Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review
Abstract
:1. Introduction
2. Overview of Research on Climbing Robots Used for Vertical Structures
2.1. Pole Climbing Robot
2.2. Tree-Climbing Robots
2.3. Cable-Climbing Robots
2.4. Wall-Climbing Robots
2.5. Climbing Robots for Other Irregular Vertical Structures
3. Basic Design Requirements of Climbing Robots for Vertical Structures
4. Key Technologies Used in Climbing Robots
4.1. Conceptual Design of Climbing Robots
4.2. Adhesion Methods
4.2.1. Magnetic Adsorption
4.2.2. Air Pressure Adsorption
4.2.3. Clamping Adhesion
4.2.4. Claw Grasping Attachments
4.2.5. Adhesive Adsorption
4.2.6. Electrostatic Adsorption
4.2.7. Hybrid Adhesion
4.2.8. Other New Adhesion Methods
4.3. Locomotion Modes
4.3.1. Rope-Driven Locomotion
4.3.2. Wheeled Locomotion
4.3.3. Tracked Locomotion
4.3.4. Legged Locomotion
4.3.5. Inchworm Locomotion
4.3.6. Hybrid Locomotion
4.4. Security Mechanisms
4.5. Control Methods
4.6. Operating Tools
5. Typical Climbing Robots
6. Challenges and Future Research Directions in Climbing Robots
6.1. Challenges Faced
6.2. Main Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishi, A.; Wakasugi, Y.; Watanabe, K. Design of a Robot Capable of Moving on a Vertical Wall. Adv. Robotics. 1986, 1, 33–45. [Google Scholar] [CrossRef]
- Yun, H.B.; Kim, S.H.; Wu, L.; Lee, J. Development of Inspection Robots for Bridge Cables. Sci. World J. 2013, 2013, 967508. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, K.M.; Sakthiprasad, K.M.; Sreekanth, M.M.; Gedela, V.V. A Survey on Robotic Coconut Tree Climbers-Existing Methods and Techniques. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 1578–1586. [Google Scholar]
- Solanki, R.; Patel, H.D. A Technological Survey on Wall Climbing Robot. Int. J. Sci. Res. Dev. 2014, 2, 253–255. [Google Scholar]
- Fang, Y.; Wang, S.; Bi, Q.; Cui, D.; Yan, C. Design and Technical Development of Wall-Climbing Robots: A Review. J. Bionic. Eng. 2022, 19, 877–901. [Google Scholar] [CrossRef]
- Seo, T.; Jeon, Y.; Park, C.; Kim, J. Survey on Glass and Facade-Cleaning Robots: Climbing Mechanisms, Cleaning Methods, and Applications. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 367–376. [Google Scholar] [CrossRef]
- Cai, S.; Ma, Z.; Skibniewski, M.J.; Bao, S. Construction Automation and Robotics for High-Rise Buildings over the Past Decades: A Comprehensive Review. Adv. Eng. Inform. 2019, 42, 100989. [Google Scholar] [CrossRef]
- Hou, S.; Dong, B.; Wang, H.; Wu, G. Inspection of Surface Defects on Stay Cables Using a Robot and Transfer Learning. Autom. Construction 2020, 119, 103382. [Google Scholar] [CrossRef]
- Bogue, R. Climbing Robots: Recent Research and Emerging Applications. Ind. Robot. 2019, 46, 721–727. [Google Scholar] [CrossRef]
- Guan, Y.; Jiang, L.; Zhu, H.; Wu, W.; Zhou, X.; Zhang, H.; Zhang, X. Climbot: A Bio-Inspired Modular Biped Climbing Robot-System Development, Climbing Gaits and Experiments. J. Mech. Robot. 2016, 8, 021026. [Google Scholar] [CrossRef]
- Guan, Y.; Jiang, L.; Zhu, H.; Zhou, X.; Cai, C. Climbot: A Modular Bio-Inspired Biped Climbing Robot. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1473–1478. [Google Scholar]
- Noohi, E.; Mahdavi, S.S.; Baghani, A.; Ahmadabadi, M.N. Wheel-Based Climbing Robot: Modeling and Control. Adv. Robotics 2010, 24, 1313–1343. [Google Scholar] [CrossRef]
- Han, S.; Ahn, J.; Moon, H. Remotely Controlled Prehensile Locomotion of a Two-Module 3D Pipe-Climbing Robot. J. Mech. Sci. Technol. 2016, 30, 1875–1882. [Google Scholar] [CrossRef]
- Agarwal, S.; Kumar, V.; Vadapalli, R.; Sarkar, A.; Krishna, K.M. Design and Simulation of a Flexible Three-Module Pipe Climber. In Proceedings of the 2021 IEEE Second International Conference on Control, Measurement and Instrumentation, Kolkata, India, 8–10 January 2021; pp. 149–154. [Google Scholar]
- Verm, M.S.; Ainla, A.; Yang, D.; Harburg, D.; Whitesides, G.M. A Soft Tube-Climbing Robot. Soft Robot. 2018, 5, 133–137. [Google Scholar] [CrossRef]
- Lam, T.L.; Xu, Y. Mechanical Design of a Tree Gripper for Miniature Tree-climbing Robots. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1487–1492. [Google Scholar]
- Lam, T.L.; Xu, Y. A Flexible Tree Climbing Robot: Treebot-Design and Implementation. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5849–5854. [Google Scholar]
- Lam, T.L.; Xu, Y. Biologically Inspired Tree-climbing Robot with Continuum Maneuvering Mechanism. J. Field Robot. 2012, 29, 843–860. [Google Scholar] [CrossRef]
- Lam, T.L.; Xu, Y. Motion Planning for Tree Climbing with Inchworm-like Robots. J. Field Robot. 2013, 30, 87–101. [Google Scholar] [CrossRef]
- Lam, T.L.; Xu, Y. Climbing Strategy for Flexible Tree Climbing Robot-Treebot. IEEE T. Robot. 2011, 27, 1107–1117. [Google Scholar] [CrossRef]
- Ishigure, Y.; Hirai, K.; Kawasaki, H. A Pruning Robot with a Power-Saving Chainsaw Drive. In Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013; pp. 1223–1228. [Google Scholar]
