Design for Robustness: Bio-Inspired Perspectives in Structural Engineering
Abstract
:1. Introduction
2. Design for Robustness
2.1. Compartmentalization
2.2. Complexity
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Badarnah, L.; Kadri, U. A methodology for the generation of biomimetic design concepts. Archit. Sci. Rev. 2015, 58, 120–133. [Google Scholar] [CrossRef]
- Zari, M.P. Biomimetic approaches to architectural design for increased sustainability. In Proceedings of the SB07 NZ Sustainable Building Conference, Auckland, New Zealand, 14–16 November 2007; pp. 1–10. [Google Scholar]
- Yan, G.; Zou, H.X.; Wang, S.; Zhao, L.C.; Wu, Z.Y.; Zhang, W.M. Bio-inspired vibration isolation: Methodology and design. Appl. Mech. Rev. 2021, 73, 020801. [Google Scholar] [CrossRef]
- San Ha, N.; Lu, G. A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 2020, 181, 107496. [Google Scholar] [CrossRef]
- Zhang, B.; Han, Q.; Zhang, J.; Han, Z.; Niu, S.; Ren, L. Advanced bio-inspired structural materials: Local properties determine overall performance. Mater. Today 2020, 41, 177–199. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Yu, T. Dynamic behaviors of bio-inspired structures: Design, mechanisms, and models. Eng. Struct. 2022, 265, 114490. [Google Scholar] [CrossRef]
- Russell, J.; Sagaseta, J.; Cormie, D.; Jones, A. Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures 2019, 20, 365–373. [Google Scholar] [CrossRef]
- Kiakojouri, F.; Sheidaii, M.R.; De Biagi, V.; Chiaia, B. Progressive collapse of structures: A discussion on annotated nomenclature. Structures 2021, 29, 1417–1423. [Google Scholar] [CrossRef]
- Kiakojouri, F.; De Biagi, V.; Chiaia, B.; Sheidaii, M.R. Progressive collapse of framed building structures: Current knowledge and future prospects. Eng. Struct. 2020, 206, 110061. [Google Scholar] [CrossRef]
- Kiakojouri, F.; De Biagi, V.; Chiaia, B.; Sheidaii, M.R. Strengthening and retrofitting techniques to mitigate progressive collapse: A critical review and future research agenda. Eng. Struct. 2022, 262, 114274. [Google Scholar] [CrossRef]
- Starossek, U. Progressive Collapse of Structures, 2nd ed.; ICE Publishing: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Bado, M.F.; Tonelli, D.; Poli, F.; Zonta, D.; Casas, J.R. Digital Twin for Civil Engineering Systems: An Exploratory Review for Distributed Sensing Updating. Sensors 2022, 22, 3168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, Q.; Li, L.; Chen, W.; Ye, J.; Li, G.Q. Review on quantitative measures of robustness for building structures against disproportionate collapse. Int. J. High-Rise Build. 2020, 9, 127–154. [Google Scholar] [CrossRef]
- Bozza, A.; Asprone, D.; Parisi, F.; Manfredi, G. Alternative resilience indices for city ecosystems subjected to natural hazards. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 527–545. [Google Scholar] [CrossRef]
- Kitano, H. Towards a Theory of Biological Robustness. Mol. Syst. Biol. 2007, 3, 137. [Google Scholar] [CrossRef]
- Lesne, A. Robustness: Confronting lessons from physics and biology. Biol. Rev. 2008, 83, 509–532. [Google Scholar] [CrossRef]
- Jen, E. Robust Design: A Repertoire of Biological, Ecological, and Engineering Case Studies; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Tavakoli, H.; Kiakojouri, F. Progressive collapse of framed structures: Suggestions for robustness assessment. Sci. Iran. 2014, 21, 329–338. [Google Scholar]
- Parisi, F.; Balestrieri, C.; Asprone, D. Blast resistance of tuff stone masonry walls. Eng. Struct. 2016, 113, 233–244. [Google Scholar] [CrossRef]
- De Biagi, V.; Parisi, F.; Asprone, D.; Chiaia, B.; Manfredi, G. Collapse resistance assessment through the implementation of progressive damage in finite element codes. Eng. Struct. 2017, 136, 523–534. [Google Scholar] [CrossRef]
- Parisi, F.; Scalvenzi, M. Progressive collapse assessment of gravity-load designed European RC buildings under multi-column loss scenarios. Eng. Struct. 2020, 209, 110001. [Google Scholar] [CrossRef]
- Lin, T. Concrete for lunar base construction. In Proceedings of the Lunar Bases and Space Activities of the 21st Century; Lunar and Planetary Institute: Houston, TX, USA, 1985; pp. 381–390. [Google Scholar]
- Pandolfi, C.; Izzo, D. Biomimetics on seed dispersal: Survey and insights for space exploration. Bioinspir. Biomim. 2013, 8, 025003. [Google Scholar] [CrossRef] [Green Version]
- Lilium Auratum. 2022. Available online: https://commons.wikimedia.org/wiki/File:Lilium_auratum_01.jpg (accessed on 2 February 2023).
