Next Article in Journal
Living Plants Ecosystem Sensing: A Quantum Bridge between Thermodynamics and Bioelectricity
Next Article in Special Issue
Feature Extraction and Matching of Humanoid-Eye Binocular Images Based on SUSAN-SIFT Algorithm
Previous Article in Journal
A Compact Two-Dimensional Varifocal Scanning Imaging Device Actuated by Artificial Muscle Material
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems

by
Mohammad Dehghani
1,
Pavel Trojovský
1,* and
Om Parkash Malik
2
1
Department of Mathematics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
2
Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
*
Author to whom correspondence should be addressed.
Biomimetics 2023, 8(1), 121; https://doi.org/10.3390/biomimetics8010121
Submission received: 21 February 2023 / Revised: 8 March 2023 / Accepted: 10 March 2023 / Published: 14 March 2023
(This article belongs to the Special Issue Bio-Inspired Computing: Theories and Applications)

Abstract

:
A new metaheuristic algorithm called green anaconda optimization (GAO) which imitates the natural behavior of green anacondas has been designed. The fundamental inspiration for GAO is the mechanism of recognizing the position of the female species by the male species during the mating season and the hunting strategy of green anacondas. GAO’s mathematical modeling is presented based on the simulation of these two strategies of green anacondas in two phases of exploration and exploitation. The effectiveness of the proposed GAO approach in solving optimization problems is evaluated on twenty-nine objective functions from the CEC 2017 test suite and the CEC 2019 test suite. The efficiency of GAO in providing solutions for optimization problems is compared with the performance of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has a high capability in exploration, exploitation, and creating a balance between them and performs better compared to competitor algorithms. In addition, the implementation of GAO on twenty-one optimization problems from the CEC 2011 test suite indicates the effective capability of the proposed approach in handling real-world applications.

1. Introduction

Optimization has long been discussed in various branches of science in order to achieve the best solution in multi-solution problems [1]. Optimization is employed in addressing many optimization challenges in technology, engineering, and real-life applications [2]. An optimization problem is modeled from a mathematical point of view using decision variables that must be quantified, problem constraints that must be justified, and the objective function that must be optimized [3]. Problem-solving approaches in the field of optimization are classified into two classes: deterministic and stochastic techniques [4]. Deterministic techniques fall into two categories: gradient-based and non-gradient-based. These techniques are effective in solving linear, convex, simple optimization problems and simple real-world applications [5]. The need for first and second order derivative information and dependence on initial starting points are among the disadvantages of these techniques. This is so because, with the advancement of science and technology, scientists are faced with more complex and emerging optimization problems that are non-linear, non-convex, high-dimensional, and non-differentiable in nature. These characteristics lead to the inability of deterministic techniques to deal with such optimization problems and finally become stuck in local optima solutions [6]. The difficulties of deterministic techniques led scholars to explore new techniques called stochastic approaches to handle complex optimization tasks. Effective performance in nonlinear, discontinuous, complex, high-dimensional, NP-hard, non-convex optimization problems and nonlinear, discrete, and unknown search spaces are among the advantages that have led to the popularity of metaheuristic algorithms [7].
The operation of searching for a solution in metaheuristic algorithms starts by randomly generating a certain number of initial candidate solutions. In each iteration, under the influence of algorithm steps, candidate solutions are improved. After completing the iterations of the algorithm, the best candidate solution is identified among the solutions and presented as the solution to the given problem [8].
Metaheuristic algorithms should search the problem-solving space at both global and local levels well and carefully. The main goal of global search with the concept of exploration is the ability of the metaheuristic algorithm to identify the main optimal region and avoid getting stuck in local optima. The main goal of local search with the concept of exploitation is the ability of the metaheuristic algorithm to converge towards possible better solutions in the vicinity of the solutions discovered in the promising regions of the problem-solving space. Considering that exploration and exploitation pursue opposite goals, balancing them during the search process is the key to the success of metaheuristic algorithms [9]. The search process in metaheuristic algorithms has a random nature, which makes the solutions resulting from these approaches not guaranteed to be global optimal. At the same time, considering that these solutions are close to the global optimum, they are accepted as quasi-optimal solutions. Therefore, in the comparison of several metaheuristic algorithms, the algorithm that provides a quasi-optimal solution closer to the global optimum has superior performance. Achieving better quasi-optimal solutions and solutions closer to the global optimum to more effectively solve optimization problems is the motivation source of scientists in designing numerous metaheuristic algorithms [10].
The main research question is that according to the introduction of numerous metaheuristic algorithms so far, is there still a need to design a new metaheuristic algorithm or not? In response to this question, the No Free Lunch (NFL) [11] theorem explains that the successful performance of a metaheuristic algorithm in a set of optimization problems does not guarantee the same performance of that algorithm in all other optimization problems. In fact, according to the NFL theorem, there is no specific metaheuristic algorithm that is the best optimizer for all optimization applications. This means that there is no preconceived notion about whether the implementation of a metaheuristic algorithm on an optimization problem will be successful or not. The NFL theorem is the main source of the motivation for researchers to search for and provide better solutions for optimization problems by designing newer algorithms.
The novelty and innovation of this paper are in the introduction of a new metaheuristic algorithm called green anaconda optimization (GAO), which is used in dealing with optimization problems and providing solutions for them. The key contributions of this paper are given below:
  • GAO is designed based on mimicking the behavior of green anacondas in the wild.
  • The fundamental inspiration for GAO is the green anaconda’s tracking mechanism during the mating season and the hunting strategy they have when attacking prey.
  • The mathematical model of GAO is presented in two phases with the aim of forming exploration and exploitation in the search process.
  • GAO’s performance on optimization tasks is tested on twenty-nine benchmark functions from the CEC 2017 test suite and CEC 2019 test suite.
  • GAO’s ability to handle real-world applications is evaluated on twenty-one optimization problems from the CEC 2011 test suite.
  • The results obtained from GAO are compared with the performance of twelve well-known metaheuristic algorithms.
The structure of the paper is as follows: the literature review is presented in Section 2. Then, the proposed green anaconda optimization approach is introduced and modeled in Section 3. The simulation studies and results are presented in Section 4. The effectiveness of GAO in solving real-world applications is investigated in Section 5. Conclusions and suggestions for future research are provided in Section 6.

2. Literature Review

Metaheuristic algorithms in design are inspired by various natural phenomena, animal behavior in nature, laws of physics, rules of games, biological sciences, human interactions, and any other phenomenon that has an evolutionary process. According to this, in terms of the idea inspired in the design, metaheuristic algorithms are placed in five classes: swarm-based, evolutionary-based, physics-based, human-based, and game-based approaches.
Swarm-based metaheuristic algorithms have been developed based on the simulation of various swarming phenomena in nature, including the behaviors and strategies of animals, insects, birds, aquatic organisms and other living organisms. Among the most famous swarm-based algorithms can be mentioned ant colony optimization (ACO) [12], artificial bee colony (ABC) [13], and particle swarm optimization (PSO) [14]. ACO is inspired by the ability of ants to identify the optimal route between nests and food sources. ABC is developed based on the modeling of honey bee colony activities in obtaining food resources. PSO is designed based on the simulation of flocks of fish and birds searching for food in the environment. Food provision is a basic activity among living organisms in nature, which is obtained through foraging, eating carrion, and hunting. This natural behavior has been the source of inspiration for the design of numerous algorithms, including: grey wolf optimizer (GWO) [15], the orca predation algorithm (OPA) [16], the African vultures optimization algorithm (AVOA) [17], the marine predator algorithm (MPA) [18], white shark optimizer (WSO) [19], the reptile search algorithm (RSA) [20], golden jackal optimization (GJO) [21], the whale optimization algorithm (WOA) [22], the honey badger algorithm (HBA) [23], and the tunicate swarm algorithm (TSA) [24].
Evolutionary-based metaheuristic algorithms are designed based on modeling the concepts of biological, genetic sciences, and natural selection. Genetic algorithm (GA) [25] and differential evolution (DE) [26] are among the most famous evolutionary algorithms whose main idea in their design is to simulate the reproduction process, the concept of survival of the fittest, Darwin’s theory of evolution, random selection, mutation, and crossover operators.
Physics-based metaheuristic algorithms are inspired by the phenomena, laws, concepts, and forces of physics. Simulated annealing (SA) [27] is one of the most famous approaches of this class of metaheuristic algorithms, which is inspired by the metal annealing phenomenon. In this physical process, the metal is first melted and then slowly cooled to achieve the ideal crystal. Physical forces have been a source of inspiration in designing algorithms such as the gravitational search algorithm (GSA) [28] inspired vy gravitational force, the spring search algorithm (SSA) [29] inspired by spring force, and the momentum search algorithm (MSA) [30] inspired by momentum force. The physical water cycle is employed in the design of the water cycle algorithm (WCA) [31]. Some of the other physics-based algorithms are: the Archimedes optimization algorithm (AOA) [32], Henry gas optimization (HGO) [33], the equilibrium optimizer (EO) [34], the Lichtenberg algorithm (LA) [35], nuclear reaction optimization (NRO) [36], electro-magnetism optimization (EMO) [37], the black hole algorithm (BHA) [38], the multi-verse optimizer (MVO) [39], and thermal exchange optimization (TEO) [40].
Human-based metaheuristic algorithms are formed based on the simulation of human behavior, activities, and interactions. Teaching–learning-based optimization (TLBO) is one of the most widely used human-based approaches, which is designed based on imitating the classroom learning environment and interactions between students and teachers [41]. Human interactions in the field of therapy between doctors and patients are employed in the design of doctor and patient optimization (DPO) [42]. The development of society and the improvement of people’s living standards under the influence of the leader of that society has been the origin of following optimization algorithm (FOA) design [43]. The strategy of military troops during ancient wars has been the main inspiration in the design of war strategy optimization (WSO) [44]. Some of the other human-based algorithms are: the teamwork optimization algorithm (TOA) [45], Ali Baba and the forty thieves (AFT) [46], driving-training-based optimization (DTBO) [6], the gaining–sharing-knowledge-based algorithm (GSK) [47], and the Coronavirus herd immunity optimizer (CHIO) [48].
Game-based metaheuristic algorithms have been introduced based on the modeling of game rules, players’ strategies, referees, and other influential persons in games. Players trying to find a hidden object in the game space has been the main idea in the design of the hide object game optimizer (HOGO) [49]. The strategy of players in changing the direction of movement based on the direction determined by the referee in the orientation game is employed in the design of the orientation search algorithm (OSA) [50]. The simulation of the volleyball league and the behavior of the players and coaches during the match are used in the design of the volleyball premier league (VPL) [51]. Some of the other game-based algorithms are: football-game-based optimization (FGBO) [52], the archery algorithm (AA) [7], the dice game optimizer (DGO) [53], ring-toss-game-based optimization (RTGBO) [54], and the puzzle optimization algorithm (POA) [55].
Based on the best knowledge obtained from the literature review, so far, no metaheuristic model has been designed based on simulating the natural behavior of green anacondas. Meanwhile, the strategy of moving male species towards female species in the mating season and the hunting strategy of this animal is an intelligent process that has special potential for designing a meta-heuristic algorithm. Therefore, in order to address this research gap, a new swarm-based metaheuristic algorithm is designed based on mimicking the natural behavior of green anacondas. It is described in the next section.

3. Green Anaconda Optimization

In this section, the inspiration source and theory of the proposed green anaconda optimization (GAO) approach for use in optimization tasks is explained and its mathematical modeling is presented.

3.1. Inspiration of GAO

The green anaconda (Eunectes murinus) is a boa species that lives in South America, which is also known by other names such as common anaconda, giant anaconda, common water boa, or sucuri. The green anaconda, one of the longest and heaviest snakes in existence, is similar to other boas and is a non-venomous constrictor [56]. The length of green anacondas has been reported to be as long as 5.21 m [57]. In general, the female species with an average length of 4.6 m is usually much larger than the male species with an average length of 3 m [58]. The weight of green anacondas is reported to be between 30 and 70 kg [59]. Green anacondas are olive green in color and have black blotches along their body. Compared to their body size, they have a narrower head that is distinguished by orange–yellow striping. Green anacondas’ eyes are located on its head, giving it the ability to emerge from the water while swimming without exposing its body. Green anacondas have flexible jaw bones that enable it to swallow prey that is larger than the head size of this animal [60]. A picture of a green anaconda is shown in Figure 1.
Green anacondas have a varied diet that they provide by hunting prey. This diet includes fish, birds, reptiles (caimans and turtles), and mammals (agoutes, pacas, tapirs, capybara, peccaries, deer, etc.). There are also reports that green anacondas feed by hunting prey animals over 40 kg, which rarely happens [61]. Green anacondas spend most of their time in or around water. Although they are slow on land, they are very agile in water and are able to swim at high speeds. The green anaconda’s hunting strategy is to hide under the surface of the water while its snouts are placed above the surface of the water. When the prey approaches it or stops to drink water, the green anaconda strikes the prey, wraps around the prey, then contracts to suffocate the prey, and finally swallows it [62].
When the mating season arrives, males look for females. Normally, males are able to identify the position of females and move towards them by following a trail of pheromones that females produce and leave in their path. During this process, males are able to sense chemicals that indicate the presence of the female species by constantly flicking their tongues [63].
Among the natural behaviors of green anacondas in nature, the process of chasing female species by male species during the mating season and their strategy during hunting are much more significant. These natural behaviors of green anacondas are intelligent processes whose mathematical modeling is employed in designing the proposed GAO approach.

3.2. Algorithm Initialization

The proposed GOA is a population-based metaheuristic algorithm in which green anacondas are its population members. From a mathematical point of view, each green anaconda is a candidate solution to the problem whose position in the search space determines the values of the decision variables. Hence, each green anaconda can be modeled using a vector, and the population of green anacondas consisting of these vectors can be modeled using a matrix according to Equation (1). The initial position of each green anaconda in the search space is randomly generated at the beginning of the algorithm execution using Equation (2).
X = X 1 X i X N N × m = x 1,1 x 1 , d x 1 , m x i , 1 x i , d x i , m x N , 1 x N , d x N , m N × m ,
x i , d = l b d + r i , d · u b d l b d ,   i = 1,2 , , N ,   d = 1,2 , , m ,
where X is the GAO population matrix, X i is the i th green anaconda (candidate solution), x i , d is its d th dimension in the search space (decision variable), N is the number of green anacondas, m is the number of decision variables, r i , d are random numbers in interval 0 , 1 , and l b d and u b d are the lower bound and upper bound of the d th. decision variable, respectively.
Corresponding to the suggested values of each green anaconda for the decision variables, the objective function of the problem can be evaluated. This set of calculated values for the objective function can be represented from a mathematical point of view using a vector according to Equation (3).
F = F 1 F i F N N × 1 = F ( X 1 ) F ( X i ) F ( X N ) N × 1 ,
where F is the vector of the calculated objective function and F i is the calculated objective function based on the i th green anaconda.
From the comparison of the calculated values for the objective function, the member corresponding to the best value calculated for the objective function is identified as the best member (the best candidate solution). Since in each iteration of GAO, the positions of the green anacondas and thus the values of the objective function are updated, the best member should also be updated.

3.3. Mathematical Modelling of GAO

In the GAO design, the position of green anacondas in the search space has been updated based on the simulation of green anaconda behavior in two phases with the aim of providing exploration and exploitation in the search process.

3.3.1. Phase 1: Mating Season (Exploration)

During the mating season, green anaconda female species leave pheromones along their path so that the male species can identify their position. Males use their tongues to sense the chemical effects of pheromones that indicate the presence of a female species and move toward it. In the first phase of GAO, the position of green anacondas is updated based on the male species’ strategy in identifying the female species’ position and moving towards them during the mating season. This strategy leads to large displacements in the position of green anacondas in the search space, which demonstrates the exploration ability of GAO in global search and accurate scanning of the problem-solving space to avoid becoming stuck in optimal local regions.
In order to mathematically simulate this process, it is assumed in the GAO design that for each green anaconda, members of the GAO population who have a better objective function value than it are considered as the female species of green anacondas. The set of candidate female species for each green anaconda is determined using Equation (4).
C F L i = X k i : F k i < F i   a n d   k i i ,   w h e r e   i = 1,2 , , N   a n d   k i 1,2 , , N ,
where C F L i is the set of candidate females’ locations for the i th green anaconda and k i is the green anaconda row number in the GAO population matrix and the position number of the corresponding element in the objective function vector that has a better objective function value than the i th green anaconda.
The concentration of pheromones has a significant effect on the movement of green anacondas. To simulate the pheromone concentration, the objective function values have been used. Thus, the better the value of the objective function of a member, the higher the chance of selecting it by green anaconda. The probability function of pheromone concentration for the material species corresponding to each GAO member is calculated using Equation (5).
P C j i = C F F j i C F F m a x i n = 1 n i C F F n i C F F m a x i ,   w h e r e   i = 1,2 , , N   a n d   j = 1,2 , , n i
where P C j i is the probability of the pheromone concentration of the j th female for the i th green anaconda, C F F i is the vector of the set of objective function values of candidate females for the i th green anaconda, C F F j i is its j th value, C F F m a x i is its maximum value, and n i is the number of candidate females for the i th green anaconda.
In the GAO design, it is assumed that the green anaconda randomly selects one of the candidate materials and moves towards it. In order to simulate this selection process, first the cumulative probability function of candidate females is calculated using Equation (6). Then, based on the comparison of the cumulative probability function with a random number with a normal distribution in the range of 0 , 1 , the selected female species for green anaconda is determined according to Equation (7).
C j i = P C j i + C j 1 i ,   w h e r e   i = 1,2 , , N ,   j = 1,2 , , m ,   a n d   C 0 i = 0
S F i = C F L j i : C j 1 i < r i , j < C j i
where C j i is the cumulative probability function of the j th candidate female for the i th green anaconda, S F i is the selected female for the i th green anaconda, and r is a random number with a normal distribution in the range of 0 , 1 .
After determining the selected female species, based on the simulation of green anaconda movement towards it, a random position in the search space for green anaconda is calculated using Equation (8). If the value of the objective function is improved in this new position, according to Equation (9), the position of corresponding green anaconda is updated to this new position, otherwise it remains in the previous position.
x i , d P 1 = x i , d + r i , d · S F d i I i , d · x i , d ,   i = 1,2 , , N ,   a n d   d = 1,2 , , m ,
X i = X i P 1 , F i P 1 < F i , X i , e l s e ,
where X i P 1 is the new suggested position of the i th green anaconda based on the first phase of GAO, x i , d P 1 is its d th dimension, F i P 1 is its objective function value, r i , d are random numbers with a normal distribution in the range of 0 , 1 , S F d i is the d th dimension of the selected female for the i th green anaconda, I i , d are random numbers from the set 1,2 , N is the number of green anacondas, and m is the number of decision variables.

3.3.2. Phase 2: Hunting Strategy (Exploitation)

Green anacondas are powerful predators whose hunting strategy is to ambush underwater and wait for prey. When the prey stops drinking water or passes near the green anaconda, the anaconda attacks and surrounds the prey, then contracts to suffocate the prey, and finally swallows it. In the second phase of GAO, the position of the population members is updated based on the green anaconda’s strategy when hunting prey. This strategy leads to small displacements in the position of the green anacondas in the search space, which indicates the exploitation ability of GAO in local search to obtain possible better solutions near the discovered solutions.
In order to simulate the hunting strategy and change the position of the population members towards the prey that has approached them, first a random position is generated near each green anaconda using Equation (10). Then, according to Equation (11), if the value of the objective function is improved in this new position, it is acceptable to update the green anaconda location.
x i , d P 2 = x i , d + 1 2 r i , d u b d l b d t , i = 1,2 , , N ,   d = 1,2 , , m ,   a n d   t = 1,2 , , T
X i = X i P 2 , F i P 2 < F i , X i , e l s e ,
where X i P 2 is the new suggested position of the i th green anaconda based on thr second phase of GAO, x i , d P 2 is its d th dimension, F i P 2 is its objective function value, t is the iteration counter of the algorithm, and T is the maximum number of algorithm iterations.

