Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems
Abstract
:1. Introduction
- KOA is designed based on mimicking the natural behavior of kookaburras in the wild;
- The fundamental inspiration of KOA is derived from (i) the kookaburras’ strategy during hunting and (ii) the behavior of kookaburras when they slam their prey into a tree to ensure that the prey is killed;
- The implementation steps of KOA are described and mathematically modeled in two phases of exploration and exploitation based on simulating the behavior of kookaburras in nature;
- The effectiveness of KOA in solving optimization problems has been evaluated in the CEC 2017 test suite;
- The performance of KOA in handling real-world applications has been tested on 22 constrained optimization problems from the CEC 2011 test suite as well as 4 engineering design problems;
- The results of KOA have been compared with the performance of 12 well-known metaheuristic algorithms.
2. Literature Review
3. Kookaburra Optimization Algorithm
3.1. Inspiration of KOA
3.2. Algorithm Initialization
3.3. Mathematical Modelling of KOA
3.3.1. Phase 1: Hunting Strategy (Exploration)
3.3.2. Phase 2: Ensuring That the Prey Is Killed (Exploitation)
3.4. Repetition Process, Pseudocode, and Flowchart of KOA
Algorithm 1 Pseudocode of KOA | |
Start KOA. | |
1. | Input problem information: variables, objective function, and constraints. |
2. | Set KOA population size (N) and iterations (T). |
3. | Generate the initial population matrix at random using Equation (2). |
4. | Evaluate the objective function. |
5. | For to T |
6. | For to |
7. | Phase 1: hunting strategy (exploration) |
8. | Determine the candidate preys set using Equation (4). |
9. | Choose the prey for the ith KOA member at random. |
10. | Calculate new position of ith KOA member using Equation (5). |
11. | Update ith KOA member using Equation (6). |
12. | Phase 2: Ensuring that the prey is killed (exploitation) |
13. | Calculate new position of ith KOA member using Equation (7). |
14. | Update ith KOA member using Equation (8). |
15. | end |
16. | Save the best candidate solution so far. |
17. | end |
18. | Output the best quasi-optimal solution obtained with the KOA. |
End KOA. |
3.5. Computational Complexity of KOA
4. Simulation Studies and Results
4.1. Evaluation CEC 2017 Test Suite
4.2. Statistical Analysis
5. KOA for Real-World Applications
5.1. Evaluation CEC 2011 Test Suite
5.2. Pressure Vessel Design Problem
5.3. Speed Reducer Design Problem
5.4. Welded Beam Design
5.5. Tension/Compression Spring Design
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Functions | Fmin | ||
---|---|---|---|
Unimodal functions | C1 | Shifted and Rotated Bent Cigar Function | 100 |
C2 | Shifted and Rotated Sum of Different Power Function | 200 | |
C3 | Shifted and Rotated Zakharov Function | 300 | |
Simple multimodal functions | C4 | Shifted and Rotated Rosenbrock’s Function | 400 |
C5 | Shifted and Rotated Rastrigin’s Function | 500 | |
C6 | Shifted and Rotated Expanded Scaffer’s Function | 600 | |
C7 | Shifted and Rotated Lunacek Bi_Rastrigin Function | 700 | |
C8 | Shifted and Rotated Non-Continuous Rastrigin’s Function | 800 | |
C9 | Shifted and Rotated Levy Function | 900 | |
C10 | Shifted and Rotated Schwefel’s Function | 1000 | |
Hybrid functions | C11 | Hybrid Function 1 (N = 3) | 1100 |
C12 | Hybrid Function 2 (N = 3) | 1200 | |
C13 | Hybrid Function 3 (N = 3) | 1300 | |
C14 | Hybrid Function 4 (N = 4) | 1400 | |
C15 | Hybrid Function 5 (N = 4) | 1500 | |
C16 | Hybrid Function 6 (N = 4) | 1600 | |
C17 | Hybrid Function 6 (N = 5) | 1700 | |
C18 | Hybrid Function 6 (N = 5) | 1800 | |
C19 | Hybrid Function 6 (N = 5) | 1900 | |
C20 | Hybrid Function 6 (N = 6) | 2000 | |
Composition functions | C21 | Composition Function 1 (N = 3) | 2100 |
C22 | Composition Function 2 (N = 3) | 2200 | |
C23 | Composition Function 3 (N = 4) | 2300 | |
C24 | Composition Function 4 (N = 4) | 2400 | |
C25 | Composition Function 5 (N = 5) | 2500 | |
C26 | Composition Function 6 (N = 5) | 2600 | |
C27 | Composition Function 7 (N = 6) | 2700 | |
C28 | Composition Function 8 (N = 6) | 2800 | |
C29 | Composition Function 9 (N = 3) | 2900 | |
C30 | Composition Function 10 (N = 3) | 3000 |
References
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018, 8, 453. [Google Scholar] [CrossRef] [PubMed]
- Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 2005, 12, 263–285. [Google Scholar] [CrossRef]
- Koc, I.; Atay, Y.; Babaoglu, I. Discrete tree seed algorithm for urban land readjustment. Eng. Appl. Artif. Intell. 2022, 112, 104783. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovská, E.; Trojovský, P. A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci. Rep. 2022, 12, 9924. [Google Scholar] [CrossRef]
- Zeidabadi, F.-A.; Dehghani, M.; Trojovský, P.; Hubálovský, Š.; Leiva, V.; Dhiman, G. Archery Algorithm: A Novel Stochastic Optimization Algorithm for Solving Optimization Problems. Comput. Mater. Contin. 2022, 72, 399–416. [Google Scholar] [CrossRef]
- De Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology. Nat. Comput. 2022, 21, 265–287. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dehghani, A.; Malik, O.P.; Morales-Menendez, R.; Dhiman, G.; Nouri, N.; Ehsanifar, A.; Guerrero, J.M.; Ramirez-Mendoza, R.A. Binary spring search algorithm for solving various optimization problems. Appl. Sci. 2021, 11, 1286. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Li, Z.; Shi, C. On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression. Int. J. Mech. Sci. 2020, 186, 105893. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Li, X.; Wang, Z.; Zhai, W. New Class of Multifunctional Bioinspired Microlattice with Excellent Sound Absorption, Damage Tolerance, and High Specific Strength. ACS Appl. Mater. Interfaces 2023, 15, 9940–9952. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P. Energy commitment: A planning of energy carrier based on energy consumption. Electr. Eng. Electromech. 2019, 69–72. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Malik, O.P.; Guerrero, J.M.; Sotelo, C.; Sotelo, D.; Nazari-Heris, M.; Al-Haddad, K.; Ramirez-Mendoza, R.A. Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers. Sustainability 2020, 12, 10053. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Malik, O.P.; Guerrero, J.M.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Matas, J.; Abusorrah, A. Energy Commitment for a Power System Supplied by Multiple Energy Carriers System using Following Optimization Algorithm. Appl. Sci. 2020, 10, 5862. [Google Scholar] [CrossRef]
- Ehsanifar, A.; Dehghani, M.; Allahbakhshi, M. Calculating the leakage inductance for transformer inter-turn fault detection using finite element method. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; IEEE: Tehran, Iran, 2017; pp. 1372–1377. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Malik, O. Optimal sizing and placement of capacitor banks and distributed generation in distribution systems using spring search algorithm. Int. J. Emerg. Electr. Power Syst. 2020, 21, 20190217. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M.; Dhiman, G. A New Methodology Called Dice Game Optimizer for Capacitor Placement in Distribution Systems. Electr. Eng. Electromech. 2020, 61–64. [Google Scholar] [CrossRef]
- Dehbozorgi, S.; Ehsanifar, A.; Montazeri, Z.; Dehghani, M.; Seifi, A. Line loss reduction and voltage profile improvement in radial distribution networks using battery energy storage system. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017; IEEE: Tehran, Iran, 2017; pp. 215–219. [Google Scholar]
- Montazeri, Z.; Niknam, T. Optimal utilization of electrical energy from power plants based on final energy consumption using gravitational search algorithm. Electr. Eng. Electromech. 2018, 70–73. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Montazeri, Z.; Ehsanifar, A.; Ebadi, M.J.; Grechko, O.M. Spring search algorithm for simultaneous placement of distributed generation and capacitors. Electr. Eng. Electromech. 2018, 68–73. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Ehsanifar, A.; Seifi, A.R.; Ebadi, M.J.; Grechko, O.M. Planning of energy carriers based on final energy consumption using dynamic programming and particle swarm optimization. Electr. Eng. Electromech. 2018, 62–71. [Google Scholar] [CrossRef]
- Montazeri, Z.; Niknam, T. Energy carriers management based on energy consumption. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017; IEEE: Tehran, Iran, 2017; pp. 539–543. [Google Scholar]