- The Pentagon. 2022. Available online: https://commons.wikimedia.org/wiki/File:DN-SD-03-11451.JPEG (accessed on 2 February 2023).
- Parry, D. Spider leg-muscles and the autotomy mechanism. J. Cell Sci. 1957, 3, 331–340. [Google Scholar] [CrossRef]
- Maiorana, V.C. Tail autotomy, functional conflicts and their resolution by a salamander. Nature 1977, 265, 533–535. [Google Scholar] [CrossRef]
- Wilkie, I. Arm autotomy in brittlestars (Echinodermata: Ophiuroidea). J. Zool. 1978, 186, 311–330. [Google Scholar] [CrossRef]
- Seifert, A.W.; Kiama, S.G.; Seifert, M.G.; Goheen, J.R.; Palmer, T.M.; Maden, M. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 2012, 489, 561–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtein, I.; Koyfman, A.; Eshel, A.; Bar-On, B. Autotomy in plants: Organ sacrifice in Oxalis leaves. J. R. Soc. Interface 2019, 16, 20180737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrall, M.; DeJong, J.T.; Martinez, A.; Wilson, D.W. Vertical pullout tests of orchard trees for bio-inspired engineering of anchorage and foundation systems. Bioinspir. Biomim. 2020, 16, 016009. [Google Scholar] [CrossRef] [PubMed]
- Autotomy. 2022. Available online: https://commons.wikimedia.org/wiki/File:White-headed_dwarf_gecko.jpg (accessed on 2 February 2023).
- Confederation Bridge. 2022. Available online: https://commons.wikimedia.org/wiki/File:Bridge_to_PEI.jpg (accessed on 2 February 2023).
- Bateman, P.; Fleming, P. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. 2009, 277, 1–14. [Google Scholar] [CrossRef]
- Baban, N.S.; Orozaliev, A.; Stubbs, C.J.; Song, Y.A. Biomimicking interfacial fracture behavior of lizard tail autotomy with soft microinterlocking structures. Bioinspir. Biomim. 2022, 17, 036002. [Google Scholar] [CrossRef]
- Eisner, T.; Camazine, S. Spider leg autotomy induced by prey venom injection: An adaptive response to “pain”? Proc. Natl. Acad. Sci. USA 1983, 80, 3382–3385. [Google Scholar] [CrossRef] [Green Version]
- Tell, S.; Andersson, A.; Najafi, A.; Spencer Jr, B.F.; Karoumi, R. Real-time hybrid testing for efficiency assessment of magnetorheological dampers to mitigate train-induced vibrations in bridges. Int. J. Rail Transp. 2021, 10, 436–455. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Xu, Z.D.; Wang, C. Wind vibration control of stay cables using magnetorheological dampers under optimal equivalent control algorithm. J. Sound Vib. 2019, 443, 732–747. [Google Scholar] [CrossRef]
- Shigo, A.L. Compartmentalization: A conceptual framework for understanding how trees grow and defend themselves. Annu. Rev. Phytopathol. 1984, 22, 189–214. [Google Scholar] [CrossRef]
- Smith, K.T. Compartmentalization, resource allocation, and wood quality. Curr. For. Rep. 2015, 1, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.H.; Savina, M.; Du, J.; Devendran, A.; Ramakanth, K.K.; Tian, X.; Sim, W.S.; Mironova, V.V.; Xu, J. A sacrifice-for-survival mechanism protects root stem cell niche from chilling stress. Cell 2017, 170, 102–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bursch, W.; Ellinger, A.; Gerner, C.; Fröhwein, U.; Schulte-Hermann, R. Programmed cell death (PCD): Apoptosis, autophagic PCD, or others? Ann. N. Y. Acad. Sci. 2000, 926, 1–12. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Galluzzi, L.; Berghe, T.V.; Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 2010, 11, 700–714. [Google Scholar] [CrossRef]
- Nair, P.; Lu, M.; Petersen, S.; Ashkenazi, A. Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol. 2014, 544, 99–128. [Google Scholar] [CrossRef]
- Hypersensitive Response. 2022. Available online: https://commons.wikimedia.org/wiki/File:Plant_hypersensitive_response_lesions.jpg (accessed on 2 February 2023).
- Compartmentalization of Decay in Trees. 2022. Available online: https://commons.wikimedia.org/wiki/File:CODIT_example_4_-_Auró.JPG (accessed on 2 February 2023).
