Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification
Abstract
:1. Introduction
- An OLCPA algorithm based on the orthogonal learning strategy is proposed, and it is compared with four traditional and seven advanced algorithms on the IEEE CEC 2017 benchmark functions.
- This paper analyzes the scalability of OLCPA and CPA on different dimensions of the IEEE CEC2017 benchmark functions.
- A CNN-based OLCPA-CNN model for identifying abnormal ECG signals is designed.
- The OLCPA-CNN model is compared with other methods using the MIT-BIH and the European ST-T datasets.
2. Preliminary Work
2.1. Overview of Colony Predation Algorithm
Algorithm 1 Pseudo-code for CPA |
Initialize population size Num, the problem dimension dim, and the maximum number of evaluations MaxFes |
While (t ≤ MaxFes) For i = 1: Num Calculation of individual fitness values Update End for For j = 1: dim Update , Calculate using Equation (1) End for For i = 1: Num Update S If Calculate the current agent’s position by Equation (8) End if If Calculate the current agent’s position by Equation (13) End if End for t = t + 1 End while Return |
2.2. Convolutional Neural Network
3. The Improved CPA
3.1. Orthogonal Learning Design
3.2. Orthogonal Learning Strategy
3.3. The Proposed OLCPA
Algorithm 2 Pseudo-code for OLCPA |
Initialize population size Num, the problem dimension dim, and the maximum number of evaluations MaxFes |
While (t ≤ MaxFes) For i = 1: Num Calculation of individual fitness values Update End for For j = 1: dim Update , Calculate by Equation (1) End for For i = 1: Num Update S If Calculate the current agent’s position by Equation (8) End if If Calculate the current agent’s position by Equation (13) End if End for Execute an orthogonal strategy Update the current search agent t = t + 1 End while Return |
4. The Design of the OLCPA-CNN Model
4.1. The Network Structure of CNN
4.2. Hyperparameter Optimization
4.3. Fitness Function
5. Experimental Design and Results of OLCPA
5.1. Benchmark Function
5.2. Scalability Test
5.3. Comparison with Conventional and Advanced Algorithms
6. Application in ECG Signal Classification
6.1. Test Datasets
6.1.1. MIT-BIH Arrhythmia Database
6.1.2. European ST-T Database
6.2. Metrics for Performance Evaluation
6.3. Performance Analysis of OLCPA-CNN on Datasets
7. Discussion
8. Conclusions and Future Works
Declaration of AI and AI-Assisted Technologies in the Writing Process
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Wang, P.; Zheng, X.; Xie, Q.; Tao, X.; Velásquez, J.D. Dual-interactive fusion for code-mixed deep representation learning in tag recommendation. Inf. Fusion 2023, 99, 101862. [Google Scholar] [CrossRef]
- Liu, H.; Yue, Y.; Liu, C.; Spencer Jr, B.; Cui, J. Automatic recognition and localization of underground pipelines in GPR B-scans using a deep learning model. Tunn. Undergr. Space Technol. 2023, 134, 104861. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, Z.; Jia, F.; Shao, H. Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine. Eng. Appl. Artif. Intell. 2023, 120, 105860. [Google Scholar] [CrossRef]
- Deng, Y.; Lv, J.; Huang, D.; Du, S. Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer. Neurocomputing 2023, 548, 126391. [Google Scholar] [CrossRef]
- Deng, X.; Liu, E.; Li, S.; Duan, Y.; Xu, M. Interpretable Multi-modal Image Registration Network Based on Disentangled Convolutional Sparse Coding. IEEE Trans. Image Process. 2023, 32, 1078–1091. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Jing, J.; Deng, X.; Xu, M.; Jiang, L.; Zhang, Z.; Li, Y. DeepMIH: Deep invertible network for multiple image hiding. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 372–390. [Google Scholar] [CrossRef]
- Xu, J.; Pan, S.; Sun, P.Z.H.; Park, S.H.; Guo, K. Human-Factors-in-Driving-Loop: Driver Identification and Verification via a Deep Learning Approach using Psychological Behavioral Data. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3383–3394. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, Y.; Yin, M.; Yin, G.; Xie, L. Multimodal fusion convolutional neural network with cross-attention mechanism for internal defect detection of magnetic tile. IEEE Access 2022, 10, 60876–60886. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Cao, B.; Zhao, J.; Gu, Y.; Fan, S.; Yang, P. Security-aware industrial wireless sensor network deployment optimization. IEEE Trans. Ind. Inform. 2019, 16, 5309–5316. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.; Chen, G.; Zhang, L.; Yang, Y.; Yao, C.; Wang, J.; Yao, J. Training effective deep reinforcement learning agents for real-time life-cycle production optimization. J. Pet. Sci. Eng. 2022, 208, 109766. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Gu, Y.; Ling, Y.; Ma, X. Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evol. Comput. 2020, 53, 100626. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Lv, Z.; Gu, Y.; Yang, P.; Halgamuge, S.K. Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction. IEEE Trans. Fuzzy Syst. 2020, 28, 939–952. [Google Scholar] [CrossRef]
- Cao, B.; Li, M.; Liu, X.; Zhao, J.; Cao, W.; Lv, Z. Many-Objective Deployment Optimization for a Drone-Assisted Camera Network. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2756–2764. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Yang, P.; Gu, Y.; Muhammad, K.; Rodrigues, J.J.; de Albuquerque, V.H.C. Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Trans. Ind. Inform. 2019, 16, 3597–3605. [Google Scholar] [CrossRef]
- Cao, B.; Fan, S.; Zhao, J.; Tian, S.; Zheng, Z.; Yan, Y.; Yang, P. Large-scale many-objective deployment optimization of edge servers. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3841–3849. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, Y.; Wang, H.; Xu, K. ASRO-DIO: Active Subspace Random Optimization Based Depth Inertial Odometry. IEEE Trans. Robot. 2022, 39, 1496–1508. [Google Scholar] [CrossRef]