3.4. Repetition Process, Pseudocode, and Flowchart of GAO

Various steps of GAO are presented in the form of a flowchart in Figure 2 and its pseudocode is presented in Algorithm 1. The first iteration of GAO is completed after updating the position of all green anacondas based on the first and second phases. After this, the algorithm enters the next iteration with the new values of the objective function and the new positions of the green anacondas, and the updating process continues according to Equations (4)–(11) until the last iteration of the algorithm. After the full implementation of GAO, the best candidate solution recorded during the execution of the algorithm is presented as a solution for the given problem.
Algorithm 1. Pseudocode of GAO
Start GAO.
1.Input problem information: variables, objective function, and constraints.
2.Set GAO population size (N) and iterations (T).
3.Generate the initial population matrix at random using Equation (2). x i , d l b d + r i , d · ( u b d l b d )
4.Evaluate the objective function.
5.For t = 1 to T
6.For i = 1 to N
7.Phase 1: mating season (exploration)
8.Identify the candidate females using Equation (4). C F L i X k i : F k i < F i   a n d   k i i .
9.Calculate the concentration function of candidate females using Equation (5). P C j i C F F j i C F F m a x i n = 1 n i C F F n i C F F m a x i .
10.Calculatethe cumulative probability function candidate females using Equation (6). C j i P C j i + C j 1 i .
11.Determine the selected female using Equation (7). S F i C F L j i : C j 1 i < r i , j < C j i .
12.Calculate the new position of ith GAO member using Equation (8). x i , d P 1 x i , d + r i , d · S F d i I i , d · x i , d .
13.Update ith GAO member using Equation (9). X i X i P 1 , F i P 1 < F i , X i , e l s e .
14.Phase 2: hunting strategy (exploitation)
15.Calculate the new position of ith GAO member using Equation (10). x i , d P 2 x i , d + ( 1 2 r i , d ) u b d l b d t
16.Update the i th GAO member using Equation (11). X i X i P 2 , F i P 2 < F i , X i , e l s e .
17.End
18.Save the best candidate solution so far.
19.End
20.Output the best quasi-optimal solution obtained with the GAO.
End GAO.

3.5. Computational Complexity of GAO

In this section, the computational complexity of the proposed GAO approach is evaluated. GAO initialization for a problem with m number of decision variables is O ( N m ) where N is the number of green anacondas. In each iteration of GAO, the position of green anacondas is updated in two different phases, and this process has a computational complexity equal to O ( 2 N m T ) , where T is the maximum iterations of the algorithm. Therefore, the total computational complexity of GAO is equal to O ( N m ( 1 + 2 T ) ) .

4. Simulation Studies and Results

GAO’s ability to solve optimization problems has been evaluated in this section on a set of thirty-nine benchmark functions from the CEC 2017 test suite and CEC 2019 test suite. The CEC 2017 test suite includes 30 objective functions, among which C17-F1 to C17-F3 are unimodal, C17-F4 to C17-F10 are multimodal, C17-F11 to C17-F20 are hybrid, and C17-F21 to C17-F30 are composition. From this set, the function C17-F2 has been left out from the simulations due to the instability of the behavior. The full description of the CEC 2017 test suite is provided in [64]. The CEC 2019 test suite includes ten complex objective functions, the full description of which is provided in [65]. The performance of GAO in optimization is compared with twelve well-known metaheuristic algorithms including: GA [25], PSO [14], GSA [28], TLBO [41], MVO [39], GWO [15], WOA [22], MPA [18], TSA [24], RSA [20], AVOA [17], and WSO [19]. The values used for the control parameters of competitor algorithms are shown in Table 1.
GAO and competing algorithms have been implemented on the mentioned thirty-nine benchmark functions in order to obtain suitable solutions for these functions. The simulation results are presented using six indicators: mean, best, worst, standard deviation (std), median, and rank.

4.1. Evaluation the CEC 2017 Test Suite

In this subsection, GAO’s ability to solve optimization problems is tested on the CEC 2017 test suite. In order to analyze the scalability, GAO and competitor algorithms are employed to optimize this set for different dimensions equal to 10, 30, 50, and 100. The simulation results are reported in Table 2, Table 3, Table 4 and Table 5. Convergence curves of the performance of GAO and competitor algorithms on the CEC 2017 test suite for different dimensions are presented in Figure 3, Figure 4, Figure 5 and Figure 6. Simulation results for dimension equal to 10 show that GAO is the first best optimizer for C17-F1, C17-F3, C17-F4, C17-F7, C17-F9, C17-F10, C17-F12 to C17-F14, C17-F16, C17-F18, C17-F19, C17-F21, C17-F22, C17-F25, C17-F26, and C17-F29 compared to competitor algorithms. For dimension equal to 30, GAO is the first best optimizer for C17-F1, C17-F3 to C17-F5, C17-F7, C17-F12 to C17-F14, C17-F16 to C17-F18, C17-F21 to C17-F27, and C17-F29 compared to competitor algorithms. For dimension equal to 50, GAO is the first best optimizer for C17-F1, C17-F3 to C17-F14, C17-F16 to C17-F18, C17-F20, C17-F22 to C17-F26, C17-F28, and C17-F30 compared to competitor algorithms. For dimension equal to 100, GAO is the first best optimizer for C17-F1, C17-F3 to C17-F13, C17-F15 to C17-F23, C17-F26, C17-F27, C17-F29, and C17-F30 compared to competitor algorithms.
The unimodal functions C11-F1 and C11-F3 do not have local optimal. For that reason, they are suitable criteria for measuring the exploitation ability of metaheuristic algorithms in local search and convergence to the global optimal. The optimization results of C17-F1 and C17-F3 functions show that the proposed GAO approach has a high ability in exploitation. Multi-modal functions C17-F4 to C17-F10 have several local optimal in addition to the main optimal. For this reason, they are suitable criteria to measure the exploitation ability of metaheuristic algorithms in the global search and discover the main optimal area. The simulation results show that GAO has a high quality in exploration and decent performance in solving multi-modal functions. Hybrid functions C17-F11 to C17-F20 and composition functions C17-F21 to C17-F30 are suitable options for measuring the ability of metaheuristic algorithms to balance exploration and exploitation during the search process. The optimization results show that GOA achieves acceptable results for these benchmark functions. Thus it can be said that GAO can balance exploration and exploitation in the optimization process. It can be inferred from the simulation results that the proposed GAO approach by balancing exploration and exploitation has performed better compared to competing algorithms in optimizing the CEC 2017 test suite for different dimensions of 10, 30, 50, and 100, and overall, it has been ranked as the best optimizer.

4.2. Evaluation the CEC 2019 Test Suite

In this subsection, GAO’s ability to solve optimization problems has been tested on the CEC 2019 test suite. This test suite has ten benchmark functions and its dimensions are 9 for C19-F1, 16 for C19-F2, 18 for C19-F3, and 10 for C19-F4 to C19-F10. The full description and details of the CEC 2019 test suite are provided in [65]. The results of employing the proposed GAO approach and competitor algorithms in dealing with this test suite are reported in Table 6. The simulation results show that GAO is the first best optimizer for C19-F1 to C19-F4, and C19-F6 to C19-F9 compared to the competitor algorithms. Analysis of the simulation results indicates that the proposed GAO approach has performed better by balancing exploration and exploitation compared to the competitor algorithms and has been assigned the first rank of the best optimizer in handling the CEC 2019 test suite. Convergence curves of performance for the GAO and competitor algorithms during optimization of the CEC 2019 test suite are presented in Figure 7.

4.3. Statistical Analysis

Presenting the optimization results of the objective functions using mean, best, worst, standard deviation, median, and rank indicators provides valuable information about the performance of metaheuristic algorithms and the proposed GAO approach. However, statistical analysis is necessary to show whether the superiority of GAO’s proposed approach against competitor algorithms is significant or not. In order to deal with this issue, the Wilcoxon rank sum test [66], which is a non-parametric test and is used to determine the significant difference between two data samples, is used. Results of implementing the Wilcoxon rank sum test analysis on the simulation results of the CEC 2017 test suite and the CEC 2019 test suite are reported in Table 7. The results obtained for the p-value index indicate that the proposed GAO approach has a significant statistical superiority in comparison to the corresponding competitor algorithms in cases where the p-value is less than 0.05.

5. GAO for Real-World Applications

In this section, the ability of the proposed GAO approach to handle optimization problems in real-world applications is evaluated. For this purpose, the CEC 2011 test suite, which is a collection of 22 real-world optimization applications, is employed. The titles of these real-world optimization problems are as follows: parameter estimation for frequency-modulated (FM) sound waves, the Lennard–Jones potential problem, the bifunctional catalyst blend optimal control problem, optimal control of a non-linear stirred tank reactor, tersoff potential for model Si (B), tersoff potential for model Si (C), spread spectrum radar polly phase code design, the transmission network expansion planning (TNEP) problem, the large-scale transmission pricing problem, the circular antenna array design problem, the ELD problems (consisting of: DED instance 1, DED instance 2, ELD Instance 1, ELD Instance 2, ELD Instance 3, ELD Instance 4, ELD Instance 5, hydrothermal scheduling instance 1, hydrothermal scheduling instance 2, and hydrothermal scheduling instance 3), the messenger: spacecraft trajectory optimization problem, and the Cassini 2: spacecraft trajectory optimization problem. From this set, the C11-F3 function has been removed in the simulation studies. The full description of the CEC 2011 test suite is provided in [67]. The results of implementing the proposed GAO approach and competitor algorithms on the CEC 2011 test suite are reported in Table 8. The simulation results show that GAO is the first best optimizer for C11-F1, C11-F2, C11-F4 to C11-F7, C11-F9 to C11-F12, FC11-14 to C11-F16, and C11-F20 to C11-F22 compared to the competing algorithms. What is clear from the analysis of the simulation results is that the proposed GAO approach has effective performance in dealing with real-world applications and based on the Wilcoxon rank sum test statistical analysis, it has won the first rank of being the best optimizer compared to the competitor algorithms. The convergence curves of the performance of GAO and competitor algorithms during optimization of the CEC 2011 test suite are presented in Figure 8.

6. Conclusions and Future Works

A new swarm-based optimization algorithm, called green anaconda optimization (GAO), that can be used in solving optimization problems, is introduced in this paper. The natural behavior of green anacondas, the strategy of the male species in identifying the position of the female species during the mating season, and their hunting strategy are the fundamental inspiration for GAO. The mathematical model of GAO is presented in two phases of exploration and exploitation based on modeling the natural behavior of green anacondas. The ability of the proposed GAO approach in handling the optimization problems is tested on thirty-nine objective functions from the CEC 2017 and CEC 2019 test suites. The performance of GAO is also compared with that of twelve well-known metaheuristic algorithms. The simulation results show that the proposed GAO approach has superior performance compared to competitor algorithms by creating a balance between exploration and exploitation. In addition, the implementation of GAO on twenty-one problems from the CEC 2011 test suite showed the high capability of the proposed approach in handling real-world applications.
Among several suggestions for future research, the design of binary and multi-objective versions of the proposed GAO approach is the most prominent. Employing the proposed GAO approach in order to solve optimization problems in various sciences as well as real-world applications such as image clustering, image segmentation, medical applications, and engineering problems are other suggestion for future research.

Author Contributions

Conceptualization, O.P.M. and P.T.; methodology, M.D.; software, M.D. and P.T.; validation, O.P.M., P.T. and M.D.; formal analysis, M.D.; investigation, P.T.; resources, M.D.; data curation, O.P.M.; writing—original draft preparation, M.D. and P.T.; writing—review and editing, O.P.M.; visualization, P.T.; supervision, M.D.; project administration, P.T.; funding acquisition, O.P.M. All authors have read and agreed to the published version of the manuscript.

