Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
Leaf Samples
- (i)
- Fresh Mangifera indica leaf (FMIL) was used with no further modification.
- (ii)
- The Dry Mangifera indica leaf (DMIL) was kept to be dried in the laboratory at a room temperature of 21 ± 3 °C for 150 days.
- (iii)
- Replicated Mangifera indica leaf (RMIL) was fabricated as described in Section 2.2.
2.2. Replication of Artificial MIL as Water Harvesting Substrate
2.3. Characterization
2.4. Water Collection Setup
3. Result and Discussion
3.1. Surface Wettability of Novel MIL
3.2. Atmospheric Water Transportation and Collection Efficiency
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemm, O.; Schemenauer, R.S.; Lummerich, A.; Cereceda, P.; Marzol, V.; Corell, D.; Van Heerden, J.; Reinhard, D.; Gherezghiher, T.; Olivier, J. Fog as a fresh-water resource: Overview and perspectives. Ambio 2012, 41, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Tomaszkiewicz, M.; Abou Najm, M.; Beysens, D.; Alameddine, I.; El-Fadel, M. Dew as a sustainable non-conventional water resource: A critical review. Environ. Rev. 2015, 23, 425–442. [Google Scholar] [CrossRef]
- Foday Jr, E.H.; Bo, B.; Xu, X. Removal of Toxic Heavy Metals from Contaminated Aqueous Solutions Using Seaweeds: A Review. Sustainability 2021, 13, 12311. [Google Scholar] [CrossRef]
- Nandakumar, D.K.; Zhang, Y.; Ravi, S.K.; Guo, N.; Zhang, C.; Tan, S.C. Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv. Mater. 2019, 31, 1806730. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, J.; Li, J.; Yu, X.; Wang, Z.; Zhang, Y. Beetle and cactus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting. J. Mater. Chem. A 2021, 9, 1507–1516. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, X.; Liu, Y.; Shi, Y.; Dai, Y.; Yu, G. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 2019, 31, 1806446. [Google Scholar] [CrossRef]
- Parker, A.R.; Lawrence, C.R. Water capture by a desert beetle. Nature 2001, 414, 33–34. [Google Scholar] [CrossRef]
- Thickett, S.C.; Neto, C.; Harris, A.T. Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 2011, 23, 3718–3722. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Ma, R.; Hua, M.; Koratkar, N.; Yao, S.; Wang, Z. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 2011, 21, 4617–4623. [Google Scholar] [CrossRef]
- Rahman, M.M.; Olceroglu, E.; McCarthy, M. Role of wickability on the critical heat flux of structured superhydrophilic surfaces. Langmuir 2014, 30, 11225–11234. [Google Scholar] [CrossRef]
- Ghosh, A.; Beaini, S.; Zhang, B.J.; Ganguly, R.; Megaridis, C.M. Enhancing dropwise condensation through bioinspired wettability patterning. Langmuir 2014, 30, 13103–13115. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, T.; Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 2010, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Bai, H.; Zheng, Y.; Zhao, T.; Fang, R.; Jiang, L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat. Commun. 2012, 3, 1247. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Yao, X.; Yang, S.; Wang, L.; Sun, R.; He, Y.; Jiang, L. Cactus stem inspired cone-arrayed surfaces for efficient fog collection. Adv. Funct. Mater. 2014, 24, 6933–6938. [Google Scholar] [CrossRef]
- Zheng, Y.; Bai, H.; Huang, Z.; Tian, X.; Nie, F.-Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643. [Google Scholar] [CrossRef]
- Bai, H.; Ju, J.; Sun, R.; Chen, Y.; Zheng, Y.; Jiang, L. Controlled fabrication and water collection ability of bioinspired artificial spider silks. Adv. Mater. 2011, 23, 3708–3711. [Google Scholar] [CrossRef]
- Tracy, C.R.; Laurence, N.; Christian, K.A. Condensation onto the skin as a means for water gain by tree frogs in tropical Australia. Am. Nat. 2011, 178, 553–558. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Zhang, P.; Zhang, D.; Han, Z.; Jiang, L. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata. Small 2017, 13, 1601676. [Google Scholar] [CrossRef]