- Li, R.; Wu, X.; Tian, H.; Yu, N.; Wang, C. Hybrid Memetic Pretrained Factor Analysis-Based Deep Belief Networks for Transient Electromagnetic Inversion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5920120. [Google Scholar] [CrossRef]
- Shan, W.; He, X.; Liu, H.; Heidari, A.A.; Wang, M.; Cai, Z.; Chen, H. Cauchy mutation boosted Harris hawk algorithm: Optimal performance design and engineering applications. J. Comput. Des. Eng. 2023, 10, 503–526. [Google Scholar] [CrossRef]
- Shan, W.; Qiao, Z.; Heidari, A.A.; Chen, H.; Turabieh, H.; Teng, Y. Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl.-Based Syst. 2021, 214, 106728. [Google Scholar] [CrossRef]
- Tian, J.; Hou, M.; Bian, H.; Li, J. Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems. Complex Intell. Syst. 2022, 1–49. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2011, 29, 17–35. [Google Scholar] [CrossRef]
- Chen, H.; Li, C.; Mafarja, M.; Heidari, A.A.; Chen, Y.; Cai, Z. Slime mould algorithm: A comprehensive review of recent variants and applications. Int. J. Syst. Sci. 2022, 54, 204–235. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Asghar Heidari, A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN Beyond the Metaphor: An Efficient Optimization Algorithm Based on Runge Kutta Method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Asghar Heidari, A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm based on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [Google Scholar] [CrossRef]
- Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Asghar Heidari, A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Heidari, A.A.; Wang, X.; Chen, Y.; Wang, M.; Chen, H. Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing 2021, 430, 185–212. [Google Scholar] [CrossRef]
- Dong, R.; Chen, H.; Heidari, A.A.; Turabieh, H.; Mafarja, M.; Wang, S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowl.-Based Syst. 2021, 233, 107529. [Google Scholar] [CrossRef]
- Xue, Y.; Cai, X.; Neri, F. A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification. Appl. Soft Comput. 2022, 127, 109420. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Chen, J.; Xing, L.; Heidari, A.A.; Chen, H.; He, X.; Wang, M. Dynamic Individual Selection and Crossover Boosted Forensic-based Investigation Algorithm for Global Optimization and Feature Selection. J. Bionic Eng. 2023, 1–27. [Google Scholar] [CrossRef]
- Liang, J.; Qiao, K.; Yu, K.; Qu, B.; Yue, C.; Guo, W.; Wang, L. Utilizing the Relationship between Unconstrained and Constrained Pareto Fronts for Constrained Multiobjective Optimization. IEEE Trans. Cybern. 2022, 53, 3873–3886. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, D.; Liang, J.; Chen, K.; Yue, C.; Qiao, K.; Wang, L. A Correlation-Guided Layered Prediction Approach for Evolutionary Dynamic Multiobjective Optimization. IEEE Trans. Evol. Comput. 2022, 1. [Google Scholar] [CrossRef]
- Deng, W.; Xu, J.; Gao, X.Z.; Zhao, H. An Enhanced MSIQDE Algorithm with Novel Multiple Strategies for Global Optimization Problems. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 1578–1587. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Z.; Chen, H.; Chen, X.; Escorcia-Gutierrez, J.; Mansour, R.F.; Ragab, M. Renal Pathology Images Segmentation Based on Improved Cuckoo Search with Diffusion Mechanism and Adaptive Beta-Hill Climbing. J. Bionic Eng. 2023, 1–36. [Google Scholar] [CrossRef]
- Xue, Y.; Tong, Y.; Neri, F. An ensemble of differential evolution and Adam for training feed-forward neural networks. Inf. Sci. 2022, 608, 453–471. [Google Scholar] [CrossRef]
- Wen, X.; Wang, K.; Li, H.; Sun, H.; Wang, H.; Jin, L. A two-stage solution method based on NSGA-II for Green Multi-Objective integrated process planning and scheduling in a battery packaging machinery workshop. Swarm Evol. Comput. 2021, 61, 100820. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, X.; Ran, X.; Liu, Y.; Deng, W.; Deng, W. Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem. Inf. Sci. 2023, 619, 2–18. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Lai, X. An integrated framework with evolutionary algorithm for multi-scenario multi-objective optimization problems. Inf. Sci. 2022, 600, 342–361. [Google Scholar] [CrossRef]
- Li, C.; Sun, G.; Deng, L.; Qiao, L.; Yang, G. A population state evaluation-based improvement framework for differential evolution. Inf. Sci. 2023, 629, 15–38. [Google Scholar] [CrossRef]
- Pyakillya, B.; Kazachenko, N.; Mikhailovsky, N. Deep Learning for ECG Classification. J. Phys. Conf. Ser. 2017, 913, 012004. [Google Scholar] [CrossRef]
- Mathews, S.M.; Kambhamettu, C.; Barner, K.E. A novel application of deep learning for single-lead ECG classification. Comput. Biol. Med. 2018, 99, 53–62. [Google Scholar] [CrossRef]
- Sannino, G.; De Pietro, G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Gener. Comput. Syst. 2018, 86, 446–455. [Google Scholar] [CrossRef]
- Strodthoff, N.; Wagner, P.; Schaeffter, T.; Samek, W. Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL. IEEE J. Biomed. Health Inf. 2021, 25, 1519–1528. [Google Scholar] [CrossRef]
- Peimankar, A.; Puthusserypady, S. DENS-ECG: A deep learning approach for ECG signal delineation. Expert Syst. Appl. 2021, 165, 113911. [Google Scholar] [CrossRef]
- Hasan, N.I.; Bhattacharjee, A. Deep Learning Approach to Cardiovascular Disease Classification Employing Modified ECG Signal from Empirical Mode Decomposition. Biomed. Signal Process. Control 2019, 52, 128–140. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adam, M.; Gertych, A.; San Tan, R. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hassaballah, M.; Ibrahim, I.E.; AbdElminaam, D.S.; Wazery, Y.M. An automatic arrhythmia classification model based on improved Marine Predators Algorithm and Convolutions Neural Networks. Expert Syst. Appl. 2022, 187, 115936. [Google Scholar] [CrossRef]