Funding

Financial support from the Natural Sciences and Engineering Research Council of Canada in the form of a research grant is acknowledged by one of the authors.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the University of Hradec Králové and the University of Calgary for their support.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
  2. Jahani, E.; Chizari, M. Tackling global optimization problems with a novel algorithm–Mouth Brooding Fish algorithm. Appl. Soft Comput. 2018, 62, 987–1002. [Google Scholar] [CrossRef]
  3. Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018, 8, 453. [Google Scholar] [CrossRef] [Green Version]
  4. Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005, 12, 263–285. [Google Scholar] [CrossRef]
  5. Koc, I.; Atay, Y.; Babaoglu, I. Discrete tree seed algorithm for urban land readjustment. Eng. Appl. Artif. Intell. 2022, 112, 104783. [Google Scholar] [CrossRef]
  6. Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022, 12, 9924. [Google Scholar] [CrossRef]
  7. Zeidabadi, F.-A.; Dehghani, M.; Trojovský, P.; Hubálovský, Š.; Leiva, V.; Dhiman, G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022, 72, 399–416. [Google Scholar] [CrossRef]
  8. de Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022, 21, 265–287. [Google Scholar] [CrossRef]
  9. Trojovská, E.; Dehghani, M.; Trojovský, P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
  10. Dehghani, M.; Montazeri, Z.; Dehghani, A.; Malik, O.P.; Morales-Menendez, R.; Dhiman, G.; Nouri, N.; Ehsanifar, A.; Guerrero, J.M.; Ramirez-Mendoza, R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021, 11, 1286. [Google Scholar] [CrossRef]
  11. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
  12. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In International Fuzzy Systems Association World Congress; Springer: Berlin/Heidelberg, Germany, 2007; pp. 789–798. [Google Scholar]
  14. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
  15. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
  16. Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022, 188, 116026. [Google Scholar] [CrossRef]
  17. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
  18. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
  19. Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl. Based Syst. 2022, 234, 108457. [Google Scholar] [CrossRef]
  20. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
  21. Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
  22. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
  23. Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
  24. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
  25. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
  26. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
  27. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
  28. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
  29. Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020, 10, 6173. [Google Scholar] [CrossRef]
  30. Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020, 2, 1720. [Google Scholar] [CrossRef]
  31. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
  32. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
  33. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
  34. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
  35. Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha Jr, S.S.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [Google Scholar] [CrossRef]
  36. Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access 2019, 7, 66084–66109. [Google Scholar] [CrossRef]
  37. Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012, 182, 40–55. [Google Scholar] [CrossRef] [Green Version]
  38. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
  39. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
  40. Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
  41. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
  42. Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020, 10, 5791. [Google Scholar] [CrossRef]
  43. Dehghani, M.; Mardaneh, M.; Malik, O. FOA:‘Following’Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020, 8, 57–64. [Google Scholar]
  44. Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
  45. Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
  46. Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
  47. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [Google Scholar] [CrossRef]
  48. Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 2021, 33, 5011–5042. [Google Scholar] [CrossRef] [PubMed]
  49. Dehghani, M.; Montazeri, Z.; Saremi, S.; Dehghani, A.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020, 13, 4. [Google Scholar] [CrossRef]
  50. Dehghani, M.; Montazeri, Z.; Malik, O.P.; Ehsanifar, A.; Dehghani, A. OSA: Orientation search algorithm. Int. J. Ind. Electron. Control. Optim. 2019, 2, 99–112. [Google Scholar]
  51. Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
  52. Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.; Kumar, V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [Google Scholar] [CrossRef]
  53. DEHGHANI, M.; MONTAZERI, Z.; MALIK, O.P. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019, 32, 871–882. [Google Scholar] [CrossRef] [Green Version]
  54. Doumari, S.A.; Givi, H.; Dehghani, M.; Malik, O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021, 14, 545–554. [Google Scholar] [CrossRef]
  55. Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022, 15, 273–281. [Google Scholar]
  56. Hsiou, A.S.; Winck, G.R.; Schubert, B.W.; Avilla, L. On the presence of Eunectes murinus (Squamata, Serpentes) from the late Pleistocene of northern Brazil. Rev. Bras. De Paleontol. 2013, 16, 77–82. [Google Scholar] [CrossRef]
  57. Rivas, J.A. The Life History of the Green Anaconda (Eunectes murinus), with Emphasis on Its Reproductive Biology. Ph.D. Thesis, The University of Tennessee, Knoxville, TN, USA, 1999. [Google Scholar]
  58. Rivas, J.A.; Burghardt, G.M. Understanding sexual size dimorphism in snakes: Wearing the snake’s shoes. Anim. Behav. 2001, 62, F1–F6. [Google Scholar] [CrossRef] [Green Version]
  59. Pope, C.H. The Giant Snakes: The Natural History of the Boa Constrictor, the Anaconda, and the Largest Pythons, Including Comparative Facts about Other Snakes and Basic Information on Reptiles in General; Knopf: New York, NY, USA, 1961. [Google Scholar]
  60. Harvey, D. Smithsonian Super Nature Encyclopedia; Dorling Kindersley Publishing: London, UK, 2012. [Google Scholar]
  61. Thomas, O.; Allain, S. Review of prey taken by anacondas (Squamata, Boidae: Eunectes). Reptiles Amphib. 2021, 28, 329–334. [Google Scholar] [CrossRef]
  62. Strimple, P. The Green Anaconda Eunectes murinus (Linnaeus). Liyyeratura Serpentium 1993, 13, 46–50. [Google Scholar]
  63. Burton, M.; Burton, R. International Wildlife Encyclopedia; Marshall Cavendish: New York, NY, USA, 2002; Volume 1. [Google Scholar]
  64. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P.; Definitions, P. Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technology Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
  65. Price, K.V.; Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization; Nanyang Technological University: Singapore, 2018. [Google Scholar]
  66. Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
  67. Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Jadavpur University: Kolkata, India; Nanyang Technological University: Singapore, 2010; pp. 341–359. [Google Scholar]
Figure 1. Green anaconda (https://upload.wikimedia.org/wikipedia/commons/b/b4/Sucuri_verde.jpg (accessed on 20 February 2023)) taken from: free media Wikimedia Commons.
Figure 1. Green anaconda (https://upload.wikimedia.org/wikipedia/commons/b/b4/Sucuri_verde.jpg (accessed on 20 February 2023)) taken from: free media Wikimedia Commons.
Biomimetics 08 00121 g001
Figure 2. Flowchart of GAO.
Figure 2. Flowchart of GAO.
Biomimetics 08 00121 g002
Figure 3. Convergence curves of GAO and competitor algorithms performance on the CEC 2017 test suite (dimension m = 10 ).
Figure 3. Convergence curves of GAO and competitor algorithms performance on the CEC 2017 test suite (dimension m = 10 ).
Biomimetics 08 00121 g003
Figure 4. Convergence curves of GAO and competitor algorithms performance on the CEC 2017 test suite (dimension m = 30 ).
Figure 4. Convergence curves of GAO and competitor algorithms performance on the CEC 2017 test suite (dimension m = 30 ).
Biomimetics 08 00121 g004
Figure 5. Convergence curves of GAO and competitor algorithms performance on the CEC 2017 test suite (dimension m = 50 ).
Figure 5. Convergence curves of GAO and competitor algorithms performance on the CEC 2017 test suite (dimension m = 50 ).
Biomimetics 08 00121 g005
Figure 6. Convergence curves of GAO and competitor algorithms performance on CEC 2017 test suite (dimension m = 100 ).
Figure 6. Convergence curves of GAO and competitor algorithms performance on CEC 2017 test suite (dimension m = 100 ).
Biomimetics 08 00121 g006
Figure 7. Convergence curves of GAO and competitor algorithms performance on the CEC 2019 test suite.
Figure 7. Convergence curves of GAO and competitor algorithms performance on the CEC 2019 test suite.
Biomimetics 08 00121 g007
Figure 8. Convergence curves of GAO and competitor algorithms performance on the CEC 2011 test suite.
Figure 8. Convergence curves of GAO and competitor algorithms performance on the CEC 2011 test suite.
Biomimetics 08 00121 g008
Table 1. Control parameters values.
Table 1. Control parameters values.
AlgorithmParameterValue
GA
TypeReal coded
SelectionRoulette wheel (proportionate)
CrossoverWhole arithmetic (probability = 0.8,
α 0.5 , 1.5 )
MutationGaussian (probability = 0.05)
PSO
TopologyFully connected
Cognitive and social constant(C1, C2) = ( 2 , 2 )
Inertia weightLinear reduction from 0.9 to 0.1
Velocity limit10% of dimension range
GSA
Alpha, G0, Rnorm, Rpower20, 100, 2, 1
TLBO
TF: Teaching factorTF = round ( 1 + r a n d )
random numberrand is a random number between 0 1 .
GWO
Convergence parameter (a)a: Linear reduction from 2 to 0.
MVO
Wormhole existence probability (WEP)Min(WEP) = 0.2 and Max(WEP) = 1.
Exploitation accuracy over the iterations (p) p = 6 .
WOA
Convergence parameter (a)a: Linear reduction from 2 to 0.
r is a random vector in 0 1 .
l is a random number in 1,1 .
TSA
Pmin and Pmax1, 4
c1, c2, c3random numbers lie in the range of 0 1 .
MPA
Constant number P = 0.5
Random vectorR is a vector of uniform random numbers in 0 , 1 .
Fish aggregating devices (FADs) F A D s = 0.2
Binary vector U = 0 or 1
RSA
Sensitive parameter β = 0.01
Sensitive parameter α = 0.1
Evolutionary sense (ES)ES: randomly decreasing values between 2 and −2
AVOA
L1, L20.8, 0.2
W2.5
P1, P2, P30.6, 0.4, 0.6
WSO
Fmin and Fmax0.07, 0.75
τ, ao, a1, a24.125, 6.25, 100, 0.0005
Table 2. Optimization results of the CEC 2017 test suite (dimension m = 10 ).
Table 2. Optimization results of the CEC 2017 test suite (dimension m = 10 ).
GAOWSOAVOARSAMPATSAWOAMVOGWOTLBOGSAPSOGA
C17-F1mean1006977.1111822.6349.72 × 109104.66221.33 × 1097,296,30211,776.5218,952.961.57 × 108328.93463347.23320,023,383
best100345.9705754.13277.3 × 109102.406311,665,9813,349,2886355.28911,697.0269,930,767109.1846362.0216,675,925
worst10012,471.593882.1221.27 × 1010106.05173.8 × 10910,244,42815,855.0628,173.753.79 × 108747.24629924.34536,691,453
std1.76 × 10−56313.971440.8552.69 × 1091.6158771.69 × 1093,442,7254085.3237694.8961.49 × 108290.32694427.8112,404,106
median1007545.4421327.149.47 × 109105.09557.46 × 1087,795,74612,447.8617,970.5489,666,699229.65391551.28418,363,078
rank16413212978113510
C17-F3mean300349.9638333.412211,479.0330011,447.371003.998300.02473182.624754.537811,414.77314.137615,733.23
best300302.6537300.0017421.5983007260.632501.6584300.0095612.137482.59019317.412311.50754618.157
worst300394.8162375.4715,834.5330015,343.091755.01300.04337521.755932.184712,906.36317.371924,879.84
std4.64 × 10−1450.7035231.218434674.2855.43 × 10−113304.026552.18510.0140953284.596197.0911554.8072.49120910,584.32
median300351.1926329.088911,329.9930011,592.88879.6611300.0232298.302801.688211,717.65313.835516,717.47
rank16512211839710413
C17-F4mean400.002407.7045418.5456881.8049417.7576582.4649430.8554404.3984423.2437409.7871406.2592421.6779415.7083
best400400.0125401.1698586.4966414.2066406.9075406.8525403.2745407.2344408.9495405.0984400.1128412.4635
worst400.008424.6187468.84021517.016423.186947.3914456.5312405.4712470.4305410.3159406.799475.105419.6784
std0.00402411.6397533.53654427.64314.118432246.332427.240210.89863931.458580.5858830.78142335.985263.157633
median400403.0934402.0862711.8537416.8188487.7803430.019404.4239407.655409.9415406.5697405.7469415.3457
rank14813712112105396
C17-F5mean520.5609519.1534542.2855580.0791521.6225571.2951538.0164524.0977517.8573536.616553.2224529.9867530.1072
best507.9597509.9497520.8941561.3768509.9496534.1875514.506514.9287510.3157530.7196539.7681511.9395525.052
worst534.983528.8541563.6767591.9163544.5154593.0703562.2668542.6545528.6164540.4401566.6616555.7175536.3365
std14.109658.7257817.5836213.2722115.6328225.9760819.8451412.608888.118894.27286812.5565120.218985.109001
median519.6504518.905542.2856583.5117516.0124578.9613537.6464519.4038516.2485537.6521553.2301526.145529.5201
rank32101341295181167
C17-F6mean603.01600.5606614.929644.2993600.0003627.6556640.0763600.5326601.6492607.426618.4222608.0398611.1025
best601.6233600.0005605.396641.2874600.0001612.1762634.9033600.2196601.1107605.1494609.0575601.4659607.472
worst604.6321602.0417635.5747647.7859600.0004644.1825650.7377601.0412603.1359610.9759629.7345620.8405615.6957
std1.34990.99184713.938392.89170.00013313.36337.4372350.3858810.9918262.6563698.6398768.7881913.64533
median602.8922600.1001609.3725644.0619600.0004627.1318637.332600.4348601.1752606.7894617.4483604.9264610.6212
rank53913111122461078
C17-F7mean714.9746727.3328753.8474799.9577720.073824.0926772.6133721.9245730.1478755.4194716.7679734.5213738.9913
best714.4159716.9793727.955790.3283715.4835794.2034751.0108711.5214721.8083750.5447711.4275726.7135727.7346
worst715.7112737.1411801.0858810.4362724.3538863.1991802.0857728.4637749.7124764.2491725.9128747.0726743.9886
std0.6280968.63172932.395568.4357693.76719728.6842825.187887.55529313.119156.1460016.3687659.2708557.625192
median714.8856727.6054743.1745799.5332720.2273819.4839768.6783723.8564724.5352753.4418714.8658732.1495742.121
rank15912313114610278
C17-F8mean818.8348817.5792830.8799854.2832833.2392834.1207839.1509827.6156815.564840.7119823.3815824.5363818.0629
best804.9748807.9599822.034840.3486809.9496812.4518825.8119808.9582810.3711833.2718815.9193816.9143813.7883
worst851.46841.4628837.8083860.4043863.7533856.0983854.1837855.7292822.351849.4086831.8386831.483826.546
std21.8862916.011948.1520159.47821126.1845218.6026411.6249119.875985.2780388.2566427.6854497.2128695.753112
median809.4521810.4471831.8386858.19829.6269833.9664838.3041822.8875814.767840.0837822.884824.8739815.9586
rank42813910117112563
C17-F9mean900958.02461183.2731521.4719001272.4291145.44900.1154900.5917912.8054926.2937904.5932905.5344
best900906.81341031.9471377.821900931.12141005.691900.0008900.0569907.8307920.4252900.9737903.0297
worst9001056.5881387.3651784.329001701.2961460.087900.4561900.9171921.6602931.8898913.3387909.8295
std070.4426148.8524184.28716.63 × 10−8336.066211.2310.2271380.3761986.0778255.957635.9046113.075444
median900934.34841156.8891461.8719001228.6491057.991900.0023900.6964910.8653926.4299902.0301904.6392
rank19111321210347856
C17-F10mean1301.5591482.2411963.6862463.9591343.1282384.8892464.881794.251535.892256.1982564.7082013.591766.646
best1148.1461240.5251532.0272279.1511189.3662194.3142123.4671606.6381410.3021836.7422149.3151599.9341443.475
worst1457.8851761.6042178.6492817.4491472.8162769.9782906.5852041.9691721.1652565.72887.9912449.5012191.037
std133.5989219.3419292.3638240.3721116.9823260.9104329.2918213.5238132.1632309.9574332.2394348.9919320.4534
median1300.1031463.4172072.0332379.6181355.1662287.6332414.7331764.1961506.0472311.1762610.7632002.4621716.037
rank13711210126491385
C17-F11mean1110.2911129.2941216.3272847.1611101.9513448.6141271.2371117.4261129.2881154.5331132.1521146.6242474.015
best1109.371112.6591137.2152190.2641100.1061227.4211131.3391103.4161113.9491140.5231123.0711134.5451116.115
worst1110.7131155.0551382.5883615.4031103.7095693.7581472.2671139.4681144.241177.451138.7531169.6486326.297
std0.63110920.42284112.1149598.78971.4718662486.253151.147915.4432813.4031715.940476.92709915.808192568.811
median1110.541124.731172.7522791.4891101.9943436.6391240.6711113.411129.4811150.0791133.3921141.1521226.824
rank25912113103486711
C17-F12mean1236.2715504.8672,486,5232.2 × 1081290.268271,235.98,310,292182,122.51,523,2425,426,363526,882.78588.212649,676
best1200.4722544.8551,327,93771,378,7131258.49190,040.821,024,36152,968.26348,583.11,452,09186,253.942606.745188,110.4
worst1320.3938397.6134,285,3513.92 × 1081351.6366,131.118,484,802401,267.32,123,2989,606,3711,163,36414,841.021,146,930