- Diller, E.D. Design of a Biologically-Inspired Climbing Hexapod Robot for Complex Maneuvers. Master’s Thesis, Case Western Reserve University, Cleveland, OH, USA, 2010. [Google Scholar]
- Wibowo, T.S.; Sulistijono, I.A.; Risnumawan, A. End-to-end Coconut Harvesting Robot. In Proceedings of the 2017 International Electronics Symposium, Denpasar, Indonesia, 29–30 September 2016; pp. 444–449. [Google Scholar]
- Fu, G.; Liu, X.; Chen, Y.; Yuan, J. Fast-growing Forest Pruning Robot Structure Design and Climbing Control. Adv. Manuf. 2015, 3, 166–172. [Google Scholar] [CrossRef]
- Wright, C.; Buchan, A.; Brown, B. Design and Architecture of the Unified Modular Snake Robot. In Proceedings of the 2012 IEEE/RSJ International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4347–4354. [Google Scholar]
- Zheng, Z.; Hu, S.; Ding, N. A Biologically Inspired Cable Climbing Robot: CCRobot-Design and Implementation. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 2354–2359. [Google Scholar]
- Zheng, Z.; Ding, N.; Qian, H. Design and Implementation of CCRobot-II: A Palm-Based Cable Climbing Robot for Cable-Stayed Bridge Inspection. In Proceedings of the 2019 IEEE International Conference on Robotics and Automation, Montreal, QU, Canada, 20–24 May 2019; pp. 9747–9753. [Google Scholar]
- Ding, N.; Zheng, Z.; Song, J. CCRobot-III: A Split-type Wire-driven Cable Climbing Robot for Cable-stayed Bridge Inspection. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 9308–9314. [Google Scholar]
- Zheng, Z.; Zhang, W.; Fu, X.; Hazken, S.; Ding, N. CCRobot-IV: An Obstacle-Free Split-Type Quad-Ducted Propeller-Driven Bridge Stay Cable-Climbing Robot. IEEE Robot. Autom. Let. 2021, 7, 11751–11758. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Z.; Fu, X.; Hazken, S.; Chen, H.; Zhao, M.; Ding, N. CCRobot-IV-F: A Ducted-Fan-Driven Flying-Type Bridge-Stay-Cable Climbing Robot. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; pp. 4184–4190. [Google Scholar]
- Wang, Z.; He, B.; Zhou, Y.; Liu, K.; Zhang, C. Design and Implementation of a Cable Inspection Robot for Cable-Stayed Bridges. Robotica 2021, 39, 1417–1433. [Google Scholar] [CrossRef]
- Xu, F.; Wang, X.; Cao, P. Design and Application of a New Wheel-Based Cable Inspection Robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4909–4914. [Google Scholar]
- Xu, F.; Wang, X. Cable Inspection Robot for Cable-Stayed Bridges: Design, Analysis, and Application. J. Field Robot. 2011, 28, 441–459. [Google Scholar] [CrossRef]
- Xu, F.; Hu, J.; Wang, X.; Jiang, G. Helix Cable-Detecting Robot for Cable-Stayed Bridge: Design and Analysis. Int. J. Robot. Autom. 2014, 29, 406–414. [Google Scholar] [CrossRef]
- Xu, F.; Jiang, Q. Dynamic Obstacle-Surmounting Analysis of a Bilateral-Wheeled Cable-Climbing Robot for Cable-Stayed Bridges. Ind. Robot. 2019, 46, 431–443. [Google Scholar] [CrossRef]
- Xu, F.; Dai, S.; Jiang, Q.; Wang, X. Developing a Climbing Robot for Repairing Cables of Cable-Stayed Bridges. Automat. Constr. 2021, 129, 103807. [Google Scholar] [CrossRef]
- Kim, H.M.; Cho, K.H.; Jin, Y.H.; Liu, F.; Koo, J.C.; Choi, H.R. Development of Cable Climbing Robot for Maintenance of Suspension Bridges. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering, Seoul, Republic of Korea, 20–24 August 2012; pp. 602–607. [Google Scholar]
- Cho, K.H.; Kim, H.M.; Jin, Y.H.; Liu, F.; Moon, H. Inspection Robot for Hanger Cable of Suspension Bridge: Mechanism Design and Analysis. IEEE-ASME T. Mech. 2013, 18, 1665–1674. [Google Scholar] [CrossRef]
- Cho, K.H.; Jin, Y.H.; Kim, H.M.; Moon, H. Caterpillar-based Cable Climbing Robot for Inspection of Suspension Bridge Hanger Rope. In Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering, Madison, WI, USA, 17–20 August 2013; pp. 1071–1074. [Google Scholar]
- Cho, K.H.; Jin, Y.H.; Kim, H.M.; Choi, H.R. Development of Novel Multifunctional Robotic Crawler for Inspection of Hanger Cables in Suspension Bridges. In Proceedings of the 2014 IEEE International Conference on Robotics & Automation, Hong Kong, China, 31 May–7 June 2014; pp. 2673–2678. [Google Scholar]
- Sun, G.; Li, P.; Meng, Y.; Xu, E.; Zhou, Y.; Liu, Y. A Climbing Robot for Inspection of Lamppost in the Airport: Design and Preliminary Experiments. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics, Macau, China, 5–8 December 2017; pp. 436–441. [Google Scholar]
- Ratanghayra, P.R.; Hayat, A.A.; Saha, S.K. Design and Analysis of Spring-Based Rope Climbing Robot. Machines, Mechanism and Robotics. Lecture Notes in Mechanical Engineering; Springer: Singapore, 2019; pp. 453–462. [Google Scholar]
- Fang, G.; Cheng, J. Design and Implementation of a Wire Rope Climbing Robot for Sluices. Machines 2022, 10, 1000. [Google Scholar] [CrossRef]
- Heredia, M.V.; Mohan, R.E.; Wen, T.Y.; Aisyah, J.S.; Vengadesh, A.; Ghanta, S.; Vinu, S. Design and Modelling of a Modular Window Cleaning Robot. Automat. Constr. 2019, 103, 268–278. [Google Scholar] [CrossRef]