- Khalifa, M.H.; Ammar, M.; Ouarda, W.; Alimi, A.M. Particle swarm optimization for deep learning of convolution neural network. In Proceedings of the 2017 Sudan Conference on Computer Science and Information Technology (SCCSIT), Elnuhood, Sudan, 17–19 November 2017; pp. 1–5. [Google Scholar]
- Yamasaki, T.; Honma, T.; Aizawa, K. Efficient optimization of convolutional neural networks using particle swarm optimization. In Proceedings of the 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), Laguna Hills, CA, USA, 19–21 April 2017; pp. 70–73. [Google Scholar]
- Dey, S.; Roychoudhury, R.; Malakar, S.; Sarkar, R. An optimized fuzzy ensemble of convolutional neural networks for detecting tuberculosis from Chest X-ray images. Appl. Soft Comput. 2022, 114, 108094. [Google Scholar] [CrossRef]
- Pathan, S.; Siddalingaswamy, P.C.; Ali, T. Automated Detection of Covid-19 from Chest X-ray scans using an optimized CNN architecture. Appl. Soft Comput. 2021, 104, 107238. [Google Scholar] [CrossRef]
- Ezzat, D.; Hassanien, A.E.; Ella, H.A. An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization. Appl. Soft Comput. 2021, 98, 106742. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Chaudhury, S.; Panigrahi, B.K. Hybrid MPSO-CNN: Multi-level Particle Swarm optimized hyperparameters of Convolutional Neural Network. Swarm Evol. Comput. 2021, 63, 100863. [Google Scholar] [CrossRef]
- Fernandes Junior, F.E.; Yen, G.G. Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evol. Comput. 2019, 49, 62–74. [Google Scholar] [CrossRef]
- Fisher, R.A. A Mathematical Examination of the Methods of Determining the Accuracy of an Observation by the Mean Error, and by the Mean Square Error. Mon. Not. R. Astron. Soc. 1920, 80, 758–770. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, S.; Jiang, N.; Hu, H. An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases. KSII Trans. Internet Inf. Syst. 2022, 16, 2359–2376. [Google Scholar]
- Huang, C.-Q.; Jiang, F.; Huang, Q.-H.; Wang, X.-Z.; Han, Z.-M.; Huang, W.-Y. Dual-graph attention convolution network for 3-D point cloud classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–13. [Google Scholar] [CrossRef]
- Guo, F.; Zhou, W.; Lu, Q.; Zhang, C. Path extension similarity link prediction method based on matrix algebra in directed networks. Comput. Commun. 2022, 187, 83–92. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. A Scenario-Generic Neural Machine Translation Data Augmentation Method. Electronics 2023, 12, 2320. [Google Scholar] [CrossRef]
- Cheng, L.; Yin, F.; Theodoridis, S.; Chatzis, S.; Chang, T.-H. Rethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling. IEEE Signal Process. Mag. 2022, 39, 18–52. [Google Scholar] [CrossRef]
- Song, X.; Tong, W.; Lei, C.; Huang, J.; Fan, X.; Zhai, G.; Zhou, H. A clinical decision model based on machine learning for ptosis. BMC Ophthalmol. 2021, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Huang, L.; Marson, S.M.; Wei, G. Emergency response process for sudden rainstorm and flooding: Scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory. Nat. Hazards 2023, 1–23. [Google Scholar] [CrossRef]
- Wang, S.; Hu, X.; Sun, J.; Liu, J. Hyperspectral anomaly detection using ensemble and robust collaborative representation. Inf. Sci. 2023, 624, 748–760. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Luo, J.; Chen, H.; Heidari, A.A.; Xu, Y.; Zhang, Q.; Li, C. Multi-strategy boosted mutative whale-inspired optimization approaches. Appl. Math. Model. 2019, 73, 109–123. [Google Scholar] [CrossRef]
- Long, W.; Liang, X.; Cai, S.; Jiao, J.; Zhang, W. A modified augmented Lagrangian with improved grey wolf optimization to constrained optimization problems. Neural Comput. Appl. 2017, 28, 421–438. [Google Scholar] [CrossRef]
- Shan, W.; Hu, H.; Cai, Z.; Chen, H.; Liu, H.; Wang, M.; Teng, Y. Multi-strategies Boosted Mutative Crow Search Algorithm for Global Tasks: Cases of Continuous and Discrete Optimization. J. Bionic Eng. 2022, 19, 1830–1849. [Google Scholar] [CrossRef]
- Heidari, A.A.; Aljarah, I.; Faris, H.; Chen, H.; Luo, J.; Mirjalili, S. An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput. Appl. 2020, 32, 5185–5211. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69–84. [Google Scholar] [CrossRef]
- Lin, A.; Wu, Q.; Heidari, A.A.; Xu, Y.; Chen, H.; Geng, W.; Li, Y.; Li, C. Predicting Intentions of Students for Master Programs Using a Chaos-Induced Sine Cosine-Based Fuzzy K-Nearest Neighbor Classifier. IEEE Access 2019, 7, 67235–67248. [Google Scholar] [CrossRef]
- Song, S.; Wang, P.; Heidari, A.A.; Wang, M.; Zhao, X.; Chen, H.; He, W.; Xu, S. Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns. Knowl.-Based Syst. 2021, 215, 106425. [Google Scholar] [CrossRef]
- Price, K.V. Differential Evolution. In Handbook of Optimization; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [Google Scholar] [CrossRef]
- Taddei, A.; Distante, G.; Emdin, M.; Pisani, P.; Moody, G.B.; Zeelenberg, C.; Marchesi, C. The European ST-T database: Standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. Eur. Heart J. 1992, 13, 1164–1172. [Google Scholar] [CrossRef]
- Li, H.; Yuan, D.; Wang, Y.; Cui, D.; Cao, L. Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system. Sensors 2016, 16, 1744. [Google Scholar] [CrossRef]