- Dai, X.; Sun, N.; Nielsen, S.O.; Stogin, B.B.; Wang, J.; Yang, S.; Wong, T.-S. Hydrophilic directional slippery rough surfaces for water harvesting. Sci. Adv. 2018, 4, eaaq0919. [Google Scholar] [CrossRef]
- Hou, W.; Wang, Q. Stable polytetrafluoroethylene superhydrophobic surface with lotus-leaf structure. J. Colloid Interface Sci. 2009, 333, 400–403. [Google Scholar] [CrossRef]
- Soffe, R.; Altenhuber, N.; Bernach, M.; Remus-Emsermann, M.N.; Nock, V. Comparison of replica leaf surface materials for phyllosphere microbiology. PLoS ONE 2019, 14, e0218102. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, H.; Wang, Y. The wetting of leaf surfaces and its ecological significances. Wetting Wettability 2015, 11, 296–321. [Google Scholar]
- Sun, Y.; Gao, X.; Li, J.; Chen, Y. Comparative study on wettability of typical plant leaves and biomimetic preparation of superhydrophobic surface of aluminum alloy. MATEC Web Conf. 2018, 142, 04004. [Google Scholar] [CrossRef]
- Koch, K.; Schulte, A.J.; Fischer, A.; Gorb, S.N.; Barthlott, W. A fast, precise and low-cost replication technique for nano-and high-aspect-ratio structures of biological and artificial surfaces. Bioinspiration Biomim. 2008, 3, 046002. [Google Scholar] [CrossRef]
- Pereira, P.M.M.; Moita, A.S.; Monteiro, G.A.; Prazeres, D.M.F. Characterization of the topography and wettability of English weed leaves and biomimetic replicas. J. Bionic Eng. 2014, 11, 346–359. [Google Scholar] [CrossRef]
- Litz, R. The Mango: Botany, Production and Uses; CAB International: Wallingford, UK, 1997; p. 7. [Google Scholar]
- Crane, J.; Campbell, C. The Mango; The Horticultural Science Department, Florida Co-Operative Extension Service; Institute of Food and Agricultural Sciences University of Florida: Gainesville, FL, USA, 1994. [Google Scholar]
- Foday Jr, E.H.; Bai, B. Mangifera indica Leaf (MIL) as a Novel Material in Atmospheric Water Collection. ACS Omega 2022, 7, 11809–11817. [Google Scholar] [CrossRef]
- Wang, T.; Si, Y.; Dai, H.; Li, C.; Gao, C.; Dong, Z.; Jiang, L. Apex structures enhance water drainage on leaves. Proc. Natl. Acad. Sci. USA 2020, 117, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Bahuguna, A.; Krishnan, V. Bioinspired Dip Catalysts for Suzuki–Miyaura Cross-Coupling Reactions: Effect of Scaffold Architecture on the Performance of the Catalyst. Adv. Mater. Interfaces 2017, 4, 1700604. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036. [Google Scholar] [CrossRef]
- Greenspan, H.P. On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 1978, 84, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Brochard, F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 1989, 5, 432–438. [Google Scholar] [CrossRef]
- Subramanian, R.S.; Moumen, N.; McLaughlin, J.B. Motion of a drop on a solid surface due to a wettability gradient. Langmuir 2005, 21, 11844–11849. [Google Scholar] [CrossRef]
- Furmidge, C. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 1962, 17, 309–324. [Google Scholar] [CrossRef]
- Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860. [Google Scholar] [CrossRef]
- Koch, K.; Bhushan, B.; Jung, Y.C.; Barthlott, W. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 2009, 5, 1386–1393. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, P. Dropwise condensation theory revisited Part II. Droplet nucleation density and condensation heat flux. Int. J. Heat Mass Transf. 2015, 83, 842–849. [Google Scholar] [CrossRef]
- Deng, S.; Shang, W.; Feng, S.; Zhu, S.; Xing, Y.; Li, D.; Hou, Y.; Zheng, Y. Controlled droplet transport to target on a high adhesion surface with multi-gradients. Sci. Rep. 2017, 7, 45687. [Google Scholar] [CrossRef]
- Gandyra, D.; Walheim, S.; Gorb, S.; Barthlott, W.; Schimmel, T. The capillary adhesion technique: A versatile method for determining the liquid adhesion force and sample stiffness. Beilstein J. Nanotechnol. 2015, 6, 11–18. [Google Scholar] [CrossRef]