- Bisht, R.S.; Pathak, P.M.; Panigrahi, S.K. Design and Development of a Glass Façade Cleaning Robot. Mech. Mach. Theory 2022, 168, 104585. [Google Scholar] [CrossRef]
- Xiao, J.; Li, B.; Ushiroda, K.; Song, Q. Rise-Rover: A Wall-Climbing Robot with High Reliability and Load-Carrying Capacity. In Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics, Zhuhai, China; 2015; pp. 2072–2077. [Google Scholar]
- Eto, H.; Asada, H.H. Development of a Wheeled Wall-Climbing Robot with a Shape-Adaptive Magnetic Adhesion Mechanism. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 9329–9335. [Google Scholar]
- Milella, A.; Maglietta, R.; Caccia, M.; Bruzzone, M. Robotic Inspection of Ship Hull Surfaces Using a Magnetic Crawler and a Monocular Camera. Sensor Rev. 2017, 37, 425–435. [Google Scholar] [CrossRef]
- Eich, M.; Pascual, F.B.; Emilio, G.F.; Ortiz, A.; Bruzzone, G.; Koveos, Y.; Kirchner, F. A Robot Application for Marine Vessel Inspection. J. Field Robot. 2014, 31, 319–341. [Google Scholar] [CrossRef]
- Lee, G.; Kim, H.; Seo, K.; Kim, J.; Sitti, M.; Seo, T. Series of Multilinked Caterpillar Track-type Climbing Robots. J. Field Robot. 2016, 33, 737–750. [Google Scholar] [CrossRef]
- Souto, D.; Faina, A.; Diaz, A.D.; Pena, F.L. A Robot for the Unsupervised Grit-Blasting of Ship Hulls. Int. J. Adv. Robot. Syst. 2012, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Alkalla, M.G.; Fanni, M.A.; Mohamed, A.M.; Hashimoto, H. Tele-operated Propeller-Type Climbing Robot for Inspection of Petrochemical Vessels. Ind. Robot. 2017, 44, 166–172. [Google Scholar] [CrossRef]
- Lee, C.; Chu, B. Three-Modular Obstacle-Climbing Robot for Cleaning Windows on Building Exterior Walls. Int. J. Precis. Eng. Man. 2019, 20, 1371–1380. [Google Scholar] [CrossRef]
- La, H.M.; Lim, R.S.; Basily, B.B.; Gucunski, N.; Yi, J.; Maher, A.; Romero, F.A.; Parvardeh, H. Mechatronic Systems Design for an Autonomous Robotic System for High-Efficiency Bridge Deck Inspection and Evaluation. IEEE-ASME T. Mech. 2013, 18, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- La, H.M.; Gucunski, N.; Kee, S.H.; Nguyen, L.V. Data Analysis and Visualization for the Bridge Deck Inspection and Evaluation Robotic System. Visual. Eng. 2015, 3, 6. [Google Scholar] [CrossRef]
- La, H.M.; Gucunski, N.; Dana, K.; Kee, S.H. Development of an Autonomous Bridge Deck Inspection Robotic System. J. Field Robot. 2017, 34, 1489–1504. [Google Scholar] [CrossRef] [Green Version]
- La, H.M.; Dinh, T.H.; Pham, N.H.; Ha, Q.P.; Pham, A.Q. Automated Robotic Monitoring and Inspection of Steel Structures and Bridges. Robotica 2018, 37, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.T.; La, H.M. Development of a Steel Bridge Climbing Robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019; pp. 1912–1917. [Google Scholar]
- Nguyen, S.T.; La, H.M. Roller Chain-like Robot for Steel Bridge Inspection. In Proceedings of the 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure, St. Louis, MO, USA, 4–7 August 2019; pp. 890–895. [Google Scholar]
- Nguyen, S.T.; Pham, A.Q.; Motley, C.; La, H.M. A Practical Climbing Robot for Steel Bridge Inspection. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 9322–9328. [Google Scholar]
- Pagano, D.; Liu, D. An Approach for Real-Time Motion Planning of an Inchworm Robot in Complex Steel Bridge Environments. Robotica 2017, 35, 1280–1309. [Google Scholar] [CrossRef]
- Wang, R.; Kawamura, Y. Development of Climbing Robot for Steel Bridge Inspection. Ind. Robot. 2016, 43, 429–447. [Google Scholar] [CrossRef]
- Ward, P.; Manamperi, P.; Brooks, P.; Mann, P.; Kaluarachchi, W.; Matkovic, L.; Paul, G.; Yang, C.; Quin, P.; Pagano, D.; et al. Climbing Robot for Steel Bridge Inspection: Design Challenges. In Proceedings of the 2014 Austroads Bridge Conference, Sydney, Australia, 22–24 October 2014; pp. 1–13. [Google Scholar]
- Lu, X.; Zhao, S.; Yu, D.; Liu, X. Pylon-Climber: A Novel Climbing Assistive Robot for Pylon Maintenance. Ind. Robot. 2017, 44, 38–48. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, S.; Liu, X.; Wang, Y. Design and Analysis of a Climbing Robot for Pylon Maintenance. Ind. Robot. 2018, 45, 206–219. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, W.; Qiao, Y.; He, Z.; Liu, F.; Li, X.; Liu, X. A Novel Series-Parallel Hybrid Robot for Climbing Transmission Tower. Ind. Robot. 2021, 48, 577–588. [Google Scholar] [CrossRef]
- Lee, D.G.; Oh, S.; Son, H.I. Wire-driven Parallel Robotic System and its Control for Maintenance of Offshore Wind Turbines. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 902–908. [Google Scholar]
- Birkmeyer, P.; Gillies, A.G.; Fearing, R.S. CLASH: Climbing Vertical Loose Cloth. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5087–5093. [Google Scholar]
- Liu, Y.; Wu, X.; Qian, H.; Zheng, D.; Sun, J.; Xu, Y. System and Design of Clothbot: A Robot for Flexible Clothes Climbing. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1200–1205. [Google Scholar]