std56.34882509.0741,363,6011.52 × 10842.41378126,890.67,346,263152,346.3821,342.44,319,261485,164.35574.514393,704.8
median1212.115538.52,166,4012.08 × 1081275.49314,385.86,866,002137,127.31,810,5435,323,495428,956.28452.54631,832
rank13101326125911748
C17-F13mean1304.9931331.0568036.95814,569,7911381.0227034.52520,801.2323,724.7213,550.5317,865.511,709.247013.94458,378.41
best1300.2671313.1113973.009557,392.21369.7653401.6168156.5431416.2651737.60516,864.659814.2342458.3089078.56
worst1307.3111374.6112,181.2438,425,0921393.2839616.91533,543.1632,645.0729,200.5420,310.8513,162.417,853.43193,258.2
std3.21669729.236463392.98417,876,5049.9305853048.98911,159.0814,913.0412,554.771645.7371390.5917306.49289,972.56
median1306.1981318.2527996.7899,648,3391380.5217559.78420,752.6130,418.7811,631.9917,143.2511,930.173872.0215,588.43
rank12613351011897412
C17-F14mean1402.4881429.9372267.2224189.9871458.092493.2582004.2871444.4792191.1081605.1336961.7583115.46813,829.69
best1400.9971422.7451465.4671759.2311451.3451483.9631540.2741436.9061505.7481524.7974027.8291434.973901.489
worst1404.9751447.0494113.2755019.0921467.1125421.2582633.2011452.6144188.181637.6769408.7547252.67827,663.3
std1.72292411.456661238.7641620.5657.9453311952.273456.85358.4816391331.48853.815312846.7872780.41810,065.91
median1401.991424.9771745.0744990.8121456.9511533.9051921.8361444.1971535.2531629.0297205.2241887.11211,876.98
rank12811496375121013
C17-F15mean1511.4131528.0016200.73811,809.761500.7358083.92610,091.393322.0128029.6931724.88422,527.219559.7284778.883
best1508.4771501.5872569.9877105.8581500.421606.0642309.7991533.5021610.2611590.4339704.2242974.4951919.88
worst1514.1511561.08510,787.1318,686.751501.4723,704.4318,933.66377.53613,679.321821.27331,769.4315,791.918502.898
std2.33510628.108153584.7935429.8590.49291510,485.676814.42309.7655227.34113.287610,706.115356.913272.896
median1511.5121524.6675722.91910,723.221500.5253512.6059561.0762688.5068414.5981743.91524,317.69736.2534346.377
rank23712191158413106
C17-F16mean1601.4911633.5871803.6132096.5091659.3791883.8291801.9841935.0521740.4821682.5982148.2031947.8071817.44
best1600.8911602.6051729.0911912.5981646.3611687.0471645.9571843.1161659.9081654.6831982.9651839.081727.547
worst1602.2211723.6531908.6632254.7391673.2812182.9631909.1812069.2641867.9911740.9412270.2762119.5131850.824
std0.55922760.0504788.07985173.559114.04957223.369126.0866110.766595.7211440.19961120.5145129.904659.98088
median1601.4261604.0461788.3492109.3491658.9361832.6521826.3991913.9131717.0161667.3832169.7861916.3181845.695
rank12712396105413118
C17-F17mean1736.8311747.5931805.191874.7921723.5861869.7891847.1031780.8281743.9521762.7751827.4951756.3021760.194
best1730.5281725.8361771.4531802.8241720.8061768.9121768.6021731.3481730.0341751.8791749.7891749.1361756.835
worst1740.081759.7231868.4041931.0551726.3762008.0811910.3921803.8821754.0531773.4792038.3791763.51762.82
std4.4205814.9671645.7185461.713142.675517108.603870.0595333.4561610.0663810.69879140.79276.1423892.707453
median1738.3571752.4061790.4521882.6451723.5811851.0811854.7081794.0411745.861762.8711760.9051756.2861760.561
rank24913112118371056
C17-F18mean1800.8371841.2613,800.9658,981,9311877.8822,558.1611,714.716,999.5528,058.5331,504.646693.86323,325.4213,609.97
best1800.3821813.3087389.7371,161,2051855.987482.8264795.6653018.9316287.97425,593.542757.1932958.9313554.508
worst1801.231866.78630,487.912.29 × 1081925.12838,281.5118,261.5128,200.1743,428.1139,435.7111,618.8743,550.3619,687.74
std0.42523823.5202811,179.231.13 × 10832.0222116,834.365938.54210,954.316,105.166367.1213682.25520,955.057046.641
median1800.8691842.4738663.0932,922,6141865.20722,234.1511,900.8118,389.5431,259.0230,494.656199.69623,396.1915,598.82
rank12713395811124106
C17-F19mean1900.6991907.22117,358.96878,425.81988.54269,005.9590,424.782040.6429820.114898.74236,643.0226,610.546492.073
best1900.021901.52111,828.97259,265.41939.9831970.0872408.2191915.5751928.9242053.50419,411.472676.9452235.907
worst1901.0181917.58222,721.811,443,2452029.18926,983.7299,607.62164.61914,822.1313,254.2155,613.0482,298.310,459.09
std0.4697917.1459034482.402563,481.237.74168131,992.5140,090.8137.21245786.8795570.51416,664.0437,542.783392.754
median1900.8781904.89117,442.54905,596.31992.4983535.0229,841.652041.18711,264.692143.62735,773.7910,733.456636.648
rank12813311124751096
C17-F20mean2026.6622034.6422147.2272292.0862012.0622331.2222203.4392070.822063.922077.1762275.0492181.1522053.815
best2013.8652021.3072076.5822232.9162000.9952226.582194.1772040.1772040.4052065.3542190.0262155.2862038.374
worst2038.3072044.8772266.3782360.4612022.2772500.442222.752152.4892101.1342088.3492394.2472215.2982062.141
std13.0722811.0351184.8734254.3357110.64651129.452613.0408554.6458226.464669.64105898.9633729.8268810.95787
median2027.2372036.1922122.9742287.4842012.4882298.9342198.4142045.3062057.072077.5012257.9622177.0132057.373
rank23812113106571194
C17-F21mean2230.9582255.0772281.0792353.3372300.9812301.6622295.2782291.1452317.0442306.9622362.0342327.4662305.331
best22002201.1262203.8482268.272276.6462206.3652238.6682200.0112305.2362203.9912342.3542318.8172228.495
worst2323.8332308.9362367.1252393.6382319.2242398.9482357.3962332.8142323.92348.4732373.9232335.5692342.504
std61.9163660.4779189.2447157.3546718.20708102.881162.935561.280738.15169.1402113.66878.23977551.87787
median22002255.1242276.6722375.722304.0282300.6672292.5232315.8782319.522337.6922365.9292327.7392325.162
rank12312675410913118
C17-F22mean2266.7322309.0612307.6913057.2722301.8982714.9232319.4482304.3372311.0862321.012361.0622314.2432319.245
best2225.1622304.8182302.7282789.9312300.3462334.842312.6992303.3092301.8752314.27123002300.6852316.136
worst23002313.9262319.7083303.0042306.0313150.7482327.6012305.3812325.3092333.6182445.2352348.822324.026
std39.007673.8100588.080836227.60392.763264410.9916.4154960.84682411.191758.84875772.9900123.10023.37026
median2270.8842308.752304.1653068.0762300.6072687.0512318.7452304.3282308.582318.0762349.5082303.7332318.408
rank15413212936101178
C17-F23mean2573.2432573.122641.5562691.5142634.1242671.2672667.8562655.1942619.8492645.7422758.8912647.6162660.372
best2300.0032377.4042624.5332680.0762609.4152628.7792650.9552614.1942610.1132634.0932688.9712639.732638.96
worst2776.9632646.482672.9772714.2332699.3712720.7962687.5632759.5692626.7722655.6082923.0192660.5132669.42
std198.8117130.637821.4566815.5920443.603140.6464415.1313469.725688.3120729.556135109.94659.37292314.49226
median2608.0032634.2992634.3562685.8742613.8552667.7472666.4542623.5072621.2552646.6342711.7862645.1112666.553
rank21512411108361379
C17-F24mean2517.2652628.482782.7552853.72225002779.1882796.6772743.4092751.652765.3082582.6712775.7722730.119
best2513.1882500.0742762.5592835.6825002643.0752767.0672739.9982734.2412760.85925002757.4152523.272
worst2520.3072751.9032814.6272869.47925002870.33528292752.2172778.4712769.472830.6852790.6752817.267
std2.967858140.920722.8152615.095780.00020897.2849725.566415.90032919.280293.526871165.342614.04169138.498
median2517.7832630.9722776.9162854.86425002801.6712795.322740.7112746.9442765.45125002777.52789.97
rank24111311012678395
C17-F25mean2862.4232910.1042973.23346.1472980.6233053.7272933.1582921.4752938.2952933.5962932.0662922.6412953.708
best2756.4642897.7432948.7643256.7372897.7432949.2782907.262897.8972913.3672913.962897.942898.7142941.202
worst2897.7432945.283024.3633420.1073093.933308.7272957.9322946.1112947.3242952.9742943.4562946.612964.225
std70.6396723.467435.5209469.4289282.11035171.532628.3816427.0795616.6265220.7410622.750527.116279.803424
median2897.7432898.6962959.8373353.8722965.4092978.4512933.722920.9452946.2452933.7242943.4342922.6192954.702
rank12101311126387549
C17-F26mean2754.9822943.0733351.7364051.782825.0033869.9854044.9723225.0673169.2353229.7163254.1972904.3652947.415
best2692.9132800.8853053.6633728.92800.0023472.7053115.4812900.1252900.2072912.962280028002773.079
worst28003133.6114095.2614287.42329004259.6344697.2214199.8683803.6273949.2264356.0493017.4613125.39
std53.81419167.603500.4959235.014749.99818428.5773676.5947649.8669424.9744482.8277738.042988.92102164.2531
median2763.5082918.8983129.0094095.3992800.0053873.7994183.5932900.1392986.5523028.3382930.3729002945.596
rank14101321112768935
C17-F27mean3095.6513155.7783100.4023198.8153089.3023181.9383139.4253092.9363096.2473117.0183252.7963139.5813165.314
best3093.1383107.8133094.8563132.6713088.9783153.8133092.9683089.7383092.8093095.8273241.6343097.6663121.59
worst3096.9793188.7453104.8443327.5623089.7063211.2383246.4433095.2973103.3593177.4223260.2853190.4643228.683
std1.71113334.288735.1019987.458690.36627827.9686671.870952.3644324.91861740.279258.22160439.0248145.27772
median3096.2443163.2773100.9543167.5143089.2623181.353109.1443093.3543094.413097.4123254.6323135.0973155.491
rank39512111724613810
C17-F28mean3113.9353177.6943259.2693768.18231003451.1783368.7323199.9423410.8693341.7453473.7983320.8853257.183
best3100.153100.00131003605.24531003217.5853174.6273100.1273383.7643222.4073413.8623182.823148.201
worst3130.2733217.3323411.8224044.61731003652.9413475.9633383.753434.2753412.0813510.0063412.0533543.984
std16.0425654.9365130.9643198.00347.84 × 10−5178.7025132.8519134.10720.7314590.5332742.51919103.9299191.9303
median3112.6593196.7223262.6283711.43331003467.0923412.1683157.9463412.7193366.2473485.6633344.3343168.273
rank23613111941081275
C17-F29mean3144.1893217.8253295.5373338.4343236.2743303.2443368.1423262.5973176.2773218.7343328.9873276.1823245.186
best3136.9563165.8893189.7163274.6363152.9183217.4573258.783200.5953160.2753168.3563236.833170.7573192.605
worst3153.723349.4793456.2533373.3453303.4133456.3743507.3313310.2433196.4533242.9623525.193365.1593298.151
std7.73090287.95734124.811543.6849464.01218108.1025103.184851.881615.0404535.00934132.361188.3477844.37193
median3143.0393177.9673268.0893352.8793244.3833269.5723353.2283269.7753174.1893231.8093276.9643284.4063244.995
rank13912510137241186
C17-F30mean3422.2789969.272284,851.711,811,8863399.757803,656.61,269,588390,395.5778,432.364,677.52925,304.9414,393.21,635,020
best3418.5864191.37130,391.261,919,0183395.48320,061.19228,475.915,899.266287.41931,122.82570,711.46603.207562,734.7
worst3426.63623,642.72677,453.530,929,9433406.3591,678,4173,019,7281,479,1452,878,412108,709.81,272,741821,874.73,725,142
std3.7076959240.159313,955.113,044,1054.745776901,821.71,308,347726,003.41,402,47637,893.81286,632.7469,896.91,490,657
median3421.9456021.499215,7817,199,2923398.593758,074.1915,074.133,268.63114,51559,438.72928,883.5414,547.51,126,102
rank23513191168410712
Sum rank4810421836388303280152178217258207223
Mean rank1.6551723.5862077.51724112.517243.03448310.448289.6551725.2413796.1379317.4827598.8965527.1379317.689655
Total rank13813212114571069
Table 3. Optimization results of the CEC 2017 test suite (dimension m = 30 ).
Table 3. Optimization results of the CEC 2017 test suite (dimension m = 30 ).
GAOWSOAVOARSAMPATSAWOAMVOGWOTLBOGSAPSOGA
C17-F1mean2965.6415.61 × 10996,586.164.35 × 101086,7591.96 × 10101.67 × 109505,100.81.3 × 1095.71 × 10932,552,5594.2 × 1081.92 × 108
best105.40591.63 × 1093775.7073.92 × 10107863.151.85 × 10109.03 × 108347,301.55.83 × 1083.66 × 109104.80296710.2151.56 × 108
worst6756.638.1 × 109363,121.44.78 × 1010217,079.12.11 × 10102.61 × 109809,113.21.73 × 1091.01 × 10101.3 × 1081.03 × 1092.35 × 108
std2967.1562.79 × 109177,756.23.59 × 10999,555.511.16 × 1097.07 × 108208,2195.09 × 1082.94 × 10965,065,4755.08 × 10833,433,720
median2500.2656.36 × 1099723.7694.34 × 101061,046.891.95 × 10101.59 × 109431,994.31.45 × 1094.55 × 10929,684.63.26 × 1081.89 × 108
rank11031321294811576
C17-F3mean742.873157,920.1452,951.5877,211.19789.472262,088.78210,060.41624.49765,596.7835,343.56103,615.244,565.91149,306.7
best513.401348,314.0642,383.0770,955.93540.916344,706.74154,454.5726.401256,524.5428,173.2998,570.6915,600.4111,040.5
worst1141.32181,363.3463,002.4882,275.531214.16173,753.25254,369.32486.05179,838.6244,107.98108,512.988,268.11182,709.5
std289.416115,759.398486.7134692.112309.076812,486.4148,983.66787.517910,425.37060.4134665.2432,704.7337,175.16
median658.385151,001.5753,210.3877,806.65701.405564,947.56215,7091642.76863,011.9734,546.48103,688.737,197.58151,738.5
rank17610281339411512
C17-F4mean491.1351837.3914534.746613,336.8509.40253117.836848.5098503.0084661.7039748.9401624.7152675.6909735.2118
best468.6344725.9771521.26627325.298486.7772868.6846745.6112488.4792538.4455668.2051567.1673499.2964707.5575
worst512.62681058.681549.261126,000.81542.60275006.098936.1373517.528754.3157849.7198752.01211076.728761.2708
std18.01092154.88312.254538716.74825.440041808.5195.979615.1220492.0288480.5638286.61078271.750226.1284
median491.6396782.4537534.229410,010.54504.1153298.28856.1454503.0133677.0271738.9177589.8407563.3699736.0095
rank11041331211269578
C17-F5mean585.6623644.6729762.3586917.5582604.7663884.8544838.1558594.886619.214731.8464717.6456674.1303706.7469
best582.592616.8786735.8031894.1469594.6117796.6634807.3832579.0498588.317719.8893702.9702660.1907686.0723
worst591.1983687.2621786.545948.5521629.39931049.042900.7655631.5963646.9154747.028727.844685.1118720.6189
std4.04170431.8921222.9767223.3303316.49975112.937543.392824.7770626.5969512.8837511.9219211.5891514.84429
median584.4295637.2754763.5432913.7669597.527846.8561822.2373584.4489620.8117730.2343719.8841675.6094710.1482
rank15101331211249867
C17-F6mean606.7204637.6933657.7141685.7894602.6388682.6748681.8045622.9356606.9295643.482658.2771647.6491631.1395
best605.1486633.5361641.1756679.3235600.8551671.0576669.5708615.361604.7665632.1329653.7776637.6309630.2327
worst607.4042644.45667.264688.9118603.6152695.4225697.3843628.5635608.055659.2047662.2351661.9608632.1984
std1.056294.86730911.704414.5131351.26153710.1907212.053725.524811.47622411.711063.48308710.336030.976799
median607.1643636.3935661.2084687.4612603.0425682.1095680.1315623.9089607.4483641.2951658.5478645.5023631.0635
rank26913112114371085
C17-F7mean820.80241089.0431182.4951395.582854.17011325.591270.217845.7349881.19551068.159949.8174930.2214984.2242
best813.7177995.59851059.0631322.22835.60781266.9121240.955833.2816854.90271041.927922.6795868.6313961.3759
worst827.6191184.2171248.5131438.018869.88231349.3141329.113860.5127902.73891092.014976.0323992.0831011.485
std6.22966677.9631188.5801350.5729817.3096739.3861940.0288613.8151819.7913326.4899226.0583850.4340223.39094
median820.93651088.1781211.2011411.044855.59511343.0671255.4844.5726883.57011069.347950.2788930.0856982.0181
rank19101331211248657
C17-F8mean877.6456916.3291978.09731133.102901.07381140.521017.573902.8113902.73961038.544966.9033924.7556993.9056
best866.6767887.4457936.30941125.885884.59571053.955979.1085863.1024872.85831023.917946.2582887.5568959.312
worst892.3077942.74741015.9051146.021911.71851205.1681089.695917.7493928.78141053.2471004.96976.11951021.463
std12.0340324.7029432.737628.87919911.9736464.3243449.1564826.5039529.4971112.984927.4812943.1555526.37234
median875.7989917.5616980.08761130.251903.99041151.4781000.745915.1968904.65921038.506958.1975917.6731997.4234
rank15812213104311769
C17-F9mean1165.656118.3175285.63110,677.511310.31513,059.87819.0186584.0382283.4744651.6794123.6253535.1361379.814
best1048.0583812.0914583.348370.6541103.2228931.4686525.9421125.6441241.7513242.4993402.8132404.1441225.076
worst1337.3017705.3465737.95912,502.831788.26419,283.949256.48811,627.783578.9425837.914747.3835875.2871543.585
std130.00981697.137556.44141715.525325.12944428.5381255.7614991.033982.12151196.281613.49411593.562137.1979
median1138.6216477.9165410.61410,918.271174.88712,011.897746.8226791.3652156.6014763.1534172.1522930.5561375.297
rank19812213111047653
C17-F10mean3686.425097.4355376.2488165.393966.5987339.5797588.395284.0514409.9388329.3994799.8414968.0596555.299
best3486.9844046.4745210.8658063.8143600.6886817.316285.0254499.4514009.1218216.5544150.0984099.3975554.57
worst3851.97007.7365672.7148257.6884371.7867861.618551.3066421.915039.7478519.8955515.3155511.4437161.94
std189.0921365.454209.651780.84512346.6865426.3938989.7159811.0246458.9879131.8935622.5674670.3383706.2351
median3703.3984667.7665310.7068170.0293946.9597339.6997758.6155107.4224295.4418290.5734766.9765130.6986752.344
rank16812210117313459
C17-F11mean1176.861510.8981316.7147335.9451209.93557.0057893.7041361.7371683.2391916.5483506.7891349.5585022.123
best1156.0881422.6131266.4736658.4041160.1832246.7483014.3691289.3351556.0191726.7533036.571298.0493707.247
worst1200.9111658.5341437.2288165.8951237.5574990.05112,541.551445.2221913.2742124.2474371.4031394.5157220.175
std18.56114109.824581.3137622.561534.549171165.2353987.81371.07825158.4847166.7819629.297551.309561525.397
median1175.221481.2231281.5777259.741220.9313495.6118009.4471356.1961631.8321907.5973309.5921352.8354580.536
rank16312210135789411
C17-F12mean85,555.8725,949,23010,375,5921.32 × 101089,184.916.12 × 1093.34 × 10828,219,3071.35 × 1083.08 × 10884,031,91862,898,5158,506,616