- Patro, K.K.; Jaya Prakash, A.; Jayamanmadha Rao, M.; Rajesh Kumar, P. An Efficient Optimized Feature Selection with Machine Learning Approach for ECG Biometric Recognition. IETE J. Res. 2020, 68, 2743–2754. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, H.; Chen, H.; Shi, W.; Feng, Y. JAMSNet: A Remote Pulse Extraction Network Based on Joint Attention and Multi-Scale Fusion. IEEE Trans. Circuits Syst. Video Technol. 2022, 33, 2783–2797. [Google Scholar] [CrossRef]
- Wang, S.; Wang, B.; Zhang, Z.; Heidari, A.A.; Chen, H. Class-aware sample reweighting optimal transport for multi-source domain adaptation. Neurocomputing 2023, 523, 213–223. [Google Scholar] [CrossRef]
- Xue, X.; Yu, X.-N.; Zhou, D.-Y.; Wang, X.; Zhou, Z.-B.; Wang, F.-Y. Computational Experiments: Past, Present and Future. arXiv 2022, arXiv:2202.13690. [Google Scholar]
- Xue, X.; Yu, X.; Zhou, D.; Peng, C.; Wang, X.; Liu, D.; Wang, F.-Y. Computational Experiments for Complex Social Systems—Part III: The Docking of Domain Models. IEEE Trans. Comput. Soc. Syst. 2023, 1–15. [Google Scholar] [CrossRef]
- Yan, B.; Li, Y.; Li, L.; Yang, X.; Li, T.-q.; Yang, G.; Jiang, M. Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer’s disease classification. Comput. Biol. Med. 2022, 148, 105944. [Google Scholar] [CrossRef]
- Chen, Y.; Gan, H.; Chen, H.; Zeng, Y.; Xu, L.; Heidari, A.A.; Zhu, X.; Liu, Y. Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet. Neurocomputing 2023, 517, 264–278. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Cui, W.; Lei, B.; Kuang, X.; Zhang, T. Dual Encoder-Based Dynamic-Channel Graph Convolutional Network with Edge Enhancement for Retinal Vessel Segmentation. IEEE Trans. Med. Imaging 2022, 41, 1975–1989. [Google Scholar] [CrossRef]
- Lv, J.; Li, G.; Tong, X.; Chen, W.; Huang, J.; Wang, C.; Yang, G. Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction. Comput. Biol. Med. 2021, 134, 104504. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Li, G.; Zhou, D.; Zhang, Y.; Zhang, L.; Zhao, Y.; Feng, Z.; Cui, L.; Zhou, Z.; Sun, X. Research Roadmap of Service Ecosystems: A Crowd Intelligence Perspective. Int. J. Crowd Sci. 2022, 6, 195–222. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Wang, D.; Tang, G.; Zhou, Z.; Lin, Z. Structured Sparsity Optimization with Non-Convex Surrogates of ℓ2,0ℓ2,0-Norm: A Unified Algorithmic Framework. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 6386–6402. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Zhou, Z.; Ma, Y. Robust Low-Rank Tensor Recovery with Rectification and Alignment. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 238–255. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, J.; Zhao, L.; Zhou, Z.; Lin, Z. Tensor Recovery with Weighted Tensor Average Rank. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Nabavi, S.; Ejmalian, A.; Moghaddam, M.E.; Abin, A.A.; Frangi, A.F.; Mohammadi, M.; Rad, H.S. Medical imaging and computational image analysis in COVID-19 diagnosis: A review. Comput. Biol. Med. 2021, 135, 104605. [Google Scholar] [CrossRef] [PubMed]
- Faruqui, N.; Yousuf, M.A.; Whaiduzzaman, M.; Azad, A.K.M.; Barros, A.; Moni, M.A. LungNet: A hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput. Biol. Med. 2021, 139, 104961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, J.; Wang, D.; Zhao, L. Exemplar-Based Denoising: A Unified Low-Rank Recovery Framework. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2538–2549. [Google Scholar] [CrossRef]
- Sun, X.; Cao, X.; Zeng, B.; Zhai, Q.; Guan, X. Multistage Dynamic Planning of Integrated Hydrogen-Electrical Microgrids under Multiscale Uncertainties. IEEE Trans. Smart Grid 2022, 1. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, J.; Fan, Y.; Wang, J.; Niu, J.; Gu, F.; Shen, S. MSEva: A musculoskeletal rehabilitation evaluation system based on EMG signals. ACM Trans. Sens. Netw. 2022, 19, 1–23. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Jiang, Z. Recognition of Imbalanced Epileptic EEG Signals by a Graph-Based Extreme Learning Machine. Wirel. Commun. Mob. Comput. 2021, 2021, 5871684. [Google Scholar] [CrossRef]
Architecture | Hyperparameter | Range |
---|---|---|
CNN | Number of convolution kernels | [1, 15] |
Size of the convolution kernels | [1, 128] | |
Number of nodes of the first fully connected layer | [0, 5000] | |
Number of epochs | [1, 40] | |
Learning rate | [0.0001, 0.01] | |
L2 regularization | [0.001, 0.01] |
Actual Positive | Actual Negative | |
---|---|---|
Predicted positive | TP | FP |
Predicted negative | FN | TN |
N | D | MaxFes | Num |
---|---|---|---|
30 | 30 | 300,000 | 30 |
F | Algorithm | Dim = 50 | Dim = 100 | ||
---|---|---|---|---|---|
Avg | Std | Avg | Std | ||
F1 | CPA | 3.918 × 10³ | 5.613 × 10³ | 1.0134 × 104 | 1.3351 × 104 |
OLCPA | 2.045 × 10³ | 2.522 × 10³ | 7.4512 × 10³ | 6.3808 × 10³ | |
F2 | CPA | 3.212 × 10³ | 9.123 × 10³ | 1.2924 × 1013 | 6.9606 × 1013 |
OLCPA | 2.804 × 102 | 1.873 × 102 | 2.7373 × 1010 | 1.0467 × 1011 | |
F3 | CPA | 3.000 × 102 | 1.723 × 10−6 | 2.3131 × 10³ | 1.0879 × 10³ |
OLCPA | 3.000 × 102 | 1.425 × 10−9 | 3.0000 × 102 | 2.1451 × 10−8 | |
F4 | CPA | 5.069 × 102 | 5.491 × 10 | 6.2239 × 102 | 3.7274 × 10 |
OLCPA | 4.769 × 102 | 3.367 × 10 | 6.3116 × 102 | 5.2452 × 10 | |
F5 | CPA | 7.157 × 102 | 2.635 × 10 | 1.0656 × 10³ | 7.0536 × 10 |
OLCPA | 7.393 × 102 | 3.785 × 10 | 1.1193 × 10³ | 5.8359 × 10 | |
F6 | CPA | 6.000 × 102 | 2.072 × 10−4 | 6.0000 × 102 | 3.5520 × 10−3 |
OLCPA | 6.000 × 102 | 1.946 × 10−13 | 6.0000 × 102 | 2.6953 × 10−13 | |
F7 | CPA | 9.926 × 102 | 4.689 × 10 | 1.4700 × 10³ | 9.1916 × 10 |
OLCPA | 1.012 × 10³ | 4.161 × 10 | 1.5541 × 10³ | 1.2035 × 102 | |
F8 | CPA | 1.017 × 10³ | 3.768 × 10 | 1.3892 × 10³ | 7.3342 × 10 |
OLCPA | 1.018 × 10³ | 3.874 × 10 | 1.4321 × 10³ | 6.7090 × 10 | |
F9 | CPA | 6.632 × 10³ | 1.662 × 10³ | 1.6982 × 104 | 1.9060 × 10³ |
OLCPA | 6.566 × 10³ | 1.940 × 10³ | 1.6940 × 104 | 1.8023 × 10³ | |