- Gui, P.; Tang, L.; Mukhopadhyay, S. Anti-falling Tree Climbing Mechanism Optimization. In Proceedings of the IEEE 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems, Wuhan, China, 16–18 June 2017; pp. 284–288. [Google Scholar]
- Wang, R.; Huang, H.; Li, Y.; Yuan, J. Design and Analysis of a Novel Tree Climbing Robot Mechanism. In Proceedings of the CCMMS2020, Xi’an, China, 1–3 August 2020; pp. 1–10. [Google Scholar]
- Liu, J.; Tong, Z.; Fu, J.; Wang, D.; Su, Q.; Zou, J. A Gecko Inspired Fluid Driven Climbing Robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 783–788. [Google Scholar]
- Bian, S.; Wei, Y.; Xu, F.; Kong, D. A Four-legged Wall-climbing Robot with Spines and Miniature Setae Array Inspired by Longicorn and Gecko. J. Bionic. Eng. 2021, 18, 292–305. [Google Scholar] [CrossRef]
- Bian, S.; Wei, Y.; Xu, F.; Kong, D. A Novel Type of Wall-Climbing Robot with a Gear Transmission System Arm and Adhere Mechanism Inspired by Cicada and Gecko. Appl. Sci. 2021, 11, 4137. [Google Scholar] [CrossRef]
- Kanada, A.; Giardina, F.; Howison, T.; Mashimo, T.; Lida, F. Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators. Soft Robot. 2019, 6, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, T.; Mohan, R.E.; Pathmakumar, T.; Elangovan, K.; Iwase, M. Design and Implementation of a Shape Shifting Rolling–Crawling–Wall-Climbing Robot. Appl. Sci. 2017, 7, 342. [Google Scholar] [CrossRef] [Green Version]
- Liao, B.; Zang, H.; Chen, M.; Wang, Y.; Lang, X.; Zhu, N.; Yang, Z.; Yi, Y. Soft Rod-Climbing Robot Inspired by Winding Locomotion of Snake. Soft Robot. 2020, 7, 500–511. [Google Scholar] [CrossRef]
- Han, I.; Yi, H.; Song, C.; Jeong, H.; Lee, S. A Miniaturized Wall-climbing Segment Robot Inspired by Caterpillar Locomotion. Bioinspir. Biomim. 2017, 12, 046003. [Google Scholar] [CrossRef]
- Fiorello, I.; Dottore, E.; Tramacere, F.; Mazzolai, B. Taking Inspiration from Climbing Plants: Methodologies and Benchmarks- A Review. Bioinspir. Biomim. 2020, 15, 031001. [Google Scholar] [CrossRef]
- Mazzolai, B.; Tramacere, F.; Fiorello, I.; Margheri, L. The Bio-Engineering Approach for Plant Investigations and Growing Robots. A Mini-Review. Commu. Mater. Front. Robot. AI 2020, 7, 573014. [Google Scholar] [CrossRef]
- Erbil, M.A.; Drior, P.S.; Karamanoglu, M.; Odedra, S.; Barlow, C.; Bell, J.; Brazinskas, M. Design and Development of a Pole Climbing Surveillance Robot. In Proceedings of the 2011 New Zealand Rapid Product Development, Auckland, New Zealand, 7–8 February 2011; pp. 1–6. [Google Scholar]
- Ahmed, M.; Eich, M.; Bernhard, F. Design and Control of MIRA: A Lightweight Climbing Robot for Ship Inspection. Int. Lett. Chem. Phys. Astron. 2015, 55, 128–135. [Google Scholar] [CrossRef]
- Tavakoli, M.; Viegas, C.; Marques, L.; Pires, J.N.; Almeida, A.T. Omniclimbers: Omni-directional Magnetic Wheeled Climbing Robots for Inspection of Ferromagnetic Structures. Robot. Auton. Syst. 2013, 61, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, M.; Viegas, C. Analysis and Application of Dual-Row Omnidirectional Wheels for Climbing Robots. Mechatronics 2014, 24, 436–448. [Google Scholar] [CrossRef]
- Howlader, O.F.; Sattar, T.P. Novel Adhesion Mechanism and Design Parameters for Concrete Wall-Climbing Robot. In Proceedings of the 2015 SAI Intelligent Systems Conference, London, UK, 10–11 November 2015; pp. 267–273. [Google Scholar]
- Yan, C.; Sun, Z.; Zhang, W.; Chen, Q. Design of Novel Multidirectional Magnetized Permanent Magnetic Adsorption Device for Wall-Climbing Robots. Int. J. Precis. Eng. Man. 2016, 17, 871–878. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Z.; Chen, Q. Non-contacted Permanent Magnetic Absorbed Wall-climbing Robot for Ultrasonic Weld Inspection of Spherical Tank. In Proceedings of the 2019 MATEC Web of Conferences, Wuhan, China, 22–24 October 2019; p. 02013. [Google Scholar]
- Silva, M.F.; Barbosa, R.S.; Oliveira, A.L.C. Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System. J. Robot. 2012, 2012, 906545. [Google Scholar] [CrossRef]
- Tavakoli, M.; Lourenço, J.; Viegas, C.; Neto, P.; Almeida, A.T. The Hybrid OmniClimber Robot: Wheel Based Climbing, Arm Based Plane Transition, and Switchable Magnet Adhesion. Mechatronics 2016, 36, 136–146. [Google Scholar] [CrossRef]
- Bi, Z.; Guan, Y.; Chen, S.; Zhu, H.; Zhang, H. A Miniature Biped Wall-Climbing Robot for Inspection of Magnetic Metal Surfaces. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 11–14 December 2012; pp. 324–329. [Google Scholar]
- Han, L.; Wang, L.; Fan, S.; Wang, Y. Research on Distributed Electromagnetic Track Adsorption Mechanism. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, Nanchang, China, 26–28 March 2021; pp. 892–898. [Google Scholar]
- Francisco, O.C.; Dodd, T.J. Design of an Active Magnetic Wheel with a Varying Electro-Permanent Magnet Adhesion Mechanism. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 3340–3345. [Google Scholar]