best25,576.261,213,8751,853,6429.56 × 10926,351.254.1 × 10944,146,8779,447,87277,445,9091.76 × 1083,464,275201,962.83,266,660
worst191,112.373,085,85430,139,9711.66 × 1010200,2628.4 × 1098.95 × 10871,379,4512.74 × 1084.53 × 1081.6 × 1082 × 10812,986,786
std72,522.3832,367,34513,248,3992.96 × 10976,266.982.02 × 1093.84 × 10829,109,11393,894,3531.37 × 10877,920,02794,482,8825,007,932
median62,767.4814,748,5964,754,3771.34 × 101065,063.215.98 × 1091.99 × 10816,024,95393,914,7193.01 × 10886,487,23325,671,8858,886,510
rank15413212116910873
C17-F13mean1679.05165,307.57196,312.19.71 × 1091663.411.62 × 1091,218,387169,962.5107,891.81.05 × 10834,883.971,140,6069,001,402
best1509.43910,167.4164,177.335.02 × 1091496.8999,775,852190,877.661,271.8680,912.2373,593,61429,396.1927,575.572,238,017
worst1846.767222,691.8385,695.21.73 × 10101828.6124.01 × 1093,666,218384,298.9157,114.61.61 × 10847,6604,444,29513,874,918
std138.2768104,969.9146,282.35.43 × 109136.02051.9 × 1091,643,068146,086.534,141.5938,514,7578575.9282,202,4805,734,672
median1679.99914,185.55167,687.98.27 × 1091664.0651.23 × 109508,225.6117,139.596,770.1492,927,82931,239.8545,277.589,946,336
rank24713112965113810
C17-F14mean1445.6865029.534310,3183,166,7861506.721944,929.11,449,4038360.852312,592.2104,927.41,488,23617,259.012,471,053
best1439.9391874.271190,232.11,938,9291490.41743,337.9831,823.45657.73644,267.2655,063.1589,278.85235.5791,453,463
worst1458.42213,681.86385,275.75,133,4961521.2941,897,7191,916,23711,991.961,004,397156,6462,344,76325,836.683,521,220
std8.7272755779.77287,907.641,445,81013.572251,040,334532,404.33010.837464,006.757,133.45881,268.49220.181,034,268
median1442.1912281.001332,882.12,797,3591507.587919,329.91,524,7767896.855100,852.1104,000.21,509,45118,981.882,454,764
rank13713291048611512
C17-F15mean1588.7852511.29745,133.533.52 × 1081577.2622.66 × 1081,282,54956,902.87629,660.22,881,97918,208.948283.199986,862.4
best1560.0731925.33926,535.072.27 × 1081550.94206,063.4348,434.138,106.1821,681.951,030,9208605.332205.324367,843.7
worst1624.033215.39559,058.665.16 × 1081612.7011.03 × 1092,123,57396,468.192,007,2354,849,62822,396.1715,491.711,359,201
std26.94309601.98614,789.581.28 × 10826.551075.06 × 108948,175.327,305.97939,116.31,581,1346440.9145566.237447,634.1
median1585.5182452.22847,470.23.32 × 1081572.70519,428,4691,329,09446,518.56244,8622,823,68520,917.147717.8791,110,203
rank23613112107811549
C17-F16mean2157.5892621.2373504.8325684.3922411.3213393.394006.9182640.5752419.7433554.5993382.4842628.983048.951
best2037.2312230.7673285.1674800.6542317.6152965.3083410.8422505.9722097.6163255.0213093.1472304.92816.301
worst2228.7572887.8963750.517790.2032527.2563870.9724848.8642829.6982713.4064153.1353550.9053171.9683285.631
std87.98998277.6318202.34431409.83188.86949388.2075675.2394145.1525262.9818420.4846201.6026375.8814209.7332
median2182.1842683.1423491.8265073.3562400.2063368.6413883.9822613.3152433.9743405.1213442.9412519.5263046.937
rank14101329126311857
C17-F17mean1871.4562005.1352453.82110,597.651909.9022475.3632640.0652224.9612019.2682264.0542517.6782212.3432210.214
best1831.181929.8212053.7193574.9571846.2742095.3242481.2881977.9311914.842076.2452318.9891853.4452079.712
worst1906.2182165.4172812.05931,274.611967.1022698.8592719.992613.9982144.1872524.2322753.0582559.7112400.234
std34.6833108.3281340.297913,785.7750.24343276.5611108.6442275.700197.66128187.9479216.4953294.7102143.1001
median1874.2141962.6522474.7533770.5221913.1162553.6352679.4912153.9582009.0232227.872499.3332218.1092180.455
rank13913210127481165
C17-F18mean1884.56290,919.871,389,56880,080,0251950.4842,428,8568,909,556517,529.61,541,6803,526,422240,227.7198,781.25,054,893
best1857.25326,791.6299,64852,474,2511905.935122,389.8852,143118,784.1100,638.41,433,01299,249.0468,546.561,605,174
worst1941.743266,184.63,384,21599,570,9041995.3185,934,47021,737,586984,081.83,883,4796,498,024404,021.8406,261.27,996,236
std38.65561117,099.71,452,87320,359,13939.190882,482,0909,892,121367,838.41,668,7542,264,944137,125149,305.73,298,551
median1869.62535,351.63937,204.984,137,4721950.3421,829,2826,524,247483,626.21,091,3013,087,327228,820.1160,158.45,309,081
rank13713291268105411
C17-F19mean1950.4993335.47291,572.276.82 × 1081933.2621.54 × 10914,619,9711,421,627276,846.25,881,714160,12114,630.44485,098.8
best1940.6692030.4314,294.764.52 × 1081921.71241,342,4585,450,99572,18673,307.974,590,769121,887.88707.597171,700.8
worst1958.4225624.54144,128.78.89 × 1081939.3595.66 × 10932,121,7022,690,213490,870.37,719,442215,531.718,279.15847,776
std7.6416261581.36555,588.552.04 × 1087.8850532.75 × 10912,527,9961,129,134170,582.71,476,86244,979.384145.322295,341.7
median1951.4522843.459103,932.86.94 × 1081935.9892.35 × 10810,453,5941,462,055271,603.35,608,322151,532.215,767.5460,459.2
rank23512113119710648
C17-F20mean2218.6612321.3512605.8313021.3282217.5872692.6413100.6852494.3122542.1812581.2043143.3222630.2762434.181
best2172.1152237.0792338.792931.9692153.462543.6433041.1762281.392348.4352429.1472904.2972303.652279.759
worst2243.5542411.4442769.6483102.6042258.9942862.5243229.7132750.272743.2142770.6323264.543049.422518.498
std31.8058486.94046185.879872.5370747.02587131.239487.90274219.2801170.086148.2222167.9671309.2781106.8744
median2229.4872318.442657.4423025.372228.9482682.1993065.9252472.7942538.5372562.5183202.2252584.0172469.234
rank23811110125671394
C17-F21mean2403.6022455.22537.5762671.542451.7982596.4892624.1082464.9412410.1782548.2842616.6712454.8392547.871
best2355.7432413.0642515.2652616.2892381.6122592.0252590.8622410.3882368.9672531.4532609.7372435.6222516.184
worst2519.242491.0442565.942732.2262527.0272603.7542654.3932581.8132499.482569.2342620.6762473.2272568.211
std77.4021132.0424825.4882850.2259266.983315.38062934.484880.8353560.2821615.624565.01135320.6918122.45604
median2369.7132458.3472534.5492668.8222449.2762595.0882625.5892433.7812386.1322546.2252618.1362455.2532553.544
rank15713310126291148
C17-F22mean2300.9123420.8216016.5858171.9622435.2159572.1298317.4254285.5035403.6235171.0957079.9766949.8612764.351
best2300.6072826.6292312.3157003.9632423.9449378.8098097.0212307.1912612.3143144.6756045.5525921.0422717.751
worst2301.754314.5117897.479708.4212442.7829901.3098511.156555.567165.86510,311.147937.0657465.0192810.387
std0.559452694.66892514.731125.1767.982382241.5606169.89632295.5641953.8173437.178779.0079696.90243.96047
median2300.6463271.0736928.2797987.7332437.0669504.1988330.7644139.635918.1573614.2847168.6437206.6922764.634
rank14811213125761093
C17-F23 mean2730.4713215.2932991.0253298.1242774.4973300.5593153.6642764.7722761.2432948.5923884.8443000.9732999.073
best2691.1573096.5182917.3823122.9082725.573189.9562894.1712719.3532741.3532935.2223783.5832871.5382969.309
worst2806.5883435.0443070.8683564.9462861.8983476.4083302.1552829.5152784.4762959.2484063.8313136.2663021.883
std52.25212154.11962.77169188.242762.9445122.8799183.836349.7798721.5462410.06741123.1166135.047422.61169
median2712.0693164.8062987.9243252.322755.263267.9373209.1652755.1092759.5712949.9493845.9812998.0453002.549
rank11061141293251387
C17-F24mean2880.633259.6353118.1443406.1512907.6053367.5983213.5172920.9282939.1983069.0873490.4733079.1723259.002
best2809.712786.2173088.4893350.2292894.4273255.1523129.5332904.0322880.9043027.8373441.3922972.8943201.354
worst2905.1643458.6813144.1983521.1572932.4573464.583330.5822949.7943057.9253100.6273538.6053258.8993339.613
std47.28496317.183824.0477177.6910816.9367996.0948784.6750720.8933583.4390536.6021150.18546132.884759.21531
median2903.8243396.8213119.9453376.6082901.7693375.333196.9762914.9442908.9813073.9413490.9483042.4483247.52
rank11071221183451369
C17-F25mean2887.9053057.342938.7055015.7473023.9563466.4923091.4192918.073043.6383150.6192979.4092922.5363114.78
best2883.9862987.6262901.3664384.5122890.063332.1763007.8262888.0943016.1573077.2782952.6872897.3563072.749
worst2891.0733119.5482992.3886638.1733089.8053555.0453148.112971.7173100.8853309.8073001.1412942.8633167.876
std2.93344754.6368440.016221085.80592.4969395.2617659.5998636.801639.61029109.452625.0990520.9851539.36999
median2888.2813061.0942930.5324520.1513057.983489.3743104.872906.2343028.7563107.6962981.9042924.9623109.247
rank18413612927115310
C17-F26mean2932.1625792.5517112.14710,557.332983.2438157.8068582.2065399.4075149.3516657.2328101.5955167.2924370.346
best2887.3874244.6626655.789945.5582900.7227082.878242.0614798.0384796.376422.8257075.4363618.2194134.387
worst3041.0787147.4917659.16710,890.323093.7179406.2188827.5865939.2135750.5366899.9118712.8586951.3814757.879
std72.857531451.242494.8827426.673991.424681081.231249.6577480.6749416.3707201.3114711.64181720.183269.6611
median2900.0915889.0277066.8210,696.712969.2678071.0688629.5895430.1895025.2496653.0968309.0435049.7854294.56
rank17913211126481053
C17-F27mean3212.0223534.0473250.9253962.5723298.173496.2653494.5643236.1613231.3833307.4255546.8793314.2793512.212
best3195.7213352.0813233.0823632.9763229.7143407.4833358.2853206.7263216.5323261.2765064.7653233.2653430.828
worst3222.3513740.0693276.8984849.6673327.0713595.2413813.5463291.4743237.7163362.2766389.9483428.0253576.987
std11.44629170.549618.90387592.300945.8575289.95278214.149837.695739.94907841.58353595.061183.7426466.5742
median3215.0093522.0183246.8613683.8233317.9493491.1683403.2133223.2223235.6433303.0735366.4033297.9133520.516
rank11141259832613710
C17-F28 mean3302.8613546.3713285.6175932.2033221.5724134.4733494.5753246.3383424.7643666.0293691.623314.0083627.343
best3254.5333469.6843267.9815550.0033202.7523948.5543413.9113220.4353327.2763536.3473489.9293218.0893539.319
worst3362.2593604.9843309.9766420.0093252.134537.3523626.0893280.9453471.1223927.6934071.3343392.6953680.818
std45.6033857.6134320.43417429.978322.14656274.643892.9027329.0503767.28895179.3281270.486885.1206665.47424
median3297.3273555.4073282.2555879.4013215.7044025.9933469.153241.9863450.3293600.0383602.6093322.6253644.617
rank48313112726101159
C17-F29mean3560.5283889.1124479.8825919.1253675.2675353.6585306.8594004.8464025.6984349.5995280.9684218.4214293.605
best3490.1513584.3984313.6984909.7633542.4225046.2724630.5213646.8153755.6984237.6914911.9853808.9144140.599
worst3611.594163.9224589.0256982.0433823.4445681.65963.5994220.5584263.9464591.0535740.2864865.0974443.725
std54.88954237.8957118.5045847.9831117.1898292.4008561.9992254.8365247.9412166.1172389.2517452.4459158.5205
median3570.1853904.0654508.4035892.3473667.6015343.385316.6584076.0064041.5744284.8265235.8014099.8374295.048
rank13913212114581067
C17-F30mean7742.305179,776.51,269,1003.38 × 1097679.74360,768,71632,463,9483,549,1826,660,65528,705,8932,737,26199,984.65992,091.5
best6292.26122,142.69383,760.82.52 × 1096248.99813,475,6379,172,6431,518,6195,440,68619,256,1261,341,58617,644.38266,268.1
worst9407.668459,312.22,509,3424.45 × 1099322.4271.18 × 10854,601,9067,489,4908,069,47944,576,3344,164,795290,688.32,346,103
std1283.647191,970.5921,032.29.95 × 1081265.36543,813,63523,396,8922,771,7171,213,04311,210,6821,399,201129,358925,161.8
median7634.645118,825.61,091,6483.27 × 1097573.77455,723,91433,040,6222,594,3106,566,22725,495,5562,721,33145,802.95677,997.4
rank24613112118910735
Sum rank3817419536164324309141157249244166217
Mean rank1.31034566.72413812.448282.20689711.1724110.655174.8620695.4137938.5862078.4137935.7241387.482759
Total rank16713212113410958
Table 4. Optimization results of the CEC 2017 test suite (dimension m = 50 ).
Table 4. Optimization results of the CEC 2017 test suite (dimension m = 50 ).
GAOWSOAVOARSAMPATSAWOAMVOGWOTLBOGSAPSOGA
C17-F1mean14,553.52.52 × 101012,002,9199.79 × 10108,328,9044.48 × 10108.24 × 1094,657,0641.08 × 10102.21 × 10101.79 × 10104.29 × 1097.95 × 10 9
best11,540.481.57 × 10104,081,9068.7 × 10105,232,9402.5 × 10104.23 × 1094,298,3804.37 × 1091.9 × 10101.41 × 10101.63 × 1094.59 × 10 9
worst18,594.352.97 × 101030,750,2131.1 × 101111,801,6625.49 × 10101.26 × 10105,533,8401.52 × 10103.05 × 10102.24 × 10107.79 × 1091.06 × 10 10
std2982.2056.44 × 10912,587,1669.2 × 1092,866,6691.37 × 10103.45 × 109589,793.44.81 × 1095.58 × 1093.67 × 1092.59 × 1092.62 × 10 9
median14,039.592.77 × 10106,589,7799.76 × 10108,140,5074.96 × 10108.08 × 1094,398,0181.19 × 10101.95 × 10101.76 × 10103.87 × 1098.29 × 10 9
rank11141331272810956
C17-F3mean17,143.34105,001.8165,391.3175,765.817,990.03104,172.2256,160.747,195.6132,271.496,821.27198,666.9189,249.9295,551.5
best14,095.8582,400.47158,593.6163,034.714,878.383,456.61210,096.438,369.45116,283.493,036.56180,821150,802.2233,017.7
worst20,804.6125,914.7184,587.1189,487.521,815.8126,814.1322,045.957,270.58143,028.9101,964.3206,713.8224,403.1349,331.2
std2926.75818,840.5312,801.0910,869.463124.82521,210.5248,332.249608.05312,184.083778.63512,005.9633,873.5347,753.24
median16,836.45105,845.9159,192.3175,270.517,633.01103,209.1246,250.246,571.19134,886.796,142.11203,566.5190,897.1299,928.5
rank16892512374111013
C17-F4mean555.98123922.348668.457924,374.45581.47088455.6192572.61568.36331370.462192.353087.7651068.3141748.455
best533.9642936.023594.622718,669.14558.74355004.3041750.866541.03091262.6351176.6832613.392672.74731533.777
worst583.5755345.994743.619426,403.46624.139412,427.343482.656620.81951468.3164872.3663772.8851687.9162035.707
std24.794821017.41664.954453805.57630.368383309.715712.97537.5776286.098341789.646561.3773475.3013222.7235
median553.1933703.689667.794726,212.6571.50028195.4162528.459555.80131375.4451360.1762982.392956.29691712.169
rank11141331292681057
C17-F5mean714.1266802.4974901.43931166.905759.39911220.4531069.522804.4484760.21891044.878846.7404815.0165947.1408
best681.6816764.8877884.73921146.007709.54231156.6241000.118709.3516745.86731019.009830.3242751.8603890.8249
worst764.4116869.0053924.4231209.405814.52791274.9631176.8581007.618789.32571089.369879.0758927.8653977.0538
std38.6502748.5266717.1274128.9779849.2248754.8833981.04347140.669219.8010230.7897921.9562777.4931140.3683
median705.2067788.0483898.29751156.103756.76321225.1131050.556750.412752.84131035.567838.7808790.1702960.3423
rank14812213115310769
C17-F6mean611.2095657.5897660.8563698.9123638.1769695.1733700.1844638.8012621.6137668.3177663.8223650.4509646.5533
best609.7563648.602654.2488696.8387626.523684.2707696.5667629.1829617.123658.1773657.2969645.7214638.6868
worst612.6181671.2048667.3298700.4788649.3564703.0004705.4916651.6013627.9207678.5366669.878658.6062655.6196
std1.22599310.359355.3524431.6673339.5038868.426644.2663279.6155364.925719.308885.1670455.8865626.951281
median611.2318655.276660.9234699.1658638.4141696.711699.3397637.2102620.7055668.2784664.0572648.7379645.9535
rank17812311134210965
C17-F7mean1025.8811721.1761662.3221979.4961061.3971869.9781952.0881122.4361175.8171555.171489.9261294.51340.208
best1000.1641616.3311507.4571926.1811041.2091737.3321856.5461041.9951075.8231497.5211409.1551193.4671306.069
worst1057.1791834.2341814.0652015.5811070.8322015.1282040.2791205.1731337.1121655.5861569.7251373.8011369.909
std24.35707112.7002141.532740.6331313.62912119.681190.2012266.70626112.907674.7338970.1384177.6605226.6831
median1023.0911717.0691663.8841988.1111066.7721863.7271955.7641121.2881145.1671533.7871490.4121305.3651342.426
rank11091321112348756
C17-F8mean995.63381199.1551187.1351475.1181047.4641481.2461287.2631091.4721048.3551328.3051167.8831138.1551266.072
best983.08731157.661104.6571442.1631029.5841373.771255.1541019.53978.98941293.7871142.2631056.0751220.748
worst1013.9321243.6971273.0211518.1741071.6541617.3311339.211149.6621111.7581373.8851229.8191194.6971319.763
std14.6568342.6711770.4563831.8236520.59496105.927737.1568754.4548555.4473336.725441.6799160.6732647.71119
median992.75821197.6321185.4321470.0671044.3091466.9411277.3451098.3491051.3371322.7741149.7261150.9251261.889
rank18712213104311659
C17-F9mean3508.7728,911.3814,239.2336,756.454405.26240,698.3927,774.6916,769.149682.16521,676.5411,727.210,563.1612,676.64
best2346.40323,517.2412,456.4835,478.12454.81425,476.6820,652.836137.1184087.61113,214.739840.697224.24310,662.33
worst4108.61133,883.716,745.1938,570.87193.91449,967.2836,542.7825,502.9219,344.724,926.3213,118.3815,004.4918,314.94
std802.49755435.3871862.831513.3472006.52310,591.156557.6588003.0976849.2595651.3531499.963310.7153760.074
median3790.03329,122.2913,877.6336,488.463986.1643,674.826,951.5817,718.277648.17324,282.5611,974.8710,011.9610,864.65
rank11171221310839546
C17-F10mean5767.8598659.8028739.10714,657.636478.64712,244.8312,459.218006.2387533.53514,827.868542.6617895.04612,313.92
best5366.6736200.4928098.81313,640.765496.01511,283.2611,117.826719.2826798.83214,503.118163.4476177.511,437.17
worst6104.60414,286.549637.65915,377.437166.54512,768.7313,353.269065.6717954.24615,217.529146.4769662.26113,740.61
std335.14433810.289691.5653853.5516711.7507657.41431024.224968.6225546.4662334.1279446.14121429.8651006.377
median5800.0797076.0878609.97814,806.176626.01412,463.6512,682.8881207690.5314,795.48430.3617870.21112,038.94
rank17812291153136410
C17-F11mean1263.4816096.421626.64120,780.931282.96911,745.26389.681437.7425679.8814963.27816,289.42583.92624,961.02