F10 | CPA | 5.857 × 10³ | 6.643 × 102 | 1.2755 × 104 | 1.0274 × 10³ |
OLCPA | 5.598 × 10³ | 7.011 × 102 | 1.2856 × 104 | 1.2503 × 10³ | |
F11 | CPA | 1.226 × 10³ | 3.445 × 10 | 1.5628 × 10³ | 1.0329 × 102 |
OLCPA | 1.228 × 10³ | 2.865 × 10 | 1.5100 × 10³ | 1.1924 × 102 | |
F12 | CPA | 3.216 × 106 | 2.379 × 106 | 8.5478 × 106 | 3.7663 × 106 |
OLCPA | 2.110 × 106 | 1.443 × 106 | 4.4447 × 106 | 2.1365 × 106 | |
F13 | CPA | 8.034 × 10³ | 8.404 × 10³ | 6.9597 × 10³ | 5.4080 × 10³ |
OLCAP | 5.223 × 10³ | 3.526 × 10³ | 4.9575 × 10³ | 3.4951 × 10³ | |
F14 | CPA | 4.017 × 104 | 2.045 × 104 | 1.0750 × 105 | 3.2124 × 104 |
OLCAP | 8.857 × 10³ | 5.974 × 10³ | 3.4510 × 104 | 6.5897 × 10³ | |
F15 | CPA | 8.161 × 10³ | 5.507 × 10³ | 4.0322 × 10³ | 3.0081 × 10³ |
OLCPA | 9.451 × 10³ | 5.953 × 10³ | 2.7858 × 10³ | 1.2726 × 10³ | |
F16 | CPA | 3.647 × 10³ | 4.486 × 102 | 6.1075 × 10³ | 6.1143 × 102 |
OLCPA | 3.453 × 10³ | 3.315 × 102 | 5.9226 × 10³ | 5.8144 × 102 | |
F17 | CPA | 3.034 × 10³ | 3.329 × 102 | 4.9720 × 10³ | 5.3734 × 102 |
OLCPA | 3.109 × 10³ | 3.106 × 102 | 4.8910 × 10³ | 6.0655 × 102 | |
F18 | CPA | 1.320 × 105 | 2.658 × 104 | 2.5015 × 105 | 9.0799 × 104 |
OLCPA | 4.246 × 104 | 1.368 × 104 | 1.3636 × 105 | 2.4613 × 104 | |
F19 | CPA | 2.097 × 104 | 9.306 × 10³ | 5.9069 × 10³ | 4.3932 × 10³ |
OLCPA | 2.660 × 104 | 8.118 × 10³ | 3.8745 × 10³ | 1.7514 × 10³ | |
F20 | CPA | 3.055 × 10³ | 3.027 × 102 | 5.1363 × 10³ | 3.9298 × 102 |
OLCPA | 2.891 × 10³ | 2.578 × 102 | 5.1443 × 10³ | 4.6463 × 102 | |
F21 | CPA | 2.515 × 10³ | 3.993 × 10 | 2.8858 × 10³ | 8.8322 × 10 |
OLCPA | 2.527 × 10³ | 4.671 × 10 | 2.8781 × 10³ | 7.3269 × 10 | |
F22 | CPA | 7.882 × 10³ | 1.718 × 10³ | 1.6525 × 104 | 1.2773 × 10³ |
OLCPA | 7.908 × 10³ | 1.320 × 10³ | 1.6529 × 104 | 9.8827 × 102 | |
F23 | CPA | 2.979 × 10³ | 4.502 × 10 | 3.1604 × 10³ | 6.6818 × 10 |
OLCPA | 3.008 × 10³ | 4.940 × 10 | 3.1599 × 10³ | 7.3210 × 10 | |
F24 | CPA | 3.498 × 10³ | 1.719 × 102 | 3.8236 × 10³ | 8.3982 × 10 |
OLCPA | 3.566 × 10³ | 1.472 × 102 | 3.8711 × 10³ | 8.9281 × 10 | |
F25 | CPA | 3.048 × 10³ | 4.905 × 10 | 3.2936 × 10³ | 7.0202 × 10 |
OLCPA | 3.052 × 10³ | 3.882 × 10 | 3.2933 × 10³ | 7.0629 × 10 | |
F26 | CPA | 4.078 × 10³ | 2.100 × 10³ | 1.2307 × 104 | 3.3495 × 10³ |
OLCPA | 5.254 × 10³ | 2.960 × 10³ | 1.3663 × 104 | 2.7772 × 10³ | |
F27 | CPA | 3.519 × 10³ | 1.029 × 102 | 3.5698 × 10³ | 8.1696 × 10 |
OLCPA | 3.532 × 10³ | 9.428 × 10 | 3.6442 × 10³ | 8.7973 × 10 | |
F28 | CPA | 3.296 × 10³ | 2.671 × 10 | 3.3820 × 10³ | 3.4844 × 10 |
OLCPA | 3.290 × 10³ | 2.094 × 10 | 3.3647 × 10³ | 4.4484 × 10 | |
F29 | CPA | 4.233 × 10³ | 2.991 × 102 | 6.7623 × 10³ | 4.7534 × 102 |
OLCPA | 4.072 × 10³ | 2.955 × 102 | 6.9277 × 10³ | 5.1706 × 102 | |
F30 | CPA | 9.734 × 105 | 2.383 × 105 | 1.4286 × 104 | 4.3046 × 10³ |
OLCPA | 8.788 × 105 | 1.518 × 105 | 1.3530 × 104 | 4.6178 × 10³ |
Algorithm | F1 | F2 | F3 | |||
---|---|---|---|---|---|---|
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 2.6417 × 103 | 2.6210 × 103 | 2.0000 × 102 | 6.1889 × 10−6 | 3.0000 × 102 | 3.3039 × 10−10 |
CCMWOA | 2.0529 × 1010 | 4.7896 × 109 | 3.9233 × 1038 | 1.8806 × 1039 | 7.7098 × 104 | 6.7169 × 103 |
IGWO | 1.6989 × 106 | 8.5027 × 105 | 2.0146 × 1013 | 8.4520 × 1013 | 1.4554 × 103 | 6.7162 × 102 |
CCMSCSA | 3.1354 × 103 | 3.1637 × 103 | 7.5324 × 1010 | 2.3962 × 1011 | 3.4410 × 102 | 3.2511 × 101 |
BMWOA | 2.0649 × 108 | 8.6683 × 107 | 5.7378 × 1022 | 2.6681 × 1023 | 7.0802 × 104 | 9.5290 × 103 |
CMFO | 2.0503 × 108 | 4.7086 × 108 | 3.8481 × 1037 | 2.0987 × 1038 | 1.1542 × 105 | 4.6442 × 104 |
CESCA | 5.7624 × 1010 | 4.6938 × 109 | 5.0711 × 1045 | 1.0293 × 1046 | 1.0551 × 105 | 1.4524 × 104 |
GCHHO | 4.6746 × 103 | 5.9329 × 103 | 4.0569 × 105 | 9.1569 × 105 | 5.5167 × 102 | 1.6374 × 102 |
DE | 2.2872 × 103 | 3.7753 × 103 | 1.3602 × 1021 | 3.6101 × 1021 | 1.9826 × 104 | 4.4953 × 103 |
MFO | 1.3517 × 1010 | 8.8111 × 109 | 1.1274 × 1039 | 6.1676 × 1039 | 1.1049 × 105 | 8.7936 × 104 |
HGS | 1.3861 × 107 | 7.5867 × 107 | 1.3521 × 1016 | 5.1457 × 1016 | 2.6774 × 103 | 5.6921 × 103 |
CPA | 5.3939 × 103 | 5.9328 × 103 | 2.0098 × 102 | 3.7267 × 100 | 3.0000 × 102 | 1.4672 × 10−7 |
F4 | F5 | F6 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 4.4457 × 102 | 3.6133 × 101 | 6.2701 × 102 | 2.3849 × 101 | 6.0000 × 102 | 3.5452 × 10−13 |
CCMWOA | 3.7003 × 103 | 1.4526 × 103 | 8.3497 × 102 | 3.3283 × 101 | 6.7164 × 102 | 7.8115 × 100 |
IGWO | 5.0643 × 102 | 2.3656 × 101 | 6.1178 × 102 | 1.6784 × 101 | 6.2273 × 102 | 5.5501 × 100 |
CCMSCSA | 4.9943 × 102 | 2.7486 × 101 | 5.8212 × 102 | 2.3957 × 101 | 6.0043 × 102 | 2.9648 × 10−1 |
BMWOA | 6.0019 × 102 | 3.8438 × 101 | 7.7892 × 102 | 5.5275 × 101 | 6.6611 × 102 | 1.1204 × 101 |
CMFO | 5.6429 × 102 | 6.6364 × 101 | 7.2496 × 102 | 5.0447 × 101 | 6.5202 × 102 | 9.3009 × 100 |
CESCA | 1.5015 × 104 | 2.3052 × 103 | 9.6832 × 102 | 2.4033 × 101 | 7.0496 × 102 | 5.2640 × 100 |
GCHHO | 4.9548 × 102 | 2.8019 × 101 | 7.1025 × 102 | 4.2271 × 101 | 6.5178 × 102 | 6.9046 × 100 |
DE | 4.9088 × 102 | 9.5252 × 100 | 6.0806 × 102 | 9.1168 × 100 | 6.0000 × 102 | 0.0000 × 100 |
MFO | 1.3689 × 103 | 8.5540 × 102 | 7.0259 × 102 | 6.0823 × 101 | 6.4206 × 102 | 1.1753 × 101 |
HGS | 4.7827 × 102 | 2.7144 × 101 | 6.3080 × 102 | 2.8629 × 101 | 6.0152 × 102 | 1.9161 × 100 |
CPA | 4.8346 × 102 | 2.5598 × 101 | 6.2974 × 102 | 2.6272 × 101 | 6.0000 × 102 | 1.0003 × 10−7 |
F7 | F8 | F9 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 8.5580 × 102 | 3.3574 × 101 | 9.0241 × 102 | 1.6026 × 101 | 2.6955 × 103 | 5.2050 × 102 |
CCMWOA | 1.2785 × 103 | 7.1917 × 101 | 1.0445 × 103 | 2.5360 × 101 | 7.7640 × 103 | 1.4347 × 103 |
IGWO | 9.0405 × 102 | 5.2744 × 101 | 8.9353 × 102 | 2.1787 × 101 | 2.8209 × 103 | 8.7020 × 102 |