- Comanns, P.; Effertz, C.; Hischen, F.; Staudt, K.; Böhme, W.; Baumgartner, W. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards. Beilstein J. Nanotechnol. 2011, 2, 204–214. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Monga, D.; Stone, H.A.; Dai, X. Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. Cell Rep. Phys. Sci. 2021, 2, 100387. [Google Scholar] [CrossRef]
- De Gennes, P.-G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: Berlin/Heidelberg, Germany, 2004; Volume 315. [Google Scholar]
- Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 2014, 19, 4256–4283. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, M.; Sun, J.; Liu, M.; Du, B.; Liu, Y.; Jin, Y.; Wen, R.; Lan, Z.; Zhou, X. Rapid and Persistent Suction Condensation on Hydrophilic Surfaces for High-Efficiency Water Collection. Nano Lett. 2021, 21, 7411–7418. [Google Scholar] [CrossRef] [PubMed]
- Malvadkar, N.A.; Hancock, M.J.; Sekeroglu, K.; Dressick, W.J.; Demirel, M.C. An engineered anisotropic nanofilm with unidirectional wetting properties. Nat. Mater. 2010, 9, 1023–1028. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Q. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid. Sci. Rep. 2016, 6, 19907. [Google Scholar] [CrossRef]
- Sharma, V.; Balaji, R.; Krishnan, V. Fog-harvesting properties of Dryopteris marginata: Role of interscalar microchannels in water-channeling. Biomimetics 2018, 3, 7. [Google Scholar] [CrossRef]
- Azad, M.; Ellerbrok, D.; Barthlott, W.; Koch, K. Fog collecting biomimetic surfaces: Influence of microstructure and wettability. Bioinspir. Biomim. 2015, 10, 016004. [Google Scholar] [CrossRef]
Materials | Surface Feature | Contact Angle (θ) | Advancing Contact Angle (θa) | Receding Contact Angle (θr) | Contact Angle Hysteresis (CAH) |
---|---|---|---|---|---|
FMIL | Hydrophilic | 66 ± 2° | 78 ± 2° | 64 ± 2° | 14 ± 2° |
DMIL | Hydrophilic | 80 ± 2° | 91 ± 2° | 77 ± 2° | 13 ± 2° |
RMIL | Hydrophobic | 104 ± 2° | 115 ± 2° | 99 ± 2° | 15 ± 2° |
Characteristics | FMIL | DMIL | RMIL |
---|---|---|---|
Microgroove depth | 20–22 μm | 13–15 μm | 18–20 μm |
Microgroove length | 9–12 μm | 10–15 μm | 15–26 μm |
Microgroove width | 8–10 μm | 9–12 μm | 11–13 μm |
Surfaces | Vol of Harvested Water (gcm−2h−1) | Material | References |
---|---|---|---|
Nepenthes alata surface | 2.58 | Natural leaf | [48] |
D. marginata surfaces | 0.72 | Natural leaf | [49] |
Biomimetic surface coatings | 3.40 | Polystyrene | [8] |
Microstructured surfaces and mesh | 0.18 | Epoxy and Polyolefin | [50] |
Fresh Mangifera indica surface (FMIL) | 5.89 | Fresh Natural leaf | This work |
Dry Mangifera indica surface (DMIL) | 6.2 | Dry natural leaf | This work |
Replicated Mangifera indica surface (RMIL) | 7.02 | Polydimethylsiloxane (PDMS) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foday Jr, E.H.; Sesay, T.; Koroma, E.B.; Kanneh, A.A.G.S.; Chineche, E.B.; Jalloh, A.Y.; Koroma, J.M. Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency. Biomimetics 2022, 7, 147. https://doi.org/10.3390/biomimetics7040147
Foday Jr EH, Sesay T, Koroma EB, Kanneh AAGS, Chineche EB, Jalloh AY, Koroma JM. Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency. Biomimetics. 2022; 7(4):147. https://doi.org/10.3390/biomimetics7040147
Chicago/Turabian StyleFoday Jr, Edward Hingha, Taiwo Sesay, Emmanuel Bartholomew Koroma, Anthony Amara Golia Seseh Kanneh, Ekeoma Bridget Chineche, Alpha Yayah Jalloh, and John Mambu Koroma. 2022. "Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency" Biomimetics 7, no. 4: 147. https://doi.org/10.3390/biomimetics7040147
APA StyleFoday Jr, E. H., Sesay, T., Koroma, E. B., Kanneh, A. A. G. S., Chineche, E. B., Jalloh, A. Y., & Koroma, J. M. (2022). Biotemplate Replication of Novel Mangifera indica Leaf (MIL) for Atmospheric Water Harvesting: Intrinsic Surface Wettability and Collection Efficiency. Biomimetics, 7(4), 147. https://doi.org/10.3390/biomimetics7040147