best1232.3083844.9681430.40619,217.11246.4545214.6584045.9171275.7343552.5773857.77811,845.871564.86314,294.87
worst1283.0518972.8341722.34122,088.571308.719,864.6810,059.871576.5558211.3726388.74519,867.074627.56750,045.37
std23.133292347.125132.82011396.21626.163966685.042575.006132.89752117.4151050.7163574.7241389.35116,806.27
median1269.2835783.941676.90820,909.021288.36110,950.735726.4661449.3395477.7874803.29416,722.332071.63817,751.93
rank18412210937611513
C17-F12mean3,759,6303.08 × 10963,614,7758.18 × 101015,933,8162.13 × 10101.83 × 10992,770,0784.76 × 1084.26 × 1092.06 × 1092.03 × 1091.93 × 10 8
best3,120,8776.07 × 10825,515,0666.07 × 10103,269,2471.42 × 10101.01 × 10966,570,98068,637,4992.05 × 1091.07 × 1091.29 × 1081.54 × 10 8
worst5,026,6346.48 × 1091.03 × 1081.01 × 101129,463,9462.83 × 10102.57 × 1091.43 × 1088.17 × 1086.51 × 1092.67 × 1094.68 × 1092.25 × 10 8
std867,286.62.54 × 10932,204,7021.87 × 101011,215,1997.09 × 1097.33 × 10833,904,6963.49 × 1081.88 × 1096.94 × 1081.97 × 10935,866,307
median3,445,5052.61 × 10963,038,2608.28 × 101015,501,0352.14 × 10101.87 × 10980,957,6775.1 × 1084.24 × 1092.25 × 1091.66 × 1091.98 × 10 8
rank11031321274611985
C17-F13mean20,543.437.13 × 108141,800.93.67 × 101021,237.927.59 × 1092.11 × 108247,156.62.47 × 1085.88 × 10811,242,1636.16 × 10826,005,027
best15,376.3819,099,12078,023.612.48 × 101016,056.185.03 × 1091.2 × 108194,166.22.17 × 1083.8 × 10845,145.0426,221.2512,818,531
worst27,661.651.43 × 109224,5535.03 × 101028,607.161.12 × 10103.77 × 108308,694.83.16 × 1087.42 × 10832,680,1412.46 × 10954,704,377
std5265.5137.92 × 10865,454.081.08 × 10105377.9222.79 × 1091.18 × 10852,336.7646,903,2261.59 × 10815,396,9151.23 × 10919,804,620
median19,567.857.03 × 108132,313.63.59 × 101020,144.167.08 × 1091.75 × 108242,882.72.27 × 1086.14 × 1086,121,682149,73418,248,601
rank11131321274895106
C17-F14mean1597.307600,173.82,218,02234,471,5861678.6355,093,2274,192,458279,639.41,793,3751,267,2234,946,211240,948.611,575,392
best1562.632185,224.1110,573.912,465,2271639.5923,093,4921,735,897207,111.7212,073.5812,745.71,782,00574,420.194,799,281
worst1617.9681,430,9246,732,01579,830,7531725.0829,688,3197,361,760412,568.65,453,5172,266,9878,569,881688,466.414,217,124
std24.00143575,0893,063,34031,173,31735.31013,084,3972,727,67696,387.312,463,724679,539.82,853,620299,315.44,540,074
median1604.315392,273.71,014,75022,795,1821674.9333,795,5493,836,088249,438.6753,954.7994,580.24,716,480100,453.913,642,580
rank15813211947610312
C17-F15mean2278.1221,918,42656,625.995.26 × 1092259.2081.83 × 10914,219,521194,386.31.31 × 10866,651,0922.11 × 10817,821,96112,226,060
best2183.16613,016.5335,125.414.45 × 1092168.2221.08 × 1094,542,30946,119.6454,273.5117,897,68712,105.458042.8933,671,989
worst2463.5777,144,59586,519.197.14 × 1092443.1183.61 × 10932,284,842458,767.14.32 × 1081.36 × 1088.44 × 10871,236,82420,439,957
std126.48233,491,21621,600.891.27 × 109125.1741.21 × 10912,437,330192,3552.05 × 10851,513,2074.22 × 10835,609,9099,283,812
median2232.872258,046.452,429.694.73 × 1092212.7461.31 × 10910,025,466136,329.345,952,68256,383,28421,026.0321,487.8612,396,147
rank25313112741091186
C17-F16mean2523.353142.74273.0557676.8572524.8435581.0547341.9213652.6283194.3035172.9763615.1083531.0273790.935
best2248.7392865.1823720.8956111.5032235.5724317.166419.8353314.1452513.0734937.9463348.5353133.5213640.193
worst2849.9413306.8084619.8539059.1642831.9156921.2929089.873852.8773580.1185485.4083817.5864237.1753978.839
std248.4592191.8193386.05291416.194249.81631340.9651189.901237.443472.1091246.3174233.5936495.8781140.9372
median2497.3613199.4064375.7367768.3812515.9435542.8826928.9893721.7443342.015134.2743647.1563376.7063772.355
rank13913211127410658
C17-F17mean2707.9872980.23569.06712,417.772739.9958694.8753849.0983174.2382960.834242.4613788.7973327.7263554.822
best2573.4542826.5933286.2158706.2092669.6043961.7593373.1482874.6782707.3943907.5953039.9553129.7022939.71
worst2872.4583175.2884177.95616,710.12782.58220,149.384113.5583356.3343450.4134386.9154362.6783628.1223915.836
std123.7582167.3508419.53023897.02249.625377728.123326.2007214.7127335.2494225.1485649.6461218.2146425.0624
median2693.0182959.463406.04812,127.382753.8975334.1783954.8423232.9712842.7564337.6673876.2783276.543681.87
rank14813212105311967
C17-F18mean15,216.71,365,9557,779,2992.14 × 10815,772.325,039,60363,038,3342,399,8104,407,8746,375,3076,213,809688,185.29,525,765
best6740.69322,064.11,590,18091,874,8417191.042,203,53720,713,331647,337.21,422,8572,612,6452,233,690405,300.83,454,730
worst29,018.953,065,48010,900,5903.18 × 10829,848.7958,520,8931.17 × 1084,811,9407,682,38710,961,38913,622,0361,012,62222,724,999
std9963.2311,292,9984,375,76095,362,78210,116.6924,185,22839,852,9521,806,8892,901,6093,444,6415,332,511295,490.38,953,276
median12,553.591,038,1389,313,2132.24 × 10813,024.6819,716,99257,291,7372,069,9824,263,1275,963,5964,499,756667,408.85,961,666
rank14913211125687310
C17-F19mean2293.9435,336,995217,953.85.72 × 1092277.6171.71 × 1096,512,6983,003,168615,864.952,611,378339,457.914,857.851,227,039
best2066.93310,891.0470,004.283.11 × 1092054.8537,948,977775,698.7387,452.4129,486.928,462,150167,430.69629.5432,756.2
worst2609.61221,264,994401,879.88.28 × 1092595.7264.84 × 10914,711,6266,128,420980,956.369,545,870512,814.917,868.242,255,991
std261.395610,618,678154,738.82.17 × 109261.19372.28 × 1096,365,9582,718,342394,103.717,554,774151,196.43865.085866,614.6
median2249.61436,046.9199,965.65.74 × 1092229.9459.91 × 1085,281,7342,748,399676,508.256,218,747338,793.115,966.831,109,704
rank29413112108611537
C17-F20mean2513.8663018.1613872.4794208.5512653.9953777.9413867.6333270.5373050.7743581.6613631.7413607.8742793.115
best2409.5292704.1763404.5923915.6632423.393344.4143676.8263068.7362867.0133097.7693256.5313122.522397.439
worst2774.4713568.8384297.3824450.7652826.8884059.3814083.7293457.8623422.0193990.0424149.5144033.2233117.089
std174.2807387.3215451.866222.377182.1288333.4411169.5709187.6622255.2918434.451387.0701393.726305.5244
median2435.7322899.8153893.974233.8882682.8513853.9853854.9893277.7752957.0323619.4173560.4613637.8762828.967
rank14121321011657983
C17-F21mean2531.3462696.0042776.4173098.5272534.353032.3493039.5432554.9212511.3372851.2062879.9072627.2962766.011
best2463.1832582.7832688.5643029.3152514.3422940.8933024.3932461.1542476.7332807.6122788.542584.6752734.224
worst2606.9472846.4452883.7383183.2142583.2843134.1253059.2812633.8572563.4532927.8562960.1962651.4862811.403
std60.93002117.38988.5572764.6971832.7553690.821814.5132386.3562936.9994254.0887371.8545831.2540432.51022
median2527.6282677.3952766.6833090.792519.8863027.1893037.2492562.3362502.5812834.6772885.4452636.5122759.209
rank26813311124191057
C17-F22mean2317.94310,515.579803.78816,741.712454.54514,725.0515,009.338671.28310,896.5716,462.3711,782.8910,731.798677.909
best2313.2268675.8798893.57915,427.182415.80813,406.0413,752.537356.5998490.10715,962.2210,801.928673.5833773.449
worst2325.26212,098.5510,695.3517,493.492477.60815,661.9217,232.9210,096.6715,253.1117,147.8212,737.2712,193.113,745.36
std5.1696661606.074736.9605907.517727.54961992.75561638.0351163.7042983.966496.1757803.04631540.9995393.703
median2316.64210,643.929813.1117,023.082462.38314,916.1314,525.938615.9339921.53516,369.7211,796.1711,030.258596.412
rank16513210113812974
C17-F23mean2881.7273704.4843392.8393986.6983001.7093953.1363708.93024.4423027.143336.8874966.533421.2723401.637
best2862.5443619.6893259.7623827.632935.1973720.1333372.63000.342979.0113299.7684857.0633323.8023353.64
worst2913.1963884.093547.3994145.133064.1364185.4864086.3123040.223075.4663403.3085023.9783480.7743485.028
std23.70954123.6058119.1142130.966255.49515198.0927295.554919.2480639.3803345.6441875.010367.7500360.1368
median2875.5843657.0783382.0983987.0173003.7523953.4613688.3453028.6043027.0413322.2354992.5393440.2573383.94
rank19612211103451387
C17-F24mean3038.7874028.2243679.0794130.0173146.7314133.0943877.8773172.5593222.953477.0134262.3213738.5393806.884
best3027.4113823.8583574.614017.8293102.633875.4833746.0933115.7123119.3973454.194030.6773605.3743716.276
worst3060.7314152.9733759.5964253.6143198.4084287.0894065.5523232.5353367.0393517.984424.43876.7663921.35
std15.66003149.473277.96719111.457241.67069178.3878134.358454.22258112.955429.21587172.8838111.25685.83412
median3033.5034068.0323691.0554124.3133142.9434184.9013849.9313170.9953202.6813467.944297.1033736.0083794.955
rank11061121293451378
C17-F25mean3104.8314915.113209.75513,225.843136.756281.7724139.4843122.7473999.1084985.9444236.5893220.0054438.616
best3044.7553892.8633148.28511,160.313102.925338.9423508.0613073.8323882.1314335.1294097.4953108.5684286.427
worst3234.6926364.9933270.7815,046.823206.3357123.4754551.2333182.134122.2345844.2574494.3523400.7094641.84
std87.524771144.01552.826011623.07347.17018867.0227452.260453.32415134.017636.2107183.2711126.1991148.101
median3069.9384701.2923209.97813,348.123118.8746332.3364249.3213117.5133996.0344882.1954177.2543185.3724413.098
rank11041331272611859
C17-F26mean3777.10111,784.3611,856.6716,041.264830.79514,285.5115,000.125856.9077468.2139127.1813,003.157521.0037269.406
best3003.99210,212.3511,426.2814,539.683279.00212,496.313,779.675489.5466929.3657084.21812,617.153631.766595.043
worst5801.62513,060.5412,428.6717,195.646671.9715,802.7717,606.046441.5227971.81510,346.3114,125.1711,719.428427.224
std1351.6121181.164483.56061116.161803.3581363.8591798.803446.8491447.81521472.329748.16523669.866858.8363
median3151.39311,932.2811,785.8716,214.854686.10414,421.4814,307.385748.2817485.8369539.09412,635.147366.4177027.678
rank18913211123571064
C17-F27mean3346.2814472.0263786.5955452.4933327.9145182.6764227.9453352.3273611.4133851.8848321.8283939.6354390.701
best3271.5594447.7543592.2114995.8523246.9394586.3784036.1593266.1443538.9383636.9798118.63602.2024114.634
worst3437.7584503.1223971.156241.1173409.396827.7074419.183459.8693763.4514242.5728560.4164205.3194525.522
std75.9121127.94272170.6025550.805168.067941097.226205.011684.48407102.5436269.3932215.9268249.6819193.2365
median3337.9044468.6143791.515286.5013327.6644658.314228.223341.6473571.6323763.9928304.1473975.5114461.325
rank21051211183461379
C17-F28mean3306.8156158.9683569.59110,561.723346.2787427.4434944.8493307.9794701.0165398.6596125.6313938.4735225.484
best3283.85408.5133476.53410,041.123295.4935461.9164735.2163275.0694029.7024696.8865596.0483523.4544981.759
worst3327.696870.3923696.64311,014.543375.5638220.8555168.1173326.0095536.2716090.7426562.5384583.8015552.983
std19.22675604.374492.23122410.202836.426651318.663177.604322.52966649.6887667.5129490.3233452.8714282.6891
median3307.8866178.4823552.59410,595.63357.0288013.5014938.0323315.424619.0465403.5046171.973823.3195183.596
rank11141331272691058
C17-F29mean4205.8545355.2575319.40749,098.174174.6848686.8317487.5484850.0994854.9466606.5897835.0995294.5496323.442
best3962.3865001.0864933.96115,947.983927.7127669.1356357.0754589.7764704.0476391.6577520.2974554.8945749.058
worst4527.8385546.8776107.551118,514.94502.27510,907.459208.7315255.5925139.246864.1388483.4665688.8886721.22
std255.5898243.3059534.44147,222.41261.58261524.2581215.726285.2666201.9437211.9127438.8483515.1086438.2013
median4166.5965436.5325118.05830,964.874134.3758085.3727192.1934777.5154788.2486585.2817668.3185467.2086411.745
rank27613112103491158
C17-F30mean1,618,08048,059,98321,703,7295.82 × 1091,780,4831.03 × 1093.21 × 10871,527,6391.65 × 1083.21 × 1082.11 × 1085,128,71268,405,882
best1,424,08617,155,33915,119,4924.73 × 1091,414,5691.63 × 1081.89 × 10835,867,0051.3 × 1082.34 × 1081.61 × 1081,827,09551,385,322
worst1,836,6271.01 × 10825,861,4086.83 × 1092,524,6332.59 × 1096.72 × 1081.02 × 1081.91 × 1084.15 × 1083.12 × 1089,012,9361.08 × 10 8
std218,934.436,779,4625,053,5038.63 × 108521,656.51.07 × 1092.34 × 10829,861,37126,124,55279,867,44069,575,1823,196,82226,878,690
median1,605,80336,826,19922,917,0075.86 × 1091,591,3656.78 × 1082.12 × 10874,309,9971.69 × 1083.18 × 1081.86 × 1084,837,40956,976,059
rank15413212107811936
Sum rank3422018336360326285119151255258167218
Mean rank1.1724147.5862076.31034512.517242.06896611.241389.8275864.1034485.2068978.7931038.8965525.7586217.517241
Total rank18613212113491057
Table 5. Optimization results of the CEC 2017 test suite (dimension m = 100 ).
Table 5. Optimization results of the CEC 2017 test suite (dimension m = 100 ).
GAOWSOAVOARSAMPATSAWOAMVOGWOTLBOGSAPSOGA
C17-F1mean20,912.441.22 × 10117.46 × 1092.51 × 10113.74 × 1081.34 × 10116.7 × 101073,581,2565.68 × 10109.84 × 10101.4 × 10112.75 × 10106.05 × 10 10
best16,541.691.13 × 10112.3 × 1092.35 × 10112.41 × 1081.17 × 10116.23 × 101064,783,1073.7 × 10108.32 × 10101.32 × 10111.52 × 10105.23 × 10 10
worst27,717.391.4 × 10111.49 × 10102.57 × 10115.14 × 1081.51 × 10117.38 × 101092,516,3727.17 × 10101.15 × 10111.59 × 10114.11 × 10106.66 × 10 10
std4828.0141.26 × 10105.76 × 1091.06 × 10101.19 × 1081.37 × 10104.92 × 10912,778,4871.48 × 10101.31 × 10101.3 × 10101.1 × 10106.37 × 10 9
median19,695.341.19 × 10116.33 × 1092.56 × 10113.71 × 1081.34 × 10116.59 × 101068,512,7735.92 × 10109.77 × 10101.34 × 10112.68 × 10106.15 × 10 10
rank11041331182691257
C17-F3mean167,218.3311,047.9458,990.6337,914.4171,436.5374,031.9967,631.7518,487.4420,776.6335,622.8364,793.5552,885.3685,800.1
best148,279.5293,703.8336,492.7328,256.1154,520.4301,173.3885,141.3412,763.8351,353.7306,622.4351,921.6434,606.2550,559.2
worst180,601322,076.4771,655.5357,719.6201,283.7505,054.81,131,352670,584.5474,359.5367,271.7373,433.4627,862.4796,742.2
std14,839.1712,529.05209,003.213,446.0521,330.590,345.93111,751.1108,653.951,046.8926,918.599128.35886,478.11101,484.8
median169,996.3314,205.6363,907332,840.9164,970.9344,949.8927,016.5495,300.6428,696.6334,298.5366,909.6574,536.2697,949.5
rank13952713108461112
C17-F4mean655.703921,774.051662.22473,321.341186.41217,907.7811,191.2739.56215093.53412,385.7731,842.34276.1238698.021
best595.819517,433.851398.49543,521.411108.66713,665.869760.209694.46643321.2029715.49125,588.621435.6616860.208
worst696.462729,917.721851.45494,391.081306.89322,129.512,369.16790.32746945.48815,480.8839,465.686678.9259846.347
std44.909145564.829192.67922,193.5494.647663742.3181075.3347.493331541.8832413.3975724.4872370.7311284.409
median665.266619,872.321699.47477,686.431165.04417,917.8711,317.72736.72725053.72312,173.3631,157.444494.9539042.765
rank11141331082691257
C17-F5mean1166.051504.9141350.0442009.1341210.082172.8681906.0861221.4111205.4451820.4961355.4631507.3521723.655
best1139.7311380.871304.3661986.9391179.8432032.8251870.1091129.6911156.9311742.4531278.821430.7641639.415
worst1218.8391589.6231380.9232020.9281252.7692302.7871925.4081314.0411262.3611892.2731402.391585.0821847.619
std36.2149688.2167134.1021615.2997932.3499110.427425.5438587.6638143.4312362.8296157.1135478.1806688.17999
median1152.8161524.5821357.4442014.3351203.8552177.9311914.4131220.9551201.2441823.631370.321506.781703.792
rank17512313114210689
C17-F6mean633.3793669.854666.8515714.5884662.3248728.0069694.2372669.198643.6109689.9683667.5834666.0791665.0116
best628.2662661.8741663.6147710.3046653.4113712.535688.9922662.0385636.1507680.4107666.9654660.5087657.8043
worst639.7835676.3993672.4559718.0482666.7799762.8446700.7457676.3073652.1949697.2029668.868669.1201672.3328
std4.8228566.5626213.9372823.5119396.08309323.390714.9051947.803587.6899927.0619080.876493.820126.884498
median632.7338670.5712665.6676715.0005664.554718.324693.6055669.223643.049691.1298667.2501667.3438664.9546
rank19612313118210754
C17-F7mean1911.9163541.7443243.3813801.2762020.9463797.2223490.2892081.9182095.3963191.2772858.942791.7732563.793
best1816.723175.6443123.0823776.7091843.883595.8513387.531987.1521985.723087.5282696.0812652.5242490.104
worst1996.9553681.7033366.0493834.3272186.484075.9893651.5722150.0432257.8543285.2413105.1042969.6252644.502
std73.84701245.1298120.360824.22757156.5285202.1429117.84376.32504121.558187.36305177.2088131.431665.7947
median1916.9943654.8153242.1973797.0342026.7133758.5253461.0262095.2392069.0043196.172817.2882772.4712560.284
rank11191321210348765
C17-F8mean1479.9391799.8741773.642533.9991539.3192622.9362272.0011532.8561557.5062176.4591849.6881766.432092.383
best1390.5821630.9391719.4772493.0421470.0862469.4932151.2621404.6111497.6732098.2861770.8711656.7932059.065
worst1576.2551873.9371874.7072623.1341600.8722768.8852436.5351648.4651614.2622245.3171887.8511900.2012137.38
std81.26873114.967772.1462761.5020867.5484155.8935120.027699.8308752.7825671.1483953.28624101.164132.69375
median1476.4591847.3111750.1882509.9111543.1582626.6822250.1031539.1751559.0442181.1171870.0141754.3642086.543
rank17612313112410859
C17-F9mean18,988.9575,301.6927,474.5278,515.6120,581.98119,729.876,615.3269,359.1751,589.7373,206.1625,144.8831,675.4849,133.87
best17,534.0570,403.4224,021.2475,751.7717,157.0978,515.2144,853.7552,525.1837,346.5669,094.3724,224.5328,350.5647,316.16
worst19,864.7282,522.1730,100.9480,276.8822,978.62170,562.3120,610.882,118.8262,334.6581,821.526,765.8834,019.7250,386.03