- Guan, Y.; Zhu, H.; Wu, W.; Zhou, X.; Jiang, L.; Cai, C. A Modular Biped Wall-Climbing Robot with High Mobility and Manipulationg Function. IEEE/ASME Trans. Mechatron. 2013, 18, 1787–1798. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X. Development of Wall-Climbing Robot Using Vortex Suction Unit and its Evaluation on Walls with Various Surface Conditions. In Proceedings of the 2017 International Conference on Intelligent Robotics and Applications, Wuhan, China, 15–18 August 2017; pp. 179–192. [Google Scholar]
- Koo, I.M.; Trong, T.D.; Lee, Y.H.; Moon, H.; Koo, J.; Park, S.K.; Choi, H.R. Development of Wall Climbing Robot System by Using Impeller Type Adhesion Mechanism. J. Intell. Robot. Syst. 2013, 72, 57–72. [Google Scholar] [CrossRef]
- Parween, R.; Tan, Y.W.; Elara, M.R. Design and Development of a Vertical Propagation Robot for Inspection of Flat and Curved Surfaces. IEEE Access 2020, 9, 26168–26176. [Google Scholar] [CrossRef]
- Faisal, R.H.; Chisty, N.A. Design and Implementation of a Wall Climbing Robot. Int. J. Comput. Appl. 2018, 179, 1–5. [Google Scholar]
- Sukvichai, K.; Maolanon, P.; Songkrasin, K. Design of a Double-Propellers Wall-Climbing Robot. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics, Macau, China, 5–8 December 2017; pp. 239–245. [Google Scholar]
- Mahmood, S.K.; Bakhy, S.H.; Tawfik, M.A. Novel Wall-Climbing Robot Capable of Transitioning and Perching. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 12049. [Google Scholar] [CrossRef]
- Ge, D.; Tang, Y.; Ma, S.; Matsuno, T.; Ren, C. A Pressing Attachment Approach for a Wall-Climbing Robot Utilizing Passive Suction Cups. Robotics 2020, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; Ren, C.; Matsuno, T.; Ma, S. Guide Rail Design for a Passive Suction Cup Based Wall-Climbing Robot. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016; pp. 5776–5781. [Google Scholar]
- Chen, R.; Fu, L.; Qiu, Y.; Song, Y.; Jin, Y. A Gecko-Inspired Wall-Climbing Robot Based on Vibration Suction Mechanism. J. Mech. Eng. Sci. 2019, 233, 7132–7143. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, M.; Marjovi, A.; Marques, L.; Almeida, A.T.D. 3DCLIMBER: A Climbing Robot for Inspection of 3D Human Made Structures. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 4130–4135. [Google Scholar]
- Chen, G.; Yang, H.; Cao, H.; Ji, S.; Zeng, X.; Wang, Q. Design of an Embracing-Type Climbing Robot for Variation Diameter Rod. Ind. Robot. 2019, 46, 56–72. [Google Scholar] [CrossRef]
- Kim, S.; Asbeck, A.T. SpinybotII: Climbing Hard Walls with Compliant Microspines. In Proceedings of the 2005 IEEE International Conference on Advanced Robotics, Seattle, DC, USA, 18–20 July 2005; pp. 601–606. [Google Scholar]
- Haynes, G.C.; Khripiny, A.; Lynch, G.; Amory, J.; Saunders, A. Rapid Pole Climbing with a Quadrupedal Robot. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 2767–2772. [Google Scholar]
- Lynch, G.A.; Clark, J.E.; Lin, P.C.; Koditschek, D.E. A Bioinspired Dynamical Vertical Climbing Robot. Int. J. Robot. Res. 2012, 31, 974–995. [Google Scholar] [CrossRef]
- Ji, A.; Zhao, Z.; Manoonpong, P.; Wang, W.; Chen, G.; Dai, Z. A Bio-inspired Climbing Robot with Flexible Pads and Claws. J Bionic. Eng. 2018, 52, 368–378. [Google Scholar] [CrossRef]
- Xu, F.; Wang, B.; Shen, J.; Jiang, G. Design and Realization of the Claw Gripper System of a Climbing Robot. J. Intell. Robot. Syst. 2018, 89, 301–317. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Wang, X.; Wu, X.; Mei, T. Design and Experiment of a Bioinspired Wall-Climbing Robot Using Spiny Grippers. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 665–670. [Google Scholar]
- Parness, A.; Abcouwer, N.; Fuller, C.; Wiltsie, N.; Nash, J.; Kenned, B. LEMUR 3: A Limbed Climbing Robot for Extreme Terrain Mobility in Space. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 5467–5473. [Google Scholar]
- Li, X.; Cao, H.; Feng, S.; Xie, C. Structure Design and Mobility Analysis of a Climbing Robot. J. Phys. Conf. Ser. 2020, 1550, 022015. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.; Wu, X.; Mei, T. A Wheeled Wall-Climbing Robot with Bio-Inspired Spine Mechanisms. J. Bionic. Eng. 2015, 12, 17–28. [Google Scholar] [CrossRef]
- Han, Q.; Ji, A.; Jiang, N.; Hu, J.; Gorb, S.N. A Climbing Robot with Paired Claws Inspired by Gecko Locomotion. Robotica 2022, 40, 3686–3698. [Google Scholar] [CrossRef]
- Borijindakul, P.; Ji, A.; Dai, Z.; Gorb, S.; Manoonpong, P. Mini Review: Comparison of Bio-Inspired Adhesive Feet of Climbing Robots on Smooth Vertical Surfaces. Front. Bioeng. Biotech. 2021, 9, 765718. [Google Scholar] [CrossRef]
- Kalouche, S.; Wiltsie, N.; Su, H.; Parness, A. Inchworm Style Gecko Adhesive Climbing Robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2319–2324. [Google Scholar]