CCMSCSA | 8.0574 × 102 | 1.7076 × 101 | 9.0305 × 102 | 2.9632 × 101 | 9.8573 × 102 | 7.2563 × 101 |
BMWOA | 1.1733 × 103 | 1.0644 × 102 | 1.0081 × 103 | 3.0517 × 101 | 7.2354 × 103 | 8.8766 × 102 |
CMFO | 1.2808 × 103 | 1.5349 × 102 | 9.5931 × 102 | 3.8407 × 101 | 4.7987 × 103 | 1.1702 × 103 |
CESCA | 1.5498 × 103 | 5.0905 × 101 | 1.1778 × 103 | 1.9507 × 101 | 1.5424 × 104 | 1.2474 × 103 |
GCHHO | 1.0821 × 103 | 1.0330 × 102 | 9.4369 × 102 | 2.0730 × 101 | 4.7578 × 103 | 5.8635 × 102 |
DE | 8.4129 × 102 | 1.0450 × 101 | 9.0777 × 102 | 8.5623 × 100 | 9.0000 × 102 | 1.0765 × 10−13 |
MFO | 1.1498 × 103 | 2.0356 × 102 | 1.0177 × 103 | 4.6613 × 101 | 7.1329 × 103 | 1.7975 × 103 |
HGS | 8.9314 × 102 | 5.1096 × 101 | 9.0545 × 102 | 2.2953 × 101 | 3.5491 × 103 | 8.3458 × 102 |
CPA | 8.4269 × 102 | 2.7130 × 101 | 9.0484 × 102 | 2.1313 × 101 | 2.3193 × 103 | 6.1060 × 102 |
F10 | F11 | F12 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 3.7605 × 103 | 3.8850 × 102 | 1.1756 × 103 | 3.4123 × 101 | 6.5992 × 105 | 4.6976 × 105 |
CCMWOA | 7.0372 × 103 | 6.1016 × 102 | 3.1558 × 103 | 5.8702 × 102 | 2.0126 × 109 | 1.4565 × 109 |
IGWO | 4.4687 × 103 | 5.9061 × 102 | 1.2642 × 103 | 2.8641 × 101 | 1.5414 × 107 | 1.5084 × 107 |
CCMSCSA | 4.6758 × 103 | 6.1466 × 102 | 1.1870 × 103 | 3.1743 × 101 | 1.1060 × 106 | 8.7007 × 105 |
BMWOA | 7.4949 × 103 | 5.9325 × 102 | 1.6517 × 103 | 1.6384 × 102 | 7.8078 × 107 | 5.9556 × 107 |
CMFO | 7.3777 × 103 | 1.2921 × 103 | 4.6678 × 103 | 3.4534 × 103 | 4.0157 × 107 | 1.2585 × 108 |
CESCA | 8.7430 × 103 | 2.2735 × 10 | 1.0664 × 104 | 1.6523 × 103 | 1.5622 × 100 | 1.5369 × 109 |
GCHHO | 5.1344 × 103 | 6.1384 × 102 | 1.2339 × 103 | 5.1150 × 101 | 9.6394 × 105 | 7.5930 × 105 |
DE | 5.9154 × 103 | 3.1146 × 102 | 1.1611 × 103 | 2.2327 × 101 | 1.6551 × 106 | 8.2025 × 105 |
MFO | 5.6084 × 103 | 8.5316 × 102 | 4.6351 × 103 | 4.6023 × 103 | 1.9357 × 108 | 3.4217 × 108 |
HGS | 3.9194 × 103 | 4.7298 × 102 | 1.2032 × 103 | 3.5853 × 101 | 7.1069 × 105 | 5.9578 × 105 |
CPA | 3.6850 × 103 | 4.6305 × 102 | 1.1700 × 103 | 3.4461 × 101 | 1.6148 × 106 | 1.2540 × 106 |
F13 | F14 | F15 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 4.4219 × 103 | 2.9844 × 103 | 2.9128 × 103 | 1.0472 × 103 | 3.2767 × 103 | 2.4501 × 103 |
CCMWOA | 1.5038 × 108 | 2.1857 × 108 | 1.2576 × 106 | 8.9707 × 105 | 5.8975 × 106 | 9.3662 × 106 |
IGWO | 2.8168 × 105 | 3.9417 × 105 | 5.3978 × 104 | 3.4567 × 104 | 5.6870 × 104 | 2.9361 × 104 |
CCMSCSA | 1.3367 × 104 | 1.1171 × 104 | 1.6896 × 104 | 1.5715 × 104 | 3.0463 × 103 | 2.0005 × 103 |
BMWOA | 4.3710 × 105 | 7.0418 × 105 | 9.4482 × 105 | 8.0898 × 105 | 1.7030 × 105 | 2.7468 × 105 |
CMFO | 3.7917 × 107 | 1.9343 × 108 | 3.5943 × 105 | 8.2977 × 105 | 3.0292 × 104 | 3.2825 × 104 |
CESCA | 1.3433 × 1010 | 3.9068 × 109 | 6.5888 × 106 | 2.8850 × 106 | 4.5428 × 108 | 1.8134 × 108 |
GCHHO | 1.2843 × 104 | 1.5165 × 104 | 3.4759 × 104 | 2.5482 × 104 | 6.3001 × 103 | 6.5459 × 103 |
DE | 2.9103 × 104 | 1.6893 × 104 | 4.9826 × 104 | 2.5793 × 104 | 8.6203 × 103 | 5.3792 × 103 |
MFO | 3.5810 × 106 | 1.3021 × 107 | 2.3452 × 105 | 6.2121 × 105 | 6.7501 × 104 | 6.6285 × 104 |
HGS | 2.6168 × 104 | 2.4091 × 104 | 5.3803 × 104 | 4.0736 × 104 | 1.7192 × 104 | 1.5459 × 104 |
CPA | 5.8096 × 103 | 1.1246 × 104 | 7.0490 × 103 | 4.9848 × 103 | 2.2795 × 103 | 9.4388 × 102 |
F16 | F17 | F18 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 2.5673 × 103 | 3.5254 × 102 | 2.0234 × 103 | 1.5350 × 102 | 3.3044 × 104 | 1.4827 × 104 |
CCMWOA | 3.9526 × 103 | 6.7820 × 102 | 2.7756 × 103 | 3.8592 × 102 | 1.0532 × 107 | 1.0505 × 107 |
IGWO | 2.5650 × 103 | 3.5963 × 102 | 2.0210 × 103 | 1.4303 × 102 | 4.9309 × 105 | 4.1194 × 105 |
CCMSCSA | 2.5013 × 103 | 2.6859 × 102 | 2.0794 × 103 | 1.8933 × 102 | 1.6964 × 105 | 1.5010 × 105 |
BMWOA | 3.4890 × 103 | 5.2235 × 102 | 2.4671 × 103 | 2.1627 × 102 | 3.2300 × 106 | 3.6494 × 106 |
CMFO | 2.9376 × 103 | 5.1792 × 102 | 2.4441 × 103 | 3.0889 × 102 | 2.8221 × 106 | 5.1454 × 106 |
CESCA | 5.9581 × 103 | 4.8739 × 102 | 4.4216 × 103 | 4.3712 × 102 | 5.7643 × 107 | 2.6176 × 107 |
GCHHO | 2.7374 × 103 | 2.7503 × 102 | 2.3088 × 103 | 2.6833 × 102 | 2.5047 × 105 | 3.0345 × 105 |
DE | 2.0652 × 103 | 1.4220 × 102 | 1.8272 × 103 | 4.6232 × 101 | 3.2091 × 105 | 1.8003 × 105 |
MFO | 3.1336 × 103 | 4.4336 × 102 | 2.5667 × 103 | 3.1189 × 102 | 1.6242 × 106 | 3.0380 × 106 |
HGS | 2.6782 × 103 | 3.3225 × 102 | 2.2166 × 103 | 2.5020 × 102 | 2.8938 × 105 | 2.7168 × 105 |
CPA | 2.7639 × 103 | 2.9671 × 102 | 2.1603 × 103 | 2.6412 × 102 | 1.0822 × 105 | 6.6646 × 104 |
F19 | F20 | F21 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 4.2596 × 103 | 2.0678 × 103 | 2.3366 × 103 | 1.1975 × 102 | 2.4210 × 103 | 2.6344 × 101 |
CCMWOA | 5.5422 × 106 | 9.1972 × 106 | 2.7663 × 103 | 1.8365 × 102 | 2.6152 × 103 | 6.4209 × 101 |
IGWO | 2.2651 × 105 | 2.5430 × 105 | 2.3539 × 103 | 1.2977 × 102 | 2.3977 × 103 | 2.4054 × 101 |
CCMSCSA | 6.5091 × 103 | 5.1531 × 103 | 2.3399 × 103 | 1.2859 × 102 | 2.3752 × 103 | 1.8620 × 101 |
BMWOA | 8.1030 × 105 | 1.1393 × 106 | 2.7627 × 103 | 1.8733 × 102 | 2.5221 × 103 | 5.0213 × 101 |
CMFO | 4.4672 × 104 | 7.9129 × 104 | 2.7796 × 103 | 1.8148 × 102 | 2.4958 × 103 | 3.7613 × 101 |
CESCA | 1.3527 × 109 | 4.4096 × 108 | 3.1735 × 103 | 1.3671 × 102 | 2.7653 × 103 | 3.4531 × 101 |
GCHHO | 6.1960 × 103 | 5.0850 × 103 | 2.5673 × 103 | 1.8589 × 102 | 2.4895 × 103 | 5.0529 × 101 |
DE | 8.0940 × 103 | 5.1894 × 103 | 2.1309 × 103 | 8.2781 × 101 | 2.4037 × 103 | 9.0200 × 100 |
MFO | 1.1628 × 107 | 3.7701 × 107 | 2.7001 × 103 | 2.2561 × 102 | 2.5056 × 103 | 4.5377 × 101 |
HGS | 1.2762 × 104 | 1.5843 × 104 | 2.4769 × 103 | 1.7556 × 102 | 2.4252 × 103 | 2.8533 × 101 |