std1014.9795698.8422533.8832044.0792478.5538,430.2831,945.8215,039.9110,826.225903.2981129.282717.2361313.108
median19,278.5174,140.5927,887.9479,016.8921,096.12114,920.970,498.3771,396.3353,338.8570,954.3824,794.5532,165.8249,416.65
rank11041221311879356
C17-F10mean14,359.3919,399.2217,935.5530,430.8815,397.4529,410.5127,898.6115,980.8815,828.831,963.117,938.0918,456.527,359.06
best13,588.5217,136.2616,133.0929,343.913,863.4627,642.0525,792.0715,470.1213,970.5930,839.2617,158.9817,362.0926,489.39
worst15,288.8320,569.2520,986.9130,959.3417,011.8231,013.6129,273.8217,003.1417,570.7632,443.0119,079.1919,693.228,130.44
std700.89771553.2472192.594750.27321304.2911380.7031485.612698.93951896.195753.3583914.52591156.665729.5295
median14,280.119,945.6917,311.130,710.1315,357.2629,493.1828,264.2715,725.1315,886.9332,285.0617,757.0918,385.3627,408.21
rank18512211104313679
C17-F11mean2283.28182,550.0270,967.33208,606.75155.29779,645.63196,177.64901.86264,611.1853,294.21167,260.456,864.81173,971.6
best2174.67264,588.6857,187.83155,577.63452.39753,901.98138,002.84238.74845,058.2435,164.28151,43841,683.31118,220.4
worst2372.435109,454.186,372.24274,283.19341.941107,434.5324,831.25676.52289,892.7370,199.98178,425.981,149.72229,857
std85.5050119,373.9812,757.8550,594.082813.69428,079.8787,120.08627.683819,176.6114,322.7312,269.7417,149.4455,041.7
median2293.00978,078.6570,154.63202,2833913.42578,623160,938.14846.08961,746.8753,906.3169,588.852,313.1173,904.5
rank19713381226410511
C17-F12mean13,549,9344.59 × 10106.22 × 1081.7 × 10112.54 × 1085.69 × 10101.14 × 10105.16 × 1081.23 × 10103.82 × 10106.69 × 10101.9 × 10101.1 × 10 10
best11,051,4341.56 × 10104.81 × 1081.48 × 10111.19 × 1085.06 × 10107.91 × 1093.3 × 1083.83 × 1092.95 × 10105.8 × 10103.22 × 1097.79 × 10 9
worst17,094,2425.88 × 10108.18 × 1081.91 × 10113.27 × 1086.74 × 10101.74 × 10106.22 × 1081.97 × 10104.86 × 10107.9 × 10104.81 × 10101.58 × 10 10
std2,575,8962.03 × 10101.43 × 1081.9 × 101092,551,3577.83 × 1094.29 × 1091.3 × 1086.92 × 1097.93 × 1099.52 × 1092 × 10103.38 × 10 9
median13,027,0315.45 × 10105.94 × 1081.71 × 10112.85 × 1085.48 × 10101.02 × 10105.56 × 1081.27 × 10103.74 × 10106.54 × 10101.24 × 10101.02 × 10 10
rank11041321163791285
C17-F13mean36,350.969.2 × 10961,970.354.42 × 101089,467.321.92 × 10105.41 × 108442,954.88.32 × 1083.03 × 1097.97 × 1092.78 × 1092.57 × 10 8
best32,150.664.58 × 10933,152.43.64 × 101065,042.211.75 × 10105.04 × 108308,678.75.15 × 1082.32 × 1094.54 × 1091.19 × 10870,258,995
worst43,505.811.16 × 101086,223.35.01 × 1010146,358.22.2 × 10106.07 × 108718,468.51.05 × 1094.29 × 1091.21 × 10106.47 × 1095.14 × 10 8
std5095.0663.22 × 10922,345.655.9 × 10938,124.212.16 × 10946,063,980192,117.42.25 × 1088.9 × 1083.36 × 1092.68 × 1091.89 × 10 8
median34,873.671.03 × 101064,252.854.51 × 101073,234.461.86 × 10105.27 × 108372,3368.84 × 1082.74 × 1097.64 × 1092.28 × 1092.21 × 10 8
rank11121331264791085
C17-F14mean37,460.724,489,1524,456,8751.33 × 10837,144.9212,044,62512,300,6561,746,8578,738,8669,298,25011,237,2022,132,08114,691,061
best16,361.151,757,7141,824,83985,227,98016,203.212,383,9414,250,213436,362.44,548,9994,212,3787,377,841774,496.813,230,443
worst75,561.086,961,3406,473,0591.59 × 10874,945.9823,254,22121,219,9283,559,70417,471,11413,688,40314,581,1264,060,27416,041,918
std26,110.582,232,1422,151,00333,511,44225,905.588,976,9867,301,1061,485,3386,023,5954,478,9703,814,4561,471,7621,151,485
median28,960.314,618,7774,764,8021.44 × 10828,715.2411,270,17011,866,2411,495,6816,467,6759,646,10911,494,9201,846,77714,745,941
rank26513110113789412
C17-F15mean18,882.0398,686,18148,987.562.29 × 101057,030.816.86 × 1091.36 × 108164,097.14.37 × 1089.37 × 1081.5 × 1092.37 × 10811,419,474
best13,638.593,225,43633,301.291.34 × 101031,982.542.06 × 10987,407,866138,892.21.87 × 1085.5 × 1089.05 × 10815,041.649,550,801
worst26,884.853.12 × 10863,801.662.79 × 101083,136.761.02 × 10102.33 × 108196,300.48.23 × 1081.93 × 1091.96 × 1099.46 × 10814,186,872
std5961.0711.46 × 10812,585.046.49 × 10921,039.183.58 × 10967,067,44527,529.442.72 × 1086.66 × 1084.45 × 1084.73 × 1082,084,089
median17,502.3339,800,11849,423.642.51 × 101056,501.977.6 × 1091.13 × 108160,597.83.68 × 1086.31 × 1081.56 × 10991,930.1210,970,111
rank16213312749101185
C17-F16mean5159.5217911.1447237.61820,529.485775.41213,231.8217,536.376208.6236155.14211,501.7811,288.396462.73810,775.66
best4482.4437594.3456297.25118,189.534964.55711,674.513,541.346171.3255459.26710,272.6910,267.516118.3499633.615
worst5632.4588242.7058100.53525,016.126480.42815,062.9623,606.656271.9116685.12313,117.5713,583.716976.42312,105.7
std548.9745326.0461743.96693052.189627.83211402.2464344.40943.90544606.29821190.7371543.044368.38621022.479
median5261.5917903.7637276.34219,456.135828.33213,094.9216,498.746195.6276238.08811,308.4410,651.176378.09110,681.67
rank17613211124310958
C17-F17mean4143.88117,256.296278.1887,660,5774214.135244,517.811,453.295751.3074819.89430.94233,565.259477.1687289.964
best3746.7466565.425371.806814,252.43859.689857.977790.2315185.4254232.1588686.08615,047.035453.3467193.519
worst4504.81834,680.97197.23814,282,1624387.087380,66615,834.676161.675523.2110,606.7150,021.6519,192.237395.844
std313.452712,940.4753.52127,595,286239.6748174,7643629.996477.3327646.7451822.617914,668.016500.52105.6253
median4161.98113,889.426271.8537,772,9474304.886293,773.511,094.135829.0674761.9179215.48734,596.156631.557285.246
rank11051321294371186
C17-F18mean140,921.83,264,5812,476,3861.01 × 108334,853.417,184,83112,263,4585,264,91210,835,73118,034,1988,025,84213,669,91010,129,900
best137,676.21,736,4522,182,56668,971,163178,243.25,271,54012,006,1412,407,4123,654,67013,158,1065,426,248952,614.77,733,772
worst142,8895,059,1862,906,9061.51 × 108527,595.642,365,81612,508,2648,765,63517,524,71722,851,22613,174,38436,223,09112,868,662
std2286.5711,383,907339,182.738,420,398167,720.417,004,610246,545.22,622,3537,333,4884,899,2143,491,42816,329,8592,130,627
median141,5613,131,3432,408,03792,865,432316,787.510,550,98412,269,7144,943,30111,081,76918,063,7316,751,3678,751,9679,958,583
rank14313211958126107
C17-F19mean161,069.68.42 × 1081,205,0212.31 × 1010169,321.78.41 × 1091.11 × 10820,443,07066,702,3214.82 × 1084.09 × 1084,904,82617,196,651
best38,442.7797,622,306718,063.42.01 × 101040,312.611.21 × 10956,321,27711,725,75213,898,8244.36 × 1081.57 × 108142,122.313,449,014
worst402,093.31.63 × 1091,913,0212.63 × 1010411,3971.62 × 10101.63 × 10826,686,8511.47 × 1085.08 × 1086.21 × 10810,867,11523,529,997
std165,447.56.67 × 108507,442.82.86 × 109167,915.76.13 × 10957,996,1196,580,11157,324,64631,934,5612.08 × 1085,311,7234,425,910
median101,871.18.2 × 1081,094,5002.29 × 1010112,788.68.13 × 1091.13 × 10821,679,83852,857,3054.93 × 1084.3 × 1084,305,03315,903,796
rank11131321286710945
C17-F20mean4329.7725183.3896066.4857643.894432.6377040.7176551.8515158.0417077.6017324.3166241.915196.9256328.018
best3875.2273852.1225777.47182.5344170.896256.346048.6554700.0954372.8866860.2915444.4994783.8795957.546
worst4639.9077866.156394.7177875.164595.627699.2166923.3055389.0488042.8997811.8196908.5556022.8637197.281
std323.2511819.666277.5492321.5951185.1203658.1345389.4126319.76321804.006486.1558772.4079560.5865583.2411
median4401.9774507.6416046.9127758.9334482.0197103.6566617.7225271.517947.3097312.5776307.2944990.4796078.622
rank14613210931112758
C17-F21mean2764.7424027.2133664.0914458.7282881.8774335.3314326.5823036.6572992.633790.5894708.6983666.6363675.619
best2699.9743704.1783568.0454347.0352766.4764068.8984124.0482916.2022896.6143678.9864581.1983504.1643582.929
worst2816.3394369.583764.3764614.0973011.4264510.5394598.7943226.8353070.043883.5294980.4253849.1753751.677
std48.11086278.4377108.195113.2218101.1698209.0187200.4712133.248885.8159885.11658185.487143.490773.69636
median2771.3274017.5473661.9714436.8892874.8024380.9444291.7423001.7963001.9333799.9214636.5853656.6023683.934
rank19512211104381367
C17-F22mean13,298.6221,305.7519,844.6134,680.7115,016.9531,613.3230,881.7518,865.9619,485.7234,416.2921,926.5722,621.2727,306.94
best2440.43120,323.8519,177.6534,605.552499.55231,067.8729,276.1218,173.6818,244.9834,250.5319,895.1620,370.8716,116.15
worst18,623.4122,434.6121,090.7634,718.5220,013.9132,297.6533,319.2619,981.2821,249.7134,868.5223,369.6925,034.5132,184.45
std7377.823876.5613869.207751.05338365.608508.43951796.155858.41551379.083301.74081591.51915.2387562.745
median16,065.3121,232.2819,555.0134,699.3818,777.1731,543.8730,465.8118,654.4319,224.0934,273.0622,220.7122,539.8430,463.59
rank16513211103412789
C17-F23mean3259.6655159.6714303.5835617.3143459.0615770.6675175.4643603.4643674.0394347.4677897.464725.294346.781
best3226.5574861.074085.8715421.6613407.7545295.5974895.7093346.8473584.294256.8697254.2634629.8524136.554
worst3296.3425699.8334502.8955715.7133515.1186042.3835395.6333720.1093785.0234413.9048483.5244814.1184536.905
std32.90116386.3156175.7608135.36851.20413343.2099210.6716176.5002101.051765.61731525.316981.32892167.7969
median3257.885038.8914312.7825665.9413456.6865872.3445205.2583673.453663.424359.5477926.0264728.5944356.833
rank19511212103471386
C17-F24mean3846.5167096.2355033.2769584.6473813.2236948.2766335.2324062.5924365.6484951.75710,763.265983.5135331.613
best3726.8176637.3484771.2437955.3313700.3746119.9455877.8063977.8014253.264854.88410,430.785485.0134888.407
worst3971.6177846.2255494.41613,585.213934.3517597.8336803.9734155.6264547.1095135.50711,247.976457.9875566.537
std124.4288523.1172316.97772688.925120.7238648.2421447.677284.17781128.9378128.2864373.6677414.727304.9964
median3843.8166950.6834933.7238399.0243809.0847037.6646329.5744058.4714331.1124908.31910,687.155995.5265435.753
rank21161211093451387
C17-F25mean3469.14711,520.644010.43524,401.333902.05211,610.188130.6083434.1116741.25910,248.3310,694.924519.7748918.261
best3336.5629524.9873859.07221,905.883795.04310,384.36094.1093337.1365476.9529143.0459641.6554026.4068522.142
worst3674.34513,862.054141.13727,073.784001.03213,671.799181.2913482.3748276.04912,322.111,956.994767.2389227.662
std151.66051810.362145.98162285.45287.680011426.4651425.18468.040921159.7861421.1741081.266340.7136293.0999
median3432.8411,347.754020.76524,312.843906.06711,192.318623.5153458.4686606.0189764.08510,590.514642.7258961.621
rank21141331271691058
C17-F26mean11,776.8732,319.5225,892.0150,965.0712,256.1235,938.637,175.4613,381.4216,826.6423,075.6835,000.8619,788.2625,645.44
best11,355.1229,278.5421,11245,933.6911,587.2133,402.2631,343.912,486.4714,857.5721,221.7633,204.4918,887.4922,138.29
worst12,047.2835,287.0828,834.8653,243.9212,666.1637,240.4842,580.5613,918.7118,847.4125,247.5636,279.1320,917.4529,733.71
std298.45862627.8953410.4243447.125509.13231732.5214886.416654.53821660.0571677.9741380.682881.74953999.153
median11,852.5532,356.2226,810.5952,341.3412,385.5636,555.8337,388.6913,560.2616,800.7922,916.735,259.9119,674.0625,354.89
rank19813211123461057
C17-F27mean3575.6116742.954375.43311,679.13675.8336411.1415820.973703.3314205.7414165.30714,697.544056.3675266.088
best3545.7346081.8464098.3668782.0233592.464900.3064987.6613563.2034069.7064008.83213,470.223649.8084973.669
worst3648.1837055.0094747.85515,162.93770.2397570.5926846.7953795.4764329.6094332.61515,679.324475.3245397.056
std48.70852449.6358313.93283294.65972.863471111.333817.6242111.1698109.3868175.8536998.4654370.4368198.3472
median3554.2636917.4734327.75511,385.733670.3176586.8345724.7133727.3224211.8254159.89114,820.314050.1685346.814
rank11171221093651348
C17-F28mean3602.45314,553.695002.4529,423.483822.11116,592.3213,193.53503.0238836.03412,235.7320,761.737955.56112,025.11
best3543.47412,197.624606.60125,865.713780.88615,763.6511,910.223439.8768379.3310,859.0218,468.595177.51411,155.88
worst3703.40417,079.895431.22831,600.923884.09717,453.0114,204.63559.9239513.75513,945.5823,291.0814,077.4112,859.14
std70.290832305.749348.17242544.34449.01329689.92811102.43749.75649505.55431309.352054.3074125.024773.8027
median3581.46614,468.624985.98630,113.643811.73116,576.3213,329.63506.1478725.52612,069.1620,643.626283.65812,042.7
rank21041331191681257
C17-F29mean7186.20512,015.69814.17748,982.17395.08666,078.1818,573.427827.2968639.94513,867.924,083.258587.31612,369.37
best6818.96311,515.449111.304624,851.17048.40628,968.9817,146.37510.988235.10312,39618,510.537668.28112,005.44
worst7577.92912,378.3810,408.74914,832.37728.099123,745.820,612.328300.2939067.16816,357.9531,591.219711.05612,680.52
std325.5348384.1453544.8654120,932292.593642,192.391496.769380.1452341.95081721.1326312.584882.8139286.5164
median7173.96412,084.299868.321728,122.67401.91955,798.9718,267.527748.9558628.75513,358.8323,115.648484.96312,395.76
rank17613212103591148
C17-F30mean3,304,3147.07 × 10947,858,1314.4 × 10106,031,6071.4 × 10101.16 × 1091.25 × 1082.67 × 1093.03 × 1091.04 × 10106.76 × 1085.53 × 10 8
best1,736,8684.42 × 10922,468,9893.76 × 10104,802,9989.63 × 1098.74 × 10884,489,08678,558,4191.3 × 1097.8 × 10910,552,5763.46 × 10 8
worst4,405,5759.95 × 10974,195,3204.81 × 10106,809,5891.85 × 10101.82 × 1092.01 × 1087.59 × 1095.85 × 1091.31 × 10101.75 × 1097.86 × 10 8
std1,122,2532.38 × 10921,902,0864.55 × 109864,695.53.76 × 1094.52 × 10852,735,4843.38 × 1091.99 × 1092.32 × 1098.38 × 1081.89 × 10 8
median3,537,4076.96 × 10947,384,1074.51 × 10106,256,9201.39 × 10109.62 × 1081.06 × 1081.51 × 1092.5 × 1091.03 × 10104.72 × 1085.41 × 10 8
rank11031321274891165
Sum rank3324714835966324275109160251274181212
Mean rank1.1379318.5172415.10344812.379312.27586211.172419.4827593.7586215.5172418.6551729.4482766.2413797.310345
Total rank18413212113591067
Table 6. Optimization results of the CEC 2019 test suite.
Table 6. Optimization results of the CEC 2019 test suite.
GAOWSOAVOARSAMPATSAWOAMVOGWOTLBOGSAPSOGA
C19-F1mean171,810.8811120,217.9311,711,9871,133,81027,216.5968.428386.21 × 108149,696.87,924,820
best11162.0521112.7564542,455,600376,289.61.0048151.0010031.49 × 10814,365.342,790,162
worst1205,671.311180,699.6216,695,6792,287,37894,807.29270.68541.07 × 109476,07716,698,761
std092,810.2200040,361.56,381,017842,939.745,586.06134.97294.66 × 108218,680.96,548,692
median140,205.111184.6738913,848,335935,7867029.0391.0135416.33 × 10854,172.426,105,179
rank15111397421068
C19-F2mean1173.0854.6976855.003753.016487801.23336143.321564.3356454.8589667.656127,762.24364.2709858.2781
best198.733514.30817252.553251629.092910.908286.6219210.57415.5695839861.117227.0451578.5317
worst1267.09595.0055.0053.5079938.08729275.1838.9716658.75081191.55242,469.39545.40751136.55
std2.07 × 10−1070.524610.3615080.0025020.391792137.09112634.042228.0778185.095538.938415,004.15133.6998290.7565
median1163.25534.7387855.0053.002399818.87816193.637565.8743475.0553736.751329,359.23342.3155859.0152
rank15342101287913611
C19-F3mean1.2520261.8934532.1282898.1448791.4642046.4585676.1439138.9673091.9079454.719874.006483.780975.784606
best1.0558061.4111991.4106056.2945171.1732231.74083.0672647.7194861.2082064.1536852.7634221.4091353.599784
worst1.4484382.3770113.3427919.2211021.7562079.7240149.65694710.719263.4109635.8016785.9172397.6947287.707829
std0.2264450.5557720.9206761.3051790.2421743.4055982.7457141.4998831.0128350.7497461.3863993.0167851.854326
median1.251931.89281.879888.5319491.4636947.1847285.9257218.7152461.5063064.4620583.6726313.0100095.915405
rank13512211101348769
C19-F4mean8.49085717.4375335.3510174.0138511.4560653.1401659.8102825.5765823.2193935.4565352.0334618.9253922.37215
best5.00405313.949278.96862755.95557.97266541.5004633.0169822.9129310.1159232.721939.8032810.9495919.12583
worst9.9856521.8946357.7700194.3719414.9439365.75792.98529.6030938.8472441.0653160.7578936.855227.50774
std2.3739254.09295720.2729316.54663.50304811.0668126.387852.96174813.727053.9195849.13221412.076013.595136
median9.48686116.9531137.3327172.8639811.4538252.651656.6195624.8951621.9571934.0194653.7863413.9483921.42752
rank13813211127691045
C19-F5mean1.0404481.689471.20222388.347741.03524529.634562.0414471.3933961.596572.9364461.1773781.2144151.727054
best1.0211191.2116491.10962866.198281.00840713.568561.6957941.2405281.3486752.6412991.1557821.1807651.552317
worst1.0580372.2650971.285169109.10061.06266262.129072.3614591.7561751.8957753.1435061.2113161.2548881.843677
std0.0168640.4566010.07553917.555070.02836622.900520.2805280.2462470.2586720.2249980.0263650.0380360.125116
median1.0413181.6405681.20704689.046041.03495621.420312.0542671.288441.5709142.9804891.1712071.2110031.756112
rank28413112106711359
C19-F6mean1.0704432.9034427.0966029.9501661.1493097.86281610.690143.0263153.4965314.5799684.0982993.6462713.230283
best1.0353091.8030166.2203479.4656441.0744.4007969.3847751.2266041.3372983.5907481.0724841.5330052.493256
worst1.1532313.6071759.33188710.761951.23893610.5535411.980974.3681234.9953925.2353275.6583566.2469684.3958
std0.0555230.7952351.5001730.6099530.0706392.6024941.0648841.3742141.5501390.7244062.1461911.9847980.837016
median1.0466163.1017886.4170869.7865361.142158.24846310.69743.2552663.8267174.7468994.8311783.4025553.016039
rank13101221113469875
C19-F7mean269.8869491.53691083.6741732.261294.37861407.9331142.5981057.2091178.4521176.091661.7541152.37708.3514