- Trojovská, E.; Dehghani, M.; Trojovský, P. Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Karaboga, D.; Basturk, B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In Proceedings of the International Fuzzy Systems Association World Congress, Cancun, Mexico, 18–21 June 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 789–798. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Perth, WA, Australia, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yang, X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2, 78–84. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P.; Malik, O.P. Green Anaconda Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl. Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl. Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Q.; Zhu, S.; Zhang, L. Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems. Expert Syst. Appl. 2022, 188, 116026. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems. Biomimetics 2022, 7, 204. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 2020, 152, 113377. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- De Castro, L.N.; Timmis, J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003, 7, 526–544. [Google Scholar] [CrossRef]
- Beyer, H.-G.; Schwefel, H.-P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [Google Scholar] [CrossRef]
- Reynolds, R.G. An introduction to cultural algorithms. In Evolutionary Programming—Proceedings of the Third Annual Conference; World Scientific Press: San Diego, CA, USA, 1994; pp. 131–139. [Google Scholar]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Samet, H. Momentum search algorithm: A new meta-heuristic optimization algorithm inspired by momentum conservation law. SN Appl. Sci. 2020, 2, 1720. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Dhiman, G.; Malik, O.; Morales-Menendez, R.; Ramirez-Mendoza, R.A.; Dehghani, A.; Guerrero, J.M.; Parra-Arroyo, L. A spring search algorithm applied to engineering optimization problems. Appl. Sci. 2020, 10, 6173. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural Comput. Appl. 2016, 27, 495–513. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Pereira, J.L.J.; Francisco, M.B.; Diniz, C.A.; Oliver, G.A.; Cunha, S.S., Jr.; Gomes, G.F. Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization. Expert Syst. Appl. 2021, 170, 114522. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Cuevas, E.; Oliva, D.; Zaldivar, D.; Pérez-Cisneros, M.; Sossa, H. Circle detection using electro-magnetism optimization. Inf. Sci. 2012, 182, 40–55. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, C.; Wang, X.; Han, T.; Li, Y. Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization. IEEE Access 2019, 7, 66084–66109. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Matoušová, I.; Trojovský, P.; Dehghani, M.; Trojovská, E.; Kostra, J. Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization. Sci. Rep. 2023, 13, 10312. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovská, E.; Zuščák, T. A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 2022, 12, 17387. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.P.; Ramirez-Mendoza, R.A.; Matas, J.; Vasquez, J.C.; Parra-Arroyo, L. A new “Doctor and Patient” optimization algorithm: An application to energy commitment problem. Appl. Sci. 2020, 10, 5791. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Malik, O. FOA:’Following’Optimization Algorithm for solving Power engineering optimization problems. J. Oper. Autom. Power Eng. 2020, 8, 57–64. [Google Scholar]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M.; Leiva, V. Drawer Algorithm: A New Metaheuristic Approach for Solving Optimization Problems in Engineering. Biomimetics 2023, 8, 239. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. A new optimization algorithm based on mimicking the voting process for leader selection. PeerJ Comput. Sci. 2022, 8, e976. [Google Scholar] [CrossRef] [PubMed]
- Trojovská, E.; Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022, 12, 14861. [Google Scholar] [CrossRef] [PubMed]
- Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Abu Doush, I. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 2021, 33, 5011–5042. [Google Scholar] [CrossRef] [PubMed]
- Ayyarao, T.L.; RamaKrishna, N.; Elavarasam, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [Google Scholar] [CrossRef]