- Murphy, M.P.; Sitti, M. Waalbot II: Adhesive Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives. Int. J. Robot. Res. 2011, 30, 118–133. [Google Scholar] [CrossRef]
- Menon, C.; Li, Y.; Sameoto, D.; Martens, C. Abigaille-I: Towards the Development of a Spider-Inspired Climbing Robot for Space Use. In Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 19–22 October 2008; pp. 384–389. [Google Scholar]
- Li, Y.; Ahmed, A.; Sameoto, D.; Menon, C. Abigaille II: Toward the Development of a Spider-Inspired Climbing Robot. Robotica 2012, 30, 79–89. [Google Scholar] [CrossRef]
- Henrey, M.; Ahmed, A.; Boscariol, P.; Shannon, L.; Menon, C. Abigaille-III: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces. J Bionic. Eng. 2014, 11, 1–17. [Google Scholar] [CrossRef]
- Yu, Z.; Fu, J.; Zhao, B.; Ji, A. Design of a Variable Stiffness Gecko-Inspired Foot and Adhesion Performance Test on Flexible Surface. Biomimetics 2022, 7, 125. [Google Scholar] [CrossRef]
- Liu, Y.; Kim, H.; Seo, T. AnyClimb: A New Wall-Climbing Robotic Platform for Various Curvatures. IEEE-ASME T. Mech. 2016, 21, 1812–1821. [Google Scholar] [CrossRef]
- Liu, Y.; Seo, T. AnyClimb-II: Dry-adhesive Linkage-Type Climbing Robot for Uneven Vertical Surfaces. Mech. Mach. Theory 2018, 124, 197–210. [Google Scholar] [CrossRef]
- Wang, L.; Graber, L.; Iida, F. Large-Payload Climbing in Complex Vertical Environments Using Thermoplastic Adhesive Bonds. IEEE T. Robot. 2013, 29, 863–874. [Google Scholar] [CrossRef]
- Osswald, M.; Iida, F. Design and Control of a Climbing Robot Based on Hot Melt Adhesion. Robot. Auton. Syst. 2013, 61, 616–625. [Google Scholar] [CrossRef]
- He, B.; Wang, Z.; Li, M.; Wang, K. Wet Adhesion Inspired Bionic Climbing Robot. IEEE/Asme Trans. Mechatron. 2014, 19, 312–320. [Google Scholar] [CrossRef]
- Wiltsie, N.; Lanzetta, M.; Iagnemma, K. A Controllably Adhesive Climbing Robot Using Magnetorheological Fluid. In Proceedings of the 2012 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA, USA, 23–24 April 2012; pp. 91–96. [Google Scholar]
- Wang, H.; Yamamoto, A. Analyses and Solutions for the Buckling of Thin and Flexible Electrostatic Inchworm Climbing Robots. IEEE Tran. Robot. 2017, 33, 889–900. [Google Scholar] [CrossRef]
- Wang, H.; Yamamoto, A. A Thin Electroadhesive Inchworm Climbing Robot Driven by an Electrostatic Film Actuator for Inspection in A Narrow Gap. In Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics, Linköping, Sweden, 21–26 October 2013; pp. 1–6. [Google Scholar]
- Li, X.; Zhang, Z.; Lan, Q. Research on a Wall Climbing Robot Based on Electrostatic Adhesion. In Proceedings of the 2016 10th International Conference on Sensing Technology, Nanjing, China, 11–13 November 2016; pp. 1–6. [Google Scholar]
- Gu, G.; Zou, J.; Zhao, R.; Zhao, X.; Zhu, X. Soft Wall-Climbing Robots. Sci. Robot. 2018, 3, eaat2874. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Liu, J.; Xu, J.; Wu, X.; Fan, S. Design and Experimental Study of a Bioinspired Wall-Climbing Robot with Multi-Locomotion Modes. In Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, San Antonio, TX, USA, 24–25 November 2018; pp. 1–6. [Google Scholar]
- Liu, J.; Xu, L.; Xu, J.; Li, T.; Chen, S.; Xu, H.; Cheng, G.; Ceccarelli, M. Design, Modeling and Experimentation of a Biomimetic Wall-climbing Robot for Multiple Surfaces. J. Bionic. Eng. 2020, 17, 523–538. [Google Scholar] [CrossRef]
- Koh, K.H.; Sreekumar, M.; Ponnambalam, S.G. Hybrid Electrostatic and Elastomer Adhesion Mechanism for Wall Climbing Robot. Mechatronics 2016, 35, 122–135. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Yang, Y.; Zhou, Z.; Dai, L. Electrically Programmable Adhesive Hydrogels for Climbing Robots. Sci. Robot. 2021, 6, eabe1858. [Google Scholar] [CrossRef]
- William, P.W.; Adibnazari, I.; Hu, Y.; Everman, M.; Gravish, N.; Tolley, M.T. Gas-Lubricated Vibration-Based Adhesion for Robotics. Adv. Intell. Syst. 2021, 3, 202100001. [Google Scholar]
- Fujihira, Y.; Hanajima, N.; Kurashige, K.; Kajiwara, H.; Mizukami, M. Development of Lifting System for High-Elevation Inspection Robot Targeting Hanger Ropes. J. Robot. Mech. 2019, 31, 803–815. [Google Scholar] [CrossRef]
- Seo, M.; Yoo, S.; Choi, M.; Oh, J.; Kim, H.S.; Seo, T. Vibration Reduction of Flexible Rope-Driven Mobile Robot for Safe Façade Operation. IEEE/Asme Trans. Mechatron. 2021, 26, 1812–1819. [Google Scholar] [CrossRef]
- Jeon, M.; Kim, B.G.; Park, S.; Hong, D. Maintenance Robot for Wind Power Blade Cleaning. In Proceedings of the 29th International Symposium of Automation and Robotics in Construction, Eindhoven, The Netherlands, 29 June 2012; pp. 1–5. [Google Scholar]
- Begey, J.; Cuvillon, L.; Lesellier, M.; Gouttefarde, M.; Gangloff, J. Dynamic Control of Parallel Robots Driven by Flexible Cables and Actuated by Position-Controlled Winches. IEEE Trans. Robot. 2019, 35, 286–293. [Google Scholar] [CrossRef]
- Seo, M.; Yoo, S.; Kim, J.; Kim, H.S.; Seo, T. Dual Ascender Robot with Position Estimation Using Angle and Length Sensors. IEEE Sens. J. 2020, 20, 7422–7432. [Google Scholar] [CrossRef]