CPA | 5.3098 × 103 | 1.9655 × 103 | 2.4748 × 103 | 1.4970 × 102 | 2.4060 × 103 | 7.0170 × 101 |
F22 | F23 | F24 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 3.9509 × 103 | 1.9526 × 103 | 2.7595 × 103 | 3.2074 × 101 | 3.1311 × 103 | 9.8525 × 101 |
CCMWOA | 7.3798 × 103 | 1.3564 × 103 | 3.1950 × 103 | 1.1166 × 102 | 3.3448 × 103 | 1.1703 × 102 |
IGWO | 2.3179 × 103 | 3.7459 × 101 | 2.7712 × 103 | 3.0804 × 101 | 2.9433 × 103 | 3.3180 × 101 |
CCMSCSA | 2.3011 × 103 | 1.8012 × 100 | 2.7389 × 103 | 2.2920 × 101 | 2.9120 × 103 | 2.9458 × 101 |
BMWOA | 6.0884 × 103 | 3.1127 × 103 | 2.9482 × 103 | 7.9106 × 101 | 3.1150 × 103 | 7.4716 × 101 |
CMFO | 5.4333 × 103 | 2.9116 × 103 | 2.9734 × 103 | 7.2165 × 101 | 3.1313 × 103 | 1.1677 × 102 |
CESCA | 9.5457 × 103 | 5.7616 × 102 | 3.4764 × 103 | 4.8311 × 101 | 3.4817 × 103 | 3.3877 × 101 |
GCHHO | 4.1361 × 103 | 2.1478 × 103 | 2.9327 × 103 | 6.8914 × 101 | 3.0983 × 103 | 7.3773 × 101 |
DE | 3.7200 × 103 | 1.7703 × 103 | 2.7561 × 103 | 8.0338 × 100 | 2.9580 × 103 | 1.1083 × 101 |
MFO | 6.4721 × 103 | 1.7866 × 103 | 2.8414 × 103 | 3.5967 × 101 | 2.9872 × 103 | 3.6604 × 101 |
HGS | 4.6540 × 103 | 1.5057 × 103 | 2.7673 × 103 | 2.8088 × 101 | 3.0210 × 103 | 4.9364 × 101 |
CPA | 3.1890 × 103 | 1.6475 × 103 | 2.7663 × 103 | 3.4140 × 101 | 3.0664 × 103 | 6.5262 × 101 |
F25 | F26 | F27 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 2.8894 × 103 | 7.7206 × 100 | 4.4389 × 103 | 1.1528 × 103 | 3.2423 × 103 | 1.9934 × 101 |
CCMWOA | 3.3774 × 103 | 1.1165 × 102 | 8.7361 × 103 | 9.8681 × 102 | 3.5982 × 103 | 1.5901 × 102 |
IGWO | 2.9064 × 103 | 1.6945 × 101 | 4.8594 × 103 | 2.8776 × 102 | 3.2367 × 103 | 1.3129 × 101 |
CCMSCSA | 2.9035 × 103 | 1.6558 × 101 | 3.5575 × 103 | 1.1866 × 103 | 3.2607 × 103 | 2.5012 × 101 |
BMWOA | 3.0206 × 103 | 3.3567 × 101 | 6.8057 × 103 | 1.2593 × 103 | 3.3084 × 103 | 5.7831 × 101 |
CMFO | 2.9541 × 103 | 3.6301 × 101 | 6.8104 × 103 | 7.5311 × 102 | 3.4320 × 103 | 1.5391 × 102 |
CESCA | 5.5207 × 103 | 4.9939 × 102 | 1.1158 × 104 | 5.9604 × 102 | 3.6926 × 103 | 7.6258 × 101 |
GCHHO | 2.8956 × 103 | 1.6050 × 101 | 6.0549 × 103 | 1.2718 × 103 | 3.2638 × 103 | 2.8447 × 101 |
DE | 2.8874 × 103 | 3.0941 × 10−1 | 4.6573 × 103 | 7.3190 × 101 | 3.2061 × 103 | 3.4861 × 100 |
MFO | 3.2124 × 103 | 3.9290 × 102 | 5.8620 × 103 | 4.3155 × 102 | 3.2565 × 103 | 2.4574 × 101 |
HGS | 2.8915 × 103 | 1.3659 × 101 | 4.9433 × 103 | 3.3033 × 102 | 3.2306 × 103 | 1.5047 × 101 |
CPA | 2.8988 × 103 | 1.8851 × 101 | 4.3956 × 103 | 1.0423 × 103 | 3.2447 × 103 | 2.3567 × 101 |
F28 | F29 | F30 | ||||
Avg | Std | Avg | Std | Avg | Std | |
OLCPA | 3.1166 × 103 | 3.6219 × 101 | 3.5490 × 103 | 1.4289 × 102 | 7.7032 × 103 | 2.1026 × 103 |
CCMWOA | 4.5490 × 103 | 5.1054 × 102 | 5.3770 × 103 | 7.8372 × 102 | 7.2310 × 107 | 6.3627 × 107 |
IGWO | 3.2621 × 103 | 3.0754 × 101 | 3.8055 × 103 | 1.8503 × 102 | 3.8641 × 106 | 3.0498 × 106 |
CCMSCSA | 3.2293 × 103 | 2.6311 × 101 | 3.7148 × 103 | 1.9800 × 102 | 1.5266 × 104 | 8.5355 × 103 |
BMWOA | 3.3944 × 103 | 4.6263 × 101 | 4.7907 × 103 | 3.5255 × 102 | 5.9215 × 106 | 3.3072 × 106 |
CMFO | 3.3422 × 103 | 5.8653 × 101 | 4.5953 × 103 | 3.6267 × 102 | 1.8825 × 106 | 5.1423 × 106 |
CESCA | 7.1979 × 103 | 3.7582 × 102 | 6.0902 × 103 | 2.2499 × 102 | 2.5420 × 109 | 8.2166 × 108 |
GCHHO | 3.2262 × 103 | 2.5508 × 101 | 4.0266 × 103 | 2.1016 × 102 | 1.1463 × 104 | 4.0577 × 103 |
DE | 3.1752 × 103 | 4.9966 × 101 | 3.5037 × 103 | 6.6936 × 101 | 1.3382 × 104 | 3.7353 × 103 |
MFO | 4.5833 × 103 | 9.6836 × 102 | 4.2258 × 103 | 2.8249 × 102 | 9.2011 × 105 | 1.1203 × 106 |
HGS | 3.2078 × 103 | 5.5946 × 101 | 3.7668 × 103 | 1.5864 × 102 | 9.8961 × 104 | 1.2709 × 105 |
CPA | 3.1488 × 103 | 5.0178 × 101 | 3.7367 × 103 | 1.9795 × 102 | 1.1526 × 104 | 4.4883 × 103 |
Overall rank | ||||||
Rank | Avg | +/=/− | ||||
OLCPA | 1 | 3.1322 | ~ | |||
CCMSCSA | 2 | 3.6022 | 15/8/7 | |||
CPA | 3 | 3.6933 | 15/13/2 | |||
DE | 4 | 3.7878 | 12/9/9 | |||
HGS | 5 | 4.6933 | 19/9/2 | |||
IGWO | 6 | 5.4800 | 18/8/4 | |||
GCHHO | 7 | 5.7567 | 24/0/0 | |||
CMFO | 8 | 8.2333 | 29/1/0 | |||
MFO | 9 | 8.2611 | 29/0/1 | |||
BMWOA | 10 | 9.0422 | 29/1/0 | |||
CCMWOA | 11 | 1.0409 | 30/0/0 | |||
CESCA | 12 | 1.1909 | 30/0/0 |
CCMWOA | IGWO | CCMSCSA | BMWOA | CMFO | CESCA | |
---|---|---|---|---|---|---|
F1 | 1.7344 × 10−6 | 1.7344 × 10−6 | 7.1889 × 10−1 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F2 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F3 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F4 | 1.7344 × 10−6 | 4.2857 × 10−6 | 4.7292 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F5 | 1.7344 × 10−6 | 1.1748 × 10−2 | 1.1265 × 10−5 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F7 | 1.7344 × 10−6 | 3.8811 × 10−4 | 2.8786 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F8 | 1.7344 × 10−6 | 3.8723 × 10−2 | 8.9364 × 10−1 | 1.7344 × 10−6 | 2.3534 × 10−6 | 1.7344 × 10−6 |
F9 | 1.7344 × 10−6 | 4.4052 × 10−1 | 1.7344 × 10−6 | 1.7344 × 10−6 | 2.6033 × 10−6 | 1.7344 × 10−6 |
F10 | 1.7344 × 10−6 | 3.4053 × 10−5 | 9.3157 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F11 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7138 × 10−1 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F12 | 1.7344 × 10−6 | 1.9209 × 10−6 | 3.1603 × 10−2 | 1.7344 × 10−6 | 4.7292 × 10−6 | 1.7344 × 10−6 |
F13 | 1.7344 × 10−6 | 1.7344 × 10−6 | 3.3173 × 10−4 | 1.7344 × 10−6 | 6.3391 × 10−6 | 1.7344 × 10−6 |
F14 | 1.7344 × 10−6 | 1.9209 × 10−6 | 8.4661 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F15 | 1.7344 × 10−6 | 1.7344 × 10−6 | 9.2626 × 10−1 | 1.7344 × 10−6 | 2.1630 × 10−5 | 1.7344 × 10−6 |
F16 | 1.7344 × 10−6 | 5.8571 × 10−1 | 4.1653 × 10−1 | 3.5152 × 10−6 | 5.7924 × 10−5 | 1.7344 × 10−6 |
