Investigation of Fluidic Universal Gripper for Delicate Object Manipulation
Abstract
1. Introduction
2. Result
2.1. Working Mechanism
2.1.1. Jamming of Dense Granular Suspensions and Frictional Contact Network
2.1.2. Universal Gripper Based on the Jamming of a Dense Granular Suspension
2.2. Experimental Characterization
3. Material and Method
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, A.J.; Nagel, S.R. Jamming is not just cool any more. Nature 1998, 396, 21–22. [Google Scholar] [CrossRef]
- Brown, E.; Rodenberg, N.; Amend, J.; Mozeika, A.; Steltz, E.; Zakin, M.R.; Lipson, H.; Jaeger, H.M. Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. USA 2010, 107, 18809–18814. [Google Scholar] [CrossRef]
- Cheng, N.G.; Lobovsky, M.B.; Keating, S.J.; Setapen, A.M.; Gero, K.I.; Hosoi, A.E.; Iagnemma, K.D. Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, St. Paul, MN, USA, 14–18 May 2012; IEEE: New York, NY, USA, 2012; pp. 4328–4333. [Google Scholar]
- Wei, Y.; Chen, Y.; Ren, T.; Chen, Q.; Yan, C.; Yang, Y.; Li, Y. A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 2016, 3, 134–143. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yang, Y.; Wei, Y. Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans. Robot. 2017, 33, 446–455. [Google Scholar] [CrossRef]
- Amend, J.; Cheng, N.; Fakhouri, S.; Culley, B. Soft robotics commercialization: Jamming grippers from research to product. Soft Robot. 2016, 3, 213–222. [Google Scholar] [CrossRef]
- Amend, J.R.; Brown, E.; Rodenberg, N.; Jaeger, H.M.; Lipson, H. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 2012, 28, 341–350. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhou, H.; Zhao, C.; Barimah, B.; Li, B.; Xiang, C.; Li, L.; Gou, X.; Luo, M. Inflatable particle-jammed robotic gripper based on integration of positive pressure and partial filling. Soft Robot. 2022, 9, 309–323. [Google Scholar] [CrossRef]
- Licht, S.; Collins, E.; Badlissi, G.; Rizzo, D. A partially filled jamming gripper for underwater recovery of objects resting on soft surfaces. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: New York, NY, USA, 2018; pp. 6461–6468. [Google Scholar]
- Tian, T.; Nakano, M. Design and testing of a rotational brake with shear thickening fluids. Smart Mater. Struct. 2017, 26, 035038. [Google Scholar] [CrossRef]
- Lin, K.; Liu, H.; Wei, M.; Zhou, A.; Bu, F. Dynamic performance of shear-thickening fluid damper under long-term cyclic loads. Smart Mater. Struct. 2019, 28, 025007. [Google Scholar] [CrossRef]
- Gürgen, S.; Kuşhan, M.C. The Ballistic performance of Aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 2017, 64, 296–306. [Google Scholar] [CrossRef]
- Sun, P.; Li, J.; Zhang, L.; Wang, Z.; Zhou, T.; Ke, R. Investigation on the performance of fluid jet polishing using shear thickening slurry. In Proceedings of the Optical Manufacturing and Testing XII, San Diego, CA, USA, 20–22 August 2018; Rascher, R., Williamson, R., Kim, D.W., Eds.; SPIE: Washington, DC, USA, 2018; p. 21. [Google Scholar]
- Gürgen, S.; Sert, A. Polishing operation of a steel bar in a shear thickening fluid medium. Compos. Part B Eng. 2019, 175, 107127. [Google Scholar] [CrossRef]
- Wei, M.; Lin, K.; Sun, L. Shear thickening fluids and their applications. Mater. Des. 2022, 216, 110570. [Google Scholar] [CrossRef]
- Guazzelli, É.; Pouliquen, O. Rheology of dense granular suspensions. J. Fluid Mech. 2018, 852, P1. [Google Scholar] [CrossRef]
- Gallier, S.; Lemaire, E.; Peters, F.; Lobry, L. Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 2014, 757, 514–549. [Google Scholar] [CrossRef]
- Waitukaitis, S.R.; Jaeger, H.M. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 2012, 487, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Peters, I.R.; Majumdar, S.; Jaeger, H.M. Direct observation of dynamic shear jamming in dense suspensions. Nature 2016, 532, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Wyart, M.; Cates, M.E. Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys. Rev. Lett. 2014, 112, 098302. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.F. Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena. Annu. Rev. Fluid Mech. 2020, 52, 121–144. [Google Scholar] [CrossRef]
- Garat, C.; Kiesgen de Richter, S.; Lidon, P.; Colin, A.; Ovarlez, G. Using good vibrations: Melting and controlled shear jamming of dense granular suspensions. J. Rheol. 2022, 66, 237–256. [Google Scholar] [CrossRef]
- Park, J.L.; Yoon, B.I.; Paik, J.G.; Kang, T.J. Ballistic performance of p-Aramid fabrics impregnated with shear thickening fluid; part I—Effect of laminating sequence. Text. Res. J. 2012, 82, 527–541. [Google Scholar] [CrossRef]
- Park, J.L.; Yoon, B.I.; Paik, J.G.; Kang, T.J. Ballistic performance of p-Aramid fabrics impregnated with shear thickening fluid; part II—Effect of fabric count and shot location. Text. Res. J. 2012, 82, 542–557. [Google Scholar] [CrossRef]
- van Hecke, M. Running on Cornflour. Nature 2012, 487, 174–175. [Google Scholar] [CrossRef]
- Comtet, J.; Chatté, G.; Niguès, A.; Bocquet, L.; Siria, A.; Colin, A. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 2017, 8, 15633. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- James, N.M.; Xue, H.; Goyal, M.; Jaeger, H.M. Controlling shear jamming in dense suspensions via the particle aspect ratio. Soft Matter 2019, 15, 3649–3654. [Google Scholar] [CrossRef]
- Boyer, F.; Guazzelli, É.; Pouliquen, O. Unifying suspension and granular rheology. Phys. Rev. Lett. 2011, 107, 188301. [Google Scholar] [CrossRef]
- Crawford, N.C.; Popp, L.B.; Johns, K.E.; Caire, L.M.; Peterson, B.N.; Liberatore, M.W. Shear thickening of corn starch suspensions: Does concentration matter? J. Colloid Interface Sci. 2013, 396, 83–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Liu, H.; Lin, S.; Li, Y.; Chen, Y. Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics 2023, 8, 209. https://doi.org/10.3390/biomimetics8020209
Wu C, Liu H, Lin S, Li Y, Chen Y. Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics. 2023; 8(2):209. https://doi.org/10.3390/biomimetics8020209
Chicago/Turabian StyleWu, Changchun, Hao Liu, Senyuan Lin, Yunquan Li, and Yonghua Chen. 2023. "Investigation of Fluidic Universal Gripper for Delicate Object Manipulation" Biomimetics 8, no. 2: 209. https://doi.org/10.3390/biomimetics8020209
APA StyleWu, C., Liu, H., Lin, S., Li, Y., & Chen, Y. (2023). Investigation of Fluidic Universal Gripper for Delicate Object Manipulation. Biomimetics, 8(2), 209. https://doi.org/10.3390/biomimetics8020209