- Zheng, M.; Yang, M.; Yuan, X.; Ding, N. A Light-Weight Wheel-Based Cable Inspection Climbing Robot: From Simulation to Reality. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics, Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1365–1370. [Google Scholar]
- Unver, O.; Sitti, M. Tankbot: A Palm-Size, Tank-Like Climbing Robot Using Soft Elastomer Adhesive Treads. Int. J. Robot. Res. 2010, 29, 1761–1777. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Niu, F.; Li, P.; Li, Y.; Mei, T. A Track-type Inverted Climbing Robot with Bio-inspired Spiny Grippers. J. Bionic. Eng. 2020, 17, 920–931. [Google Scholar] [CrossRef]
- Romão, J.C.; Tavakoli, M.; Viegas, C.; Neto, P.; Almeida, A.T. InchwormClimber: A light-weight Biped Climbing Robot with a Switchable Magnet Adhesion Unit. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015; pp. 3320–3325. [Google Scholar]
- Parness, A.; Frost, M.; Thatte, N.; Garrett, M. Gravity-independent Rock Climbing Robot and a Sample Acquisition Tool with Microspine Grippers. J. Field Robot. 2013, 30, 897–915. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Steindl, R.; Talbot, F.; Kottege, N.; Dungavell, R.; Wood, B.; Barker, J.; Hoehn, K.; Elfes, A. Magneto: A Versatile Multi-limbed Inspection Robot. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 August 2018; pp. 2253–2260. [Google Scholar]
- Sun, D.; Zhu, J.; Tso, S.K. A Climbing Robot for Cleaning Glass Surface with Motion Planning and Visual Sensing; Itech Education and Publishing: Vienna, Austria, 2007; pp. 219–234. [Google Scholar]
- Moon, S.; Huh, J.; Hong, D.; Lee, S.; Han, C.S. Vertical Motion Control of Building Façade Maintenance Robot with Built-in Guide Rail. Robot. Cim-Int. Manuf. 2015, 31, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Gui, P.; Tang, L.; Mukhopadhyay, S. A Novel Robotic Tree Climbing Mechanism with Anti-Falling Functionality for Tree Pruning. J. Mech. Robot. 2018, 10, 014502. [Google Scholar] [CrossRef]
- Li, J.; Jin, S.; Wang, C.; Xue, J.; Wang, X. Weld Line Recognition and Path Planning with Spherical Tank Inspection Robots. J. Field Robot. 2022, 39, 131–152. [Google Scholar] [CrossRef]
- Liang, R.; Altaf, M.; Ahmad, E.; Liu, R.; Wang, K. A Low-cost, Light-weight Climbing Robot for Inspection of Class Curtains. Int. J. Adv. Robot. Syst. 2014, 11. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Shao, M.; Chen, W. Design and Research on End Effector of a Pruning Robot. Int. J. Simu. Sys. Sci. Tech. 2016, 17, 191–195. [Google Scholar]
Method | Advantages | Disadvantages | Applicable Scope | Representative Products |
---|---|---|---|---|
Magnetic adsorption | Large adsorption force, permanent magnet does not need electricity | Magnets are generally heavy, which increases weight and reduces the load capacity | Ferromagnetic materials | Omniclimbers, Minibobot-W |
Air pressure adsorption | Large adsorption force, easy to control, regardless of materials | High energy consumption, noise, large size, movement delay, poor safety | Flat, smooth non-porous and non-cracked surfaces | W-Climbot, Vortexbot, EJBot, UOTWCR, Rise-Rover |
Clamping adhesion | Low energy consumption, no noise, strong load capacity | Clamping directivity | Slender objects such as rods or tubes | 3DClimber, WRC2IN |
Claw grasping | No energy consumption, no noise, strong load capacity | Damages soft objects | Rough objects with bulges or pits | Spinybot, DynoClimber, Tbot, Treebot LEMUR |
Adhesive adsorption | No energy consumption, no noise | Weak load capacity and slow movement speed | Smooth objects | Abigaille-III, AnyClimb, Waalbot ThermsBond |
Electrostatic adsorption | Low weight, small dimensions, low energy consumption, and no noise | Low load capacity, slow speed, sensitivity to surface conditions involving dust | Uncontaminated and uncharged objects | [128,129] |
Hybrid adhesion | Good comprehensive performance | Complex structure | Adapts to a variety of environments | [132,133,134] |
Locomotion Mode | Advantages | Disadvantages | Applicable Scope | Representative Robots |
---|---|---|---|---|
Rope-driven | Strong load-carrying capacity, fast, high degrees of stability and safety | Requires a winch, limited movement, high manufacturing and installation costs | Scenarios requiring heavy loads | PiSaRo2 |
Wheeled | Fast, continuous movement, simple structure, simple control, low energy consumption | Weak obstacle- negotiation ability | Flat objects | WRC2IN-I UT-PCR WCR-Eto |
Tracked | Large contact area, fast, continuous movement, strong obstacle-climbing ability | Complex structures, difficulty turning | Scenarios with obstacles | Tankbot, SpinyCrawler, MultiTank, Rise-Rover |
Legged | Environmental adaptability, ability to overcome obstacles | Complex structure, complex control, discontinuous movement, slow | Scenarios with substantial obstacles | InchwormClimber, DIGbot Climbot |
