | Glass ionomer cement (4.20–6.61 MPa) > bioceramic cement (2.52–5.23 MPa). No apatite formation. | [73] |
Fatigue Resistance | Grinding inner surfaces reduced fatigue strength (ZR: 733–880 N vs. control 973 N). Polishing had no effect. | [67] |
Clinical RBFDP Survival | 97.3% at 15 years. No difference between composite and zirconia RBFDPs. | [60,70,71] |
Aging and Yttria Content | 3Y-PSZ > 5Y-PSZ in bond strength. Higher yttria reduces laser debonding time. | [66,69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, I.-C.; Tatarciuc, M.S.; Vitalariu, A.M.; Bobu, L.; Diaconu, D.A.; Vasluianu, R.-I.; Stamatin, O.; Cretu, C.I.; Dima, A.M. Bonding Strategies for Zirconia Fixed Restorations: A Scoping Review of Surface Treatments, Cementation Protocols, and Long-Term Durability. Biomimetics 2025, 10, 632. https://doi.org/10.3390/biomimetics10090632
Lupu I-C, Tatarciuc MS, Vitalariu AM, Bobu L, Diaconu DA, Vasluianu R-I, Stamatin O, Cretu CI, Dima AM. Bonding Strategies for Zirconia Fixed Restorations: A Scoping Review of Surface Treatments, Cementation Protocols, and Long-Term Durability. Biomimetics. 2025; 10(9):632. https://doi.org/10.3390/biomimetics10090632
Chicago/Turabian StyleLupu, Iulian-Costin, Monica Silvia Tatarciuc, Anca Mihaela Vitalariu, Livia Bobu, Diana Antonela Diaconu, Roxana-Ionela Vasluianu, Ovidiu Stamatin, Cosmin Ionut Cretu, and Ana Maria Dima. 2025. "Bonding Strategies for Zirconia Fixed Restorations: A Scoping Review of Surface Treatments, Cementation Protocols, and Long-Term Durability" Biomimetics 10, no. 9: 632. https://doi.org/10.3390/biomimetics10090632
APA StyleLupu, I.-C., Tatarciuc, M. S., Vitalariu, A. M., Bobu, L., Diaconu, D. A., Vasluianu, R.-I., Stamatin, O., Cretu, C. I., & Dima, A. M. (2025). Bonding Strategies for Zirconia Fixed Restorations: A Scoping Review of Surface Treatments, Cementation Protocols, and Long-Term Durability. Biomimetics, 10(9), 632. https://doi.org/10.3390/biomimetics10090632