F17 | 1.7344 × 10−6 | 8.9364 × 10−1 | 3.8203 × 10−1 | 2.1266 × 10−6 | 9.3157 × 10−6 | 1.7344 × 10−6 |
F18 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F19 | 1.7344 × 10−6 | 1.7344 × 10−6 | 3.8723 × 10−2 | 1.7344 × 10−6 | 5.2872 × 10−4 | 1.7344 × 10−6 |
F20 | 1.7344 × 10−6 | 6.8836 × 10−1 | 8.6121 × 10−1 | 2.6033 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F21 | 1.7344 × 10−6 | 2.4147 × 10−3 | 1.2381 × 10−5 | 1.7344 × 10−6 | 2.1266 × 10−6 | 1.7344 × 10−6 |
F22 | 1.2381 × 10−5 | 1.0201 × 10−1 | 2.5637 × 10−2 | 4.9916 × 10−3 | 2.3038 × 10−2 | 1.7344 × 10−6 |
F23 | 1.7344 × 10−6 | 1.5286 × 10−1 | 2.8486 × 10−2 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F24 | 6.9838 × 10−6 | 2.1266 × 10−6 | 1.7344 × 10−6 | 2.9894 × 10−1 | 6.5833 × 10−1 | 1.7344 × 10−6 |
F25 | 1.7344 × 10−6 | 1.1499 × 10−4 | 9.7110 × 10−5 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F26 | 1.7344 × 10−6 | 2.2102 × 10−1 | 9.8421 × 10−3 | 1.9729 × 10−5 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F27 | 1.7344 × 10−6 | 5.0383 × 10−1 | 9.8421 × 10−3 | 3.5152 × 10−6 | 2.6033 × 10−6 | 1.7344 × 10−6 |
F28 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F29 | 1.7344 × 10−6 | 1.4936 × 10−5 | 6.6392 × 10−4 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
F30 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7988 × 10−5 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 |
GCHHO | DE | MFO | HGS | CPA | ||
F1 | 4.1653 × 10−1 | 1.5886 × 10−1 | 1.7344 × 10−6 | 8.1878 × 10−5 | 4.0702 × 10−2 | |
F2 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.9209 × 10−6 | |
F3 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | |
F4 | 3.4053 × 10−5 | 1.9729 × 10−5 | 1.7344 × 10−6 | 1.1499 × 10−4 | 4.4493 × 10−5 | |
F5 | 3.8822 × 10−6 | 8.3071 × 10−4 | 9.3157 × 10−6 | 4.7795 × 10−1 | 4.5281 × 10−1 | |
F6 | 1.7344 × 10−6 | 4.3205 × 10−8 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.0000 × 100 | |
F7 | 1.7344 × 10−6 | 7.5213 × 10−2 | 1.7344 × 10−6 | 6.6392 × 10−4 | 1.4704 × 10−1 | |
F8 | 6.3391 × 10−6 | 1.3591 × 10−1 | 1.7344 × 10−6 | 4.0483 × 10−1 | 6.2884 × 10−1 | |
F9 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.6046 × 10−4 | 1.7518 × 10−2 | |
F10 | 2.8786 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7791 × 10−1 | 4.2843 × 10−1 | |
F11 | 1.3595 × 10−4 | 8.2206 × 10−2 | 1.7344 × 10−6 | 8.2167 × 10−3 | 3.0861 × 10−1 | |
F12 | 8.2206 × 10−2 | 3.4053 × 10−5 | 1.7344 × 10−6 | 7.1889 × 10−1 | 1.2866 × 10−3 | |
F13 | 1.2866 × 10−3 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.9209 × 10−6 | 5.3044 × 10−1 | |
F14 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 2.1266 × 10−6 | 1.2381 × 10−5 | |
F15 | 1.9646 × 10−3 | 8.9187 × 10−5 | 1.7344 × 10−6 | 1.2506 × 10−4 | 1.1093 × 10−1 | |
F16 | 5.7096 × 10−2 | 1.7344 × 10−6 | 1.0570 × 10−4 | 1.2044 × 10−1 | 2.1827 × 10−2 | |
F17 | 5.2872 × 10−4 | 1.3601 × 10−5 | 2.1266 × 10−6 | 4.6818 × 10−3 | 1.1748 × 10−2 | |
F18 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 1.9209 × 10−6 | 4.7292 × 10−6 | |
F19 | 2.4308 × 10−2 | 1.3820 × 10−3 | 3.5152 × 10−6 | 1.1138 × 10−3 | 2.0671 × 10−2 | |
F20 | 4.0715 × 10−5 | 1.9209 × 10−6 | 1.9209 × 10−6 | 1.0357 × 10−3 | 1.8910 × 10−4 | |
F21 | 4.7292 × 10−6 | 2.9575 × 10−3 | 2.1266 × 10−6 | 4.4052 × 10−1 | 1.9861 × 10−1 | |
F22 | 3.8203 × 10−1 | 9.9179 × 10−1 | 1.1499 × 10−4 | 1.5886 × 10−1 | 3.4908 × 10−1 | |
F23 | 1.7344 × 10−6 | 5.5774 × 10−1 | 2.1266 × 10−6 | 1.4704 × 10−1 | 4.5281 × 10−1 | |
F24 | 1.7138 × 10−1 | 1.7344 × 10−6 | 6.3391 × 10−6 | 2.5967 × 10−5 | 9.2710 × 10−3 | |
F25 | 6.5641 × 10−2 | 6.1431 × 10−1 | 2.3534 × 10−6 | 9.5899 × 10−1 | 3.5009 × 10−2 | |
F26 | 7.1570 × 10−4 | 9.0993 × 10−1 | 6.9838 × 10−6 | 4.9498 × 10−2 | 9.2626 × 10−1 | |
F27 | 2.4147 × 10−3 | 1.9209 × 10−6 | 3.5009 × 10−2 | 1.7518 × 10−2 | 7.1889 × 10−1 | |
F28 | 1.9209 × 10−6 | 3.7172 × 10−5 | 1.7344 × 10−6 | 1.6394 × 10−5 | 8.1574 × 10−4 | |
F29 | 1.9209 × 10−6 | 1.5286 × 10−1 | 1.7344 × 10−6 | 8.1878 × 10−5 | 1.7088 × 10−3 | |
F30 | 4.5336 × 10−4 | 3.5152 × 10−6 | 1.7344 × 10−6 | 1.7344 × 10−6 | 2.5967 × 10−5 |
AAMI Classes | Supraventricular Ectopic Beat (S) | Normal (N) | Ventricular Ectopic Beats (VEBs) | Unknown Beat (Q) | Fusion (F) |
---|---|---|---|---|---|
MIT-BIH classes | Aberrated atrial premature beat (a) | Normal beat (N) | Ventricular flutter wave (!) | Paced beat (/) | Fusion of ventricular and normal beat (F) |
Supraventricular premature beat (S) | Left bundle branch block beat (L) | Ventricular escape beat (E) | Unclassifiable beat (Q) | ||
Atrial premature beat (A) | Right bundle branch block beat (R) | Premature ventricular contraction (V) | |||
Nodal (junctional) premature beat (J) | |||||
Nodal (junctional) escape beat (j) | |||||
Atrial escape beat (e) |
ST-T | MIT-BIH | |
---|---|---|
N | 1000 | 2500 |
S | 1000 | 2500 |
VEB | 1000 | 2500 |
Q | - | 2500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Shan, W.; Zhang, R.; Heidari, A.A.; Chen, H.; Zhang, Y. Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification. Biomimetics 2023, 8, 268. https://doi.org/10.3390/biomimetics8030268
He X, Shan W, Zhang R, Heidari AA, Chen H, Zhang Y. Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification. Biomimetics. 2023; 8(3):268. https://doi.org/10.3390/biomimetics8030268
Chicago/Turabian StyleHe, Xinxin, Weifeng Shan, Ruilei Zhang, Ali Asghar Heidari, Huiling Chen, and Yudong Zhang. 2023. "Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification" Biomimetics 8, no. 3: 268. https://doi.org/10.3390/biomimetics8030268
APA StyleHe, X., Shan, W., Zhang, R., Heidari, A. A., Chen, H., & Zhang, Y. (2023). Improved Colony Predation Algorithm Optimized Convolutional Neural Networks for Electrocardiogram Signal Classification. Biomimetics, 8(3), 268. https://doi.org/10.3390/biomimetics8030268