best147.327297.7043804.55911578.7156.24551023.022703.3226723.75271021.721708.64851504.425658.1489491.0823
worst426.5517759.55381547.8291817.424451.56111687.3861794.31850.8271377.6031523.4331797.541608.3841094.838
std115.8062207.68353.8715108.7197123.085279.7652463.1718533.431167.8284371.3769133.0367445.3167282.551
median252.8345454.4447991.15331766.46284.85381460.6621036.385827.12791157.2421236.141672.5271171.473623.7426
rank13613211751091284
C19-F8mean3.0207373.568464.4720574.8219223.2228444.1535064.8531114.0620343.6120284.3048525.2207984.6116254.53273
best1.937573.0192943.9312164.5427272.7516493.5646614.6116073.5651933.3662844.0598995.1248284.3739814.30402
worst3.8322773.8463034.8997254.9903793.6847814.9078035.0870824.4842654.040114.8749455.3732094.9832974.673832
std0.816430.372580.4576210.1999970.4913330.5640.2116660.4358160.3041620.3832030.1200790.266150.166595
median3.1565513.7041214.5286444.8772913.2274734.070784.8568774.099343.5208594.1422825.1925784.5446124.576533
rank13811261254713109
C19-F9mean1.0848981.1767281.3943483.1079281.1079211.3518121.3813761.177321.2214031.3250841.2127121.194741.13892
best1.0619551.1233081.0783362.4036691.0522511.1992981.1928921.1513361.10621.2536091.079881.0907171.114774
worst1.1181521.2437171.6057723.6878151.1774561.5622611.6524511.2048371.3571571.386381.3034071.2631661.185336
std0.0261450.0545880.2250140.5466690.0548250.1621070.2176170.0246190.1138890.0700050.0984910.0748060.031898
median1.0797431.1699441.4466423.1701141.1009891.3228451.340081.1765551.2111271.3301731.233781.2125391.127786
rank14121321011589763
C19-F10mean18.1307818.0309121.0520621.4839721.016521.4298221.2279321.0432121.4917521.4467722.6964821.0480621.28325
best6.9323827.87451820.9926221.3751421.00321.3763621.0680521.0073921.4604121.3986121.0189920.9996921.12875
worst22.0602521.5415821.1932421.5688721.02121.5595421.6155921.0616521.5181821.5235423.4910921.1505921.41332
std7.475156.7782860.0949570.0804480.0090090.086870.2597640.0243620.0254050.0544631.1357340.0691570.122919
median21.7652521.3537821.011221.4959321.02121.3916921.1140421.051921.4942121.4324823.1379321.0209721.29547
rank21611397412101358
Sum rank1238631031994103646883966371
Mean rank1.23.86.310.31.99.410.36.46.88.39.66.37.1
Total rank1341129115681047
Table 7. Wilcoxon rank sum test results.
Table 7. Wilcoxon rank sum test results.
Compared AlgorithmObjective Function Type
CEC 2017CEC 2019
m = 10 m = 30 m = 50 m = 100
GAO vs. WSO5.4 × 10−153.18 × 10−212.07 × 10−212.29 × 10−215.91 × 10−6
GAO vs. AVOA2.8 × 10−206.88 × 10−211.97 × 10−212.41 × 10−214.49 × 10−6
GAO vs. RSA3.6 × 10−211.97 × 10−211.97 × 10−211.97 × 10−212.79 × 10−7
GAO vs. MPA2.43 × 10−54.35 × 10−101.49 × 10−113.34 × 10−150.006264
GAO vs. TSA7.23 × 10−211.97 × 10−211.97 × 10−211.97 × 10−211.37 × 10−7
GAO vs. WOA9.04 × 10−211.97 × 10−211.97 × 10−211.97 × 10−211.84 × 10−7
GAO vs. MVO8.04 × 10−175.13 × 10−195.68 × 10−206.41 × 10−204.64 × 10−7
GAO vs. GWO1.44 × 10−189.98 × 10−215.64 × 10−219.5 × 10−211.49 × 10−6
GAO vs. TLBO7.06 × 10−201.97 × 10−211.97 × 10−211.97 × 10−212.28 × 10−7
GAO vs. GSA3.02 × 10−202.87 × 10−211.97 × 10−211.97 × 10−213.57 × 10−8
GAO vs. PSO6.25 × 10−209.98 × 10−211.72 × 10−202.24 × 10−217.06 × 10−7
GAO vs. GA3.09 × 10−201.97 × 10−212.02 × 10−211.97 × 10−211.59 × 10−7
Table 8. Optimization results of the CEC 2011 test suite.
Table 8. Optimization results of the CEC 2011 test suite.
GAOWSOAVOARSAMPATSAWOAMVOGWOTLBOGSAPSOGA
C11-F1mean3.30047815.0255725.7456226.004123.52191720.9327324.3470320.3029813.8794719.7952925.6729519.2716425.88474
best4.16 × 10−1011.7567324.8390125.156834.53 × 10−1012.9659722.041616.914381.77584217.0012723.714428.41608724.27333
worst13.2019119.2917726.9422527.7876914.0876725.0232225.1512624.9398621.4858422.3300127.1983624.5890427.26328
std6.6075573.1327291.0521631.2106897.0508785.5248931.53873.8580048.5921992.5155451.7283917.3447871.456137
median2.19 × 10−914.5268825.6006125.535972.31 × 10−922.8708725.0976319.6788416.1281119.9249425.8895222.0407226.00117
rank14111328973610512
C11-F2mean−26.4809−22.3944−11.6301−8.06028−25.3005−8.61772−13.6102−8.31426−23.7019−9.22187−7.19675−23.0507−11.4007
best−27.2293−22.8813−14.0599−8.64276−26.6172−13.6641−20.5858−10.1138−25.4598−9.68401−8.44895−25.5945−14.0856
worst−25.364−21.4054−9.06418−7.42364−24.2799−4.97971−8.78687−6.02627−21.5016−9.00778−6.49843−20.5637−9.44663
std0.8255990.6756422.0455020.5511161.0683553.9560824.9853522.1138231.6968460.317220.9116642.0567962.156855
median−26.6652−22.6454−11.6981−8.08736−25.1525−7.91351−12.534−8.55848−23.9231−9.09784−6.9198−23.0223−11.0353
rank15712210611391348
C11-F4mean−35.3025−29.4024−17.5227−16.7272−32.5006−27.7957−23.1492−27.1284−32.0504−13.2769−27.5051−7.4195−4.2567
best−35.4432−33.8574−19.4025−19.341−34.2508−30.6982−26.4941−31.727−34.1547−20.0052−34.1725−10.5338−7.32587
worst−35.1685−27.2841−16.1919−13.8236−31.5536−25.9792−17.1297−24.2157−30.4483−5.71506−19.9298−2.610690
std0.1537853.071551.3786882.8517851.1999522.1400534.4386013.2207231.5636416.082856.5442093.3938143.200788
median−35.2992−28.234−17.2482−16.8722−32.099−27.2526−24.4866−26.2855−31.7992−13.6936−27.9591−8.26678−4.85046
rank14910258731161213
C11-F5mean−28.2978−19.3848−10.0921−10.5136−27.3199−12.1459−18.3796−5.08497−22.36330−16.38510−0.8672
best−29.1661−23.0059−14.7254−11.5854−28.0821−21.209−23.0034−20.3399−26.59650−23.00590−3.46879
worst−27.4293−16.8457−7.09818−9.51564−26.50010−15.08790−19.51170−8.6430400
std1.0036112.6498213.3861361.154520.8743359.1929853.39991410.180123.1948205.90571701.736128
median−28.2979−18.8438−9.27249−10.4768−27.3487−13.6873−17.71350−21.67260−16.945700
rank14982751031261211
C11-F6mean0.7852531.147542.0247552.1550710.8676871.4521792.1881451.0682781.2084211.9409351.0442811.2570572.212929
best0.6650350.9980871.66141.830690.7655841.1770852.0758710.9548390.8202581.8899140.6493310.851641.95787
worst0.8750851.2585332.1879472.3455921.0643781.6508972.2970341.2148871.9507021.9989651.2729561.7152452.385961
std0.0882320.1299650.2472680.2273120.1355820.2067320.0914690.1299170.5233940.0459350.2729970.3543660.192515
median0.8004461.166772.1248362.2220010.8203941.4903682.1898381.0516941.0313621.9374311.1274181.2306722.253942
rank15101128124693713
C11-F7mean220220276.5349.25220425.5043291.5224.5229227276.3886826.2645239.25
best220220230299220220251220220220231251220
worst2202203234042201042.017351238256238350.55452184.43259
std0040.0608543.111810411.419545.362729.00918.0188.72651655.21181913.490815.96116
median220220276.5347220220282220220225262434.8141239
rank117911082436115
C11-F8mean9852.127735,450.41,029,6001,301,6899549.13169,153.55548,774.393,478.5428,444.15625,190.3955,208.4981,885.42,206,877
best6182.4547,467.2914,559848,186.46045.38847,218.02446,320.446,944.3921,243.75506,258.2710,857.7561,5362,183,812
worst12,039.41873,535.91,112,0841,528,22911,684.9878,837.01612,232.3166,066.134,209.17713,782.71,193,1111,351,6422,234,596
std2542.993147,235.486,895.62308,607.92436.76314,807.5871,801.9951,002.175811.79597,974.59198,631328,589.525,018.57
median10,593.35760,399.21,045,8781,415,17010,233.0875,279.58568,272.380,451.829,161.84640,360.1958,432.41,007,1822,204,550
rank28111214653791013
C11-F9mean−22.2297−16.4886−8.89083−10.1972−21.5337−11.918−10.1325−17.3129−16.9511−10.2886−11.6632−10.3517−9.99235
best−22.2933−18.7915−9.07622−10.5958−21.6259−15.7644−10.7556−21.5793−21.4972−10.3194−11.8653−10.3775−10.0444
worst−22.1512−14.5174−8.70287−9.81793−21.3959−9.99611−9.63545−10.3361−12.1207−10.243−11.1938−10.2988−9.94759
std0.0729792.1017640.1951650.3181760.1098092.632530.5836895.2427815.1525780.0343250.3152820.0368480.041836
median−22.2372−16.3228−8.89211−10.1875−21.5565−10.9557−10.0695−18.668−17.0932−10.296−11.7969−10.3653−9.9887
rank15131026113497812
C11-F10mean275,953.6295,554.21,728,00310,733,179658,101.18,232,8131,532,5821,074,4594,504,6235,689,7051,581,0795,704,3876,706,720
best111,906.1119,989.61,671,59310,440,242457,716.55,796,6171,337,713821,072.74,262,6755,689,7051,296,5525,689,7056,664,292
worst435,202.3462,3641,774,43910,907,934876,974.811,926,4091,706,1941,263,6824,637,2885,689,7051,730,8465,723,9876,745,470
std133,433.5141,153.243,998.11203,866.3219,334.82,613,703171,410.9198,494.1173,309.10193,907.317,440.0940,315.03
median278,353299,931.51,732,99110,792,271648,856.67,604,1131,543,2101,106,5424,559,2655,689,7051,648,4605,701,9296,708,560
rank12713312548961011
C11-F11mean1,255,5803,917,0847,200,86215,954,8451,339,4656,290,4936,632,9091,360,7261,564,26415,605,7506,891,2012,353,37215,830,924
best1,163,2623,701,3666,994,87314,807,3071,251,0745,759,7896,399,6761,265,3801,294,51514,467,6756,772,3462,135,59215,403,057
worst1,319,0534,098,4197,301,08216,959,1241,419,1417,038,8506,789,6781,434,2521,817,23616,563,9526,988,0612,733,60016,293,068
std65,830.74176,751.4139,435.4883,563.469,069.69556,954.8167,909.871,081.87231,779.7890,323.893,690.64272,693.2385,833
median1,270,0023,934,2757,253,74716,026,4751,343,8236,181,6656,671,1421,371,6351,572,65315,695,6876,902,1982,272,14915,813,785
rank16101327834119512
C11-F12mean15,444.2115,689.1615,454.6716,506.6616,407.4415,508.0515,512.2315,485.8215,505.7516,060.09131,124.115,519.9418,237.52
best15,444.1915,444.2315,451.915,996.1815,444.1915,481.6315,477.6515,455.1315,478.2515,557.2680,466.215,498.9315,484.07
worst15,444.2316,387.0915,457.7217,774.9416,970.3715,533.3315,548.9315,509.9515,552.2416,984.35234,29015,531.0725,305.01
std0.020683465.97332.453554853.3277700.854424.7753730.8512922.7554432.19287640.220470,818.1714.342554739.424
median15,444.2115,462.6615,454.5316,127.7716,607.6115,508.6215,511.1815,489.0915,496.2515,849.38104,870.115,524.8816,080.5
rank18211105634913712
C11-F13mean18,766.818,401.8718,913.78276,941.818,236.9519,424.6119,31319,268.6319,403.55194,506.519,156.1719,347.1819,047.76
best18,634.8818,212.0218,679.04202,857.518,194.7619,121.0918,855.0218,783.3619,265.8161,049.218,921.519,111.9218,922.68
worst18,882.8618,524.1119,086.98400,96118,297.2219,971.1919,580.3819,581.9319,546.94387,895.119,457.6719,602.1819,231.56
std102.2456134.2627181.985888,823.3947.91151374.7453317.2627341.1623134.9524145,574.9223.2481265.7884134.1612
median18,774.7418,435.6918,944.54251,974.418,227.9219,303.0819,408.2919,354.6219,400.72164,540.919,122.7619,337.3119,018.39
rank32413111871012695
C11-F14mean32,845.0833,006.71239,954.42,343,49835,130.8535,121.25106,277.433,151.8433,126.7811,213,596345,205.233,338.4310,339,440
best32,809.4332,844.6161,174.85975,713.934,595.9733,144.9733,167.0732,986.3232,995.683,908,323256,209.733,323.213,973,087
worst32,880.6333,126.57439,827.36,129,44835,975.2740,825.27215,083.433,336.3733,260.6517,145,622392,625.833,355.6318,906,172
std32.99729135.0197203,624.72,530,421594.16063806.8589,156.14145.1283133.96166,524,45660,919.3614.072136,314,495
median32,845.1433,027.82229,407.71,134,41534,976.0833,257.3988,429.4733,142.3433,125.3811,900,220365,992.733,337.459,239,251
rank12911768431310512
C11-F15mean133,287.9140,692.8140,076.22,362,861141,598.2149,095.6146,593141,880.2141,57798,977,98921,150,02294,639,17585,867,595
best131,118.5134,258.9137,666.4551,007.8134,966.6146,561.1141,445.7137,935.6136,71488,655,5742,767,67974,104,16933,265,483
worst134,522.7151,586.1142,366.45,916,825145,841.3152,103.6156,853.3147,252.9149,667.11.19 × 10842,558,0361.07 × 1081.09 × 108
std1526.057718.9942597.5292,415,4844710.9372385.0797075.9494394.9036061.09513,890,96716,645,99914,574,65235,688,282
median133,755.2138,463.1140,1361,491,805142,792.5148,858.9144,036.6141,166.2139,963.594,111,52419,637,18698,813,7381.01 × 108
rank13295876413101211
C11-F16mean1,941,5874,117,8266.39 × 1091.91 × 10102,040,8379.08 × 1081.14 × 10102,613,1922,499,6252.23 × 10101.45 × 10101.94 × 10102.1 × 1010
best1,931,7951,945,8295.81 × 1091.37 × 10101,966,7611.5 × 1089.92 × 1092,226,2412,159,8271.83 × 10101.24 × 10101.55 × 10101.76 × 1010
worst1,954,7529,745,8547 × 1092.33 × 10102,071,9741.41 × 1091.25 × 10103,051,1463,268,0052.66 × 10101.89 × 10102.36 × 10102.53 × 1010
std10,357.323,769,9215.24 × 1084.13 × 10949,645.155.57 × 1081.16 × 109377,328.4520,697.63.47 × 1093.04 × 1093.31 × 1093.41 × 109
median1,939,9012,389,8106.38 × 1091.96 × 10102,062,3061.03 × 1091.16 × 10102,587,6912,285,3342.21 × 10101.32 × 10101.93 × 10102.05 × 1010
rank15710268431391112
C11-F17mean971,895.41,616,41416,449,4931.45 × 108942,2072,194,1278,381,3891,024,6241,131,75534,761,0399,159,4661.79 × 1081.25 × 108
best966,588.81,094,9719,228,4741 × 108939,995.71,628,1582,842,721958,818.7977,032.327,241,740942,142.41.57 × 1081.22 × 108
worst977,835.82,285,71229,396,1671.66 × 108947,3162,469,33517,189,8391,193,5421,328,73137,388,28420,419,9662.05 × 1081.27 × 108
std6043.012494,783.19,399,62430,732,1203441.709385,943.96,235,833113,169.6170,0255,019,1908,622,08023,693,2811,843,552
median971,578.61,542,48613,586,6651.57 × 108940,758.12,339,5086,746,499973,067.31,110,62837,207,0667,637,8781.78 × 1081.25 × 108
rank25912167341081311
C11-F18mean1,015,4412,590,11616,582,3341.42 × 108988,564.92,966,6437,039,8451,550,6191,435,16635,274,11517,309,8441.72 × 1081.25 × 108
best970,440.61,954,98114,730,8981.23 × 108943,556.82,458,9314,995,0101,347,3781,246,36728,101,00815,122,4561.6 × 1081.21 × 108
worst1,082,7633,891,23520,548,8701.79 × 1081,060,9583,238,7329,466,2701,926,7561,590,75846,848,21618,652,5521.84 × 1081.28 × 108
std52,663880,283.72,680,86826,129,67554,245.33363,495.42,012,868259,593.2174,182.58,801,1611,578,43812,279,5133,177,603
median1,004,2812,257,12515,524,7851.34 × 108974,872.43,084,4556,849,0501,464,1711,451,77133,073,61917,732,1851.72 × 1081.26 × 108
rank25812167431091311
C11-F19mean974,847.43,058,45014,619,8901.54 × 108981,440.72,527,8017,589,122965,9711,036,55730,666,06412,400,4851.92 × 1081.29 × 108
best944,022.21,019,34212,702,8121.34 × 108945,830.82,410,9612,746,274951,663.6960,231.228,071,91711,125,0501.72 × 1081.26 × 108
worst1,014,9158,406,30116,683,6721.83 × 1081,019,4982,730,80713,705,9471,001,2771,185,90836,835,95015,782,6502.21 × 1081.31 × 108
std36,191.373,584,3521,653,94220,589,54939,571.94152,159.24,553,15123,629.47101,531.94,176,8212,261,76821,032,9342,385,169
median970,226.31,404,07814,546,5391.49 × 108980,217.12,484,7196,952,133955,471.61,000,04528,878,19511,347,1201.88 × 1081.3 × 108
rank26912357141081311
C11-F20mean10.4916318.4348437.3899591.0135511.2127529.0579440.9643229.9222225.24142129.909844.8375312195.16216
best8.85150617.1045635.0819266.458989.35856519.4959728.170822.6178324.07106106.051631.58387109.791578.9184
worst13.7108820.7730738.49468115.65114.7204637.5415456.1723136.9166226.50252168.612653.55251130.3309126.8521
std2.1870181.6385651.60406121.759832.39327.9845914.642495.8831880.99718926.968179.36752610.3045521.87485
median9.70205917.9308737.991690.9721110.38629.5971339.7570830.0772225.19605122.487547.10687121.938987.43907
rank13710258641391211
C11-F21mean13.7326427.4808947.4150774.3044514.6356134.4597938.1479332.3323523.1052299.5606259.11908114.8943114.5445
best12.1131425.2695341.0009952.0345712.8555930.7485236.1242226.4449921.5542167.4713647.68592110.884984.39572
worst17.8565732.6484556.3206185.3879118.95136.5006641.2072438.1035325.6474131.734670.84651119.2162147.2729
std2.7599163.478927.09250115.120562.8906972.5522492.16566.4584691.93492228.156739.4981563.7032327.02112
median12.4804226.0027946.1693379.8976613.3679235.29537.6301432.3904322.6096399.5182458.97195114.7381113.2546
rank14810267531191312
C11-F22mean3.30047815.0255725.7456226.004123.52191720.9327324.3470320.3029813.8794719.7952925.6729519.2716425.88474
best4.16 × 10−1011.7567324.8390125.156834.53 × 10−1012.9659722.041616.914381.77584217.0012723.714428.41608724.27333
worst13.2019119.2917726.9422527.7876914.0876725.0232225.1512624.9398621.4858422.3300127.1983624.5890427.26328
std6.6075573.1327291.0521631.2106897.0508785.5248931.53873.8580048.5921992.5155451.7283917.3447871.456137
median2.19 × 10−914.5268825.6006125.535972.31 × 10−922.8708725.0976319.6788416.1281119.9249425.8895222.0407226.00117
rank14111328973610512
Sum rank27881602225414215210084201167193219
Mean rank1.2857144.1904767.61904810.571432.5714296.7619057.2380954.76190549.5714297.9523819.19047610.42857
Total rank14813267531191012
Wilcoxon: p-value4.8 × 10−128.49 × 10−151.71 × 10−150.0019145.36 × 10−155.76 × 10−151.75 × 10−112.11 × 10−123.66 × 10−158.8 × 10−151.71 × 10−152.5 × 10−15
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Dehghani, M.; Trojovský, P.; Malik, O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 121. https://doi.org/10.3390/biomimetics8010121

AMA Style

Dehghani M, Trojovský P, Malik OP. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023; 8(1):121. https://doi.org/10.3390/biomimetics8010121

Chicago/Turabian Style

Dehghani, Mohammad, Pavel Trojovský, and Om Parkash Malik. 2023. "Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems" Biomimetics 8, no. 1: 121. https://doi.org/10.3390/biomimetics8010121

APA Style

Dehghani, M., Trojovský, P., & Malik, O. P. (2023). Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics, 8(1), 121. https://doi.org/10.3390/biomimetics8010121

Article Metrics

Back to TopTop