- Johnson, S. Emergence: The Connected Lives of Ants, Brains, Cities, and Software; Simon and Schuster: New York, NY, USA, 2002. [Google Scholar]
- De Biagi, V.; Chiaia, B. Complexity and robustness of frame structures. Int. J. Solids Struct. 2013, 50, 3723–3741. [Google Scholar] [CrossRef] [Green Version]
- Weaver, W. Science and complexity. In Facets of Systems Science; Springer: Berlin/Heidelberg, Germany, 1991; pp. 449–456. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [Green Version]
- De Biagi, V.; Chiaia, B. Scaling in structural complexity. Complexity 2014, 20, 57–63. [Google Scholar] [CrossRef]
- De Biagi, V.; Chiaia, B.M. Damage tolerance in parallel systems. Int. J. Damage Mech. 2016, 25, 1040–1059. [Google Scholar] [CrossRef]
- Scalvenzi, M.; Ravasini, S.; Brunesi, E.; Parisi, F. Progressive collapse fragility of substandard and earthquake-resistant precast RC buildings. Eng. Struct. 2023, 275, 115242. [Google Scholar] [CrossRef]
- Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.M.; Doyle, J. Complexity and robustness. Proc. Natl. Acad. Sci. USA 2002, 99, 2538–2545. [Google Scholar] [CrossRef] [Green Version]
- Di Giovanna, A.P.; Tibo, A.; Silvestri, L.; Müllenbroich, M.C.; Costantini, I.; Allegra Mascaro, A.L.; Sacconi, L.; Frasconi, P.; Pavone, F.S. Whole-brain vasculature reconstruction at the single capillary level. Sci. Rep. 2018, 8, 12573. [Google Scholar] [CrossRef] [Green Version]
- Marder, E. Variability, compensation, and modulation in neurons and circuits. Proc. Natl. Acad. Sci. USA 2011, 108, 15542–15548. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.S.; Wymbs, N.F.; Rombach, M.P.; Porter, M.A.; Mucha, P.J.; Grafton, S.T. Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 2013, 9, e1003171. [Google Scholar] [CrossRef]
- Mizusaki, B.E.; O’Donnell, C. Neural circuit function redundancy in brain disorders. Curr. Opin. Neurobiol. 2021, 70, 74–80. [Google Scholar] [CrossRef]
- Hubbell, S.P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 2005, 19, 166–172. [Google Scholar] [CrossRef]
- Blüthgen, N.; Klein, A.M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 2011, 12, 282–291. [Google Scholar] [CrossRef]
- Bueno, R.S.; Guevara, R.; Ribeiro, M.C.; Culot, L.; Bufalo, F.S.; Galetti, M. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS ONE 2013, 8, e56252. [Google Scholar] [CrossRef] [PubMed]
- Schaper, W.; Schaper, J. Collateral Circulation: Heart, Brain, Kidney, Limbs; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Traupe, T.; Gloekler, S.; de Marchi, S.F.; Werner, G.S.; Seiler, C. Assessment of the human coronary collateral circulation. Circulation 2010, 122, 1210–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biagi, V. Structural behavior of a metallic truss under progressive damage. Int. J. Solids Struct. 2016, 82, 56–64. [Google Scholar] [CrossRef]
- De Biagi, V. Complexity and Robustness of Structures against Extreme Events. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2014. [Google Scholar] [CrossRef]
- Alam, M.; Wahab, M.; Jenkins, C. Mechanics in naturally compliant structures. Mech. Mater. 2007, 39, 145–160. [Google Scholar] [CrossRef]
- Hansell, M.; Hansell, M.H. Animal Architecture; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Aoyanagi, Y.; Okumura, K. Simple model for the mechanics of spider webs. Phys. Rev. Lett. 2010, 104, 038102. [Google Scholar] [CrossRef]
- Cranford, S.W.; Tarakanova, A.; Pugno, N.M.; Buehler, M.J. Nonlinear material behaviour of spider silk yields robust webs. Nature 2012, 482, 72–76. [Google Scholar] [CrossRef] [Green Version]
Nature Solution | Structural Engineering Solution |
---|---|
Segmentation | Construction joints |
False autotomy | Structural segmentation/compartmentalization |
True autotomy/HR/ PCD | Possible use in next generation active robustness techniques |
CODIT | Possible use in next generation self-compartmentalizing concrete-corrosion in steel |
Collateral circulation | ALP method |
HOT | Structural complexity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiakojouri, F.; De Biagi, V.; Abbracciavento, L. Design for Robustness: Bio-Inspired Perspectives in Structural Engineering. Biomimetics 2023, 8, 95. https://doi.org/10.3390/biomimetics8010095
Kiakojouri F, De Biagi V, Abbracciavento L. Design for Robustness: Bio-Inspired Perspectives in Structural Engineering. Biomimetics. 2023; 8(1):95. https://doi.org/10.3390/biomimetics8010095
Chicago/Turabian StyleKiakojouri, Foad, Valerio De Biagi, and Lorenza Abbracciavento. 2023. "Design for Robustness: Bio-Inspired Perspectives in Structural Engineering" Biomimetics 8, no. 1: 95. https://doi.org/10.3390/biomimetics8010095
APA StyleKiakojouri, F., De Biagi, V., & Abbracciavento, L. (2023). Design for Robustness: Bio-Inspired Perspectives in Structural Engineering. Biomimetics, 8(1), 95. https://doi.org/10.3390/biomimetics8010095