Inchworm | Simple structure, simple control, high safety factor | Discontinuous movement, slow | Scenarios with small obstacles | CCRobot, CROC, Treebot, Pylon-Climber, EJBot |
Hybrid | Environmental adaptability, good comprehensive performance | Complex structure | Complex climbing environments | OmniClimber |
Robot Name | Category | Adhesion | Locomotion | Controller | Tools | Country | Year |
---|---|---|---|---|---|---|---|
UT-PCR | Pole-climbing | Clamping | Wheeled | Unknown | Camera, washing devices | IR | 2011 |
Climbot | Pole-climbing | Clamping | Legged | Accelnet | Grippers, Camera | CHN | 2011 |
EVOC-1 | Pole-climbing | Clamping | Inchworm | Unknown | Unknown | CHN | 2019 |
Snake-like robot | Pole-climbing | Clamping | Inchworm | Arduino | Unknown | CHN | 2020 |
DIGbot | Tree-climbing | Claw | Legged | SBC | Unknown | US | 2010 |
Treebot | Tree-climbing | Claw | Inchworm | Unknown | Unknown | CHN | 2011 |
PylonClimber-I | Pylon-climbing | Clamping | Inchworm | C8051 | Unknown | CHN | 2017 |
PylonClimber-II | Pylon-climbing | Clamping | Inchworm | C8051 | Unknown | CHN | 2018 |
CROC | Bridge-climbing | Magnetic | Inchworm | Unknown | Unknown | AUS | 2014 |
ARA-I robot | Bridge-climbing | Magnetic | Tracked | Unknown | Camera | US | 2019 |
ARA-II robot | Bridge-climbing | Magnetic | Hybrid | Arduino | Unknown | US | 2020 |
WCR2IN-I | Cable-climbing | Clamping | Wheeled | SBC | Camera, NDT | KR | 2012 |
WCR2IN-II | Cable-climbing | Clamping | Tracked | SBC | Camera, NDT | KR | 2014 |
EJBot | Cable-climbing | Pressure | Wheeled | Arduino | Camera | EGY | 2017 |
CCRobot-I | Cable-climbing | Clamping | Inchworm | STM32 | Camera | CHN | 2018 |
CCRobot-II | Cable-climbing | Clamping | Inchworm | STM32 | Camera | CHN | 2019 |
CCRobot-III | Cable-climbing | Clamping | Hybrid | SoC | Camera | CHN | 2020 |
CCRobot-IV | Cable-climbing | Clamping | Hybrid | PX4 | Camera | CHN | 2021 |
Model-1 | Cable-climbing | Clamping | Wheeled | STM32 | Camera, NDT | CHN | 2012 |
Model-2 | Cable-climbing | Clamping | Wheeled | STM32 | Camera, NDT | CHN | 2014 |
Model-3 | Cable-climbing | Clamping | Wheeled | STM32 | Camera, NDT | CHN | 2015 |
Model-4 | Cable-climbing | Clamping | Hybrid | STM32 | Grinding devices | CHN | 2021 |
Waalbot II | Wall-climbing | Adhesive | Hybrid | VICON | Camera | US | 2011 |
Minibobot-W | Wall-climbing | Magnetic | Inchworm | C8051 | Probe | CHN | 2012 |
W-Climbot | Wall-climbing | Pressure | Legged | Accelnet | Camera | CHN | 2012 |
MultiTank | Wall-climbing | Pressure | Tracked | PIC | Unknown | KR | 2013 |
LARVA-II | Wall-climbing | Pressure | Wheeled | Unknown | Camera | KR | 2013 |
Abigaille-II | Wall-climbing | Adhesive | Legged | FPGA | Unknown | CAN | 2012 |
Abigaille-III | Wall-climbing | Adhesive | Legged | FPGA | Unknown | CAN | 2014 |
ACROBOT | Wall-climbing | Adhesive | Inchworm | Baby orangutan | Unknown | US | 2014 |
Rise-Rover | Wall-climbing | Pressure | Tracked | PIC | NDT | USA | 2015 |
Tbot | Wall-climbing | Claw | Wheeled | Unknown | Unknown | CHN | 2015 |
OmniClimber-I | Wall-climbing | Magnetic | Hybrid | STM32 | Unknown | PT | 2014 |
OmniClimber-II | Wall-climbing | Magnetic | Hybrid | STM32 | Unknown | PT | 2016 |
MARC | Wall-climbing | Magnetic | Tracked | Unknown | Camera | ITA | 2017 |
Vortexbot | Wall-climbing | Pressure | Wheeled | Arduino | Unknown | CHN | 2017 |
LEMUR 3 | Wall-climbing | Claw/Adhesive | Legged | VDX-6354 | Unknown | US | 2017 |
PiSaRo2 | Wall-climbing | No | Wire-driven | RPi | Unknown | FR | 2018 |
AnyClimb-I | Wall-climbing | Adhesive | Inchworm | Unknown | Unknown | KR | 2016 |
AnyClimb-II | Wall-climbing | Adhesive | Inchworm | Unknown | Unknown | KR | 2018 |
Mantis | Wall-climbing | Pressure | Tracked | Arduino | Unknown | SG | 2019 |
UOTWCR-II | Wall-climbing | Pressure | Wheeled | Unknown | Unknown | IRQ | 2020 |
SpinyCrawler | Wall-climbing | Claw | Tracked | Unknown | Unknown | CHN | 2020 |
Ibex | Wall-climbing | Pressure | Wheeled | Arduino | Unknown | SG | 2020 |
GFCR | Wall-climbing | Pressure | Hybrid | Arduino | Roller brush | IN | 2022 |
Clothbot | Cloth-climbing | Claw | Wheeled | Unknown | Unknown | CHN | 2012 |
LEeCH | Various applications | Pressure | Inchworm | Arduino | Unknown | JPN | 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, G.; Cheng, J. Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review. Biomimetics 2023, 8, 47. https://doi.org/10.3390/biomimetics8010047
Fang G, Cheng J. Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review. Biomimetics. 2023; 8(1):47. https://doi.org/10.3390/biomimetics8010047
Chicago/Turabian StyleFang, Guisheng, and Jinfeng Cheng. 2023. "Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review" Biomimetics 8, no. 1: 47. https://doi.org/10.3390/biomimetics8010047
APA StyleFang, G., & Cheng, J. (2023). Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review. Biomimetics, 8(1), 47. https://doi.org/10.3390/biomimetics8010047