- Dehghani, M.; Mardaneh, M.; Guerrero, J.M.; Malik, O.; Kumar, V. Football game based optimization: An application to solve energy commitment problem. Int. J. Intell. Eng. Syst. 2020, 13, 514–523. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Zeidabadi, F.A.; Dehghani, M. POA: Puzzle Optimization Algorithm. Int. J. Intell. Eng. Syst. 2022, 15, 273–281. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Givi, H.; Guerrero, J.M.; Dhiman, G. Darts game optimizer: A new optimization technique based on darts game. Int. J. Intell. Eng. Syst. 2020, 13, 286–294. [Google Scholar] [CrossRef]
- Montazeri, Z.; Niknam, T.; Aghaei, J.; Malik, O.P.; Dehghani, M.; Dhiman, G. Golf Optimization Algorithm: A New Game-Based Metaheuristic Algorithm and Its Application to Energy Commitment Problem Considering Resilience. Biomimetics 2023, 8, 386. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P. DGO: Dice game optimizer. Gazi Univ. J. Sci. 2019, 32, 871–882. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Malik, O.P.; Ehsanifar, A.; Dehghani, A. OSA: Orientation search algorithm. Int. J. Ind. Electron. Control Optim. 2019, 2, 99–112. [Google Scholar]
- Dehghani, M.; Montazeri, Z.; Saremi, S.; Dehghani, A.; Malik, O.P.; Al-Haddad, K.; Guerrero, J.M. HOGO: Hide objects game optimization. Int. J. Intell. Eng. Syst. 2020, 13, 216–225. [Google Scholar] [CrossRef]
- Doumari, S.A.; Givi, H.; Dehghani, M.; Malik, O.P. Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems. Int. J. Intell. Eng. Syst. 2021, 14, 545–554. [Google Scholar] [CrossRef]
- Wang, L.; Shi, D.; Zhang, B.; Li, G.; Helal, W.M.K.; Qi, M. Deep learning driven real time topology optimization based on improved convolutional block attention (Cba-U-Net) model. Eng. Anal. Bound. Elem. 2023, 147, 112–124. [Google Scholar] [CrossRef]
- Sun, Y.; Zong, C.; Pancheri, F.; Chen, T.; Lueth, T.C. Design of topology optimized compliant legs for bio-inspired quadruped robots. Sci. Rep. 2023, 13, 4875. [Google Scholar] [CrossRef]
- Ma, C.; Pu, R.; Wu, L.; Zhang, L.; Lu, G. Lightweight Design of a Support Based on Topology Optimization and 3D Printing. IOP Conf. Ser. Earth Environ. Sci. 2019, 332, 042044. [Google Scholar] [CrossRef]
- Yang, R.; Brice, B.; Ryan, U. A new Caryospora coccidian species (Apicomplexa: Eimeriidae) from the laughing kookaburra (Dacelo novaeguineae). Exp. Parasitol. 2014, 145, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.; Day, N.; Trusler, P. Field Guide to the Birds of Australia, 6th ed.; Penguin Books Australia Ltd.: Melbourne, VIC, Australia, 1999. [Google Scholar]
- Campbell, B. Nocturnal Foraging by Kookaburras. Aust. Field Ornithol. 2001, 19, 104–105. [Google Scholar]
- Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 196–202. [Google Scholar]
- Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Technical Report; Jadavpur University: Kolkata, India, 2010; pp. 341–359. [Google Scholar]
- Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S. Benchmark problems in structural optimization. In Computational Optimization, Methods and Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 259–281. [Google Scholar]
- Mezura-Montes, E.; Coello, C.A.C. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In Proceedings of the Mexican International Conference on Artificial Intelligence, Monterrey, Mexico, 14–18 November 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 652–662. [Google Scholar]
Algorithm | Parameter | Value |
---|---|---|
GA | Type | Real coded |
Selection | Roulette wheel (Proportionate) | |
Crossover | Whole arithmetic (Probability = 0.8, ) | |
Mutation | Gaussian (Probability = 0.05) | |
PSO | Topology | Fully connected |
Cognitive and social constant | (C1, C2) | |
Inertia weight | Linear reduction from 0.9 to 0.1 | |
Velocity limit | 10% of dimension range | |
GSA | Alpha, G0, Rnorm, Rpower | 20, 100, 2, 1 |
TLBO | TF: teaching factor | TF = round |
Random number | rand is a random number between [0–1]. | |
GWO | Convergence parameter (a) | a: Linear reduction from 2 to 0. |
MVO | Wormhole existence probability (WEP) | Min(WEP) = 0.2 and Max(WEP) = 1. |
Exploitation accuracy over the iterations (p) | . | |
WOA | Convergence parameter (a) | a: Linear reduction from 2 to 0. |
r is a random vector in | ||
l is a random number in | ||
TSA | ||
Pmin and Pmax | 1, 4 | |
c1, c2, c3 | Random numbers lie in the range of | |
MPA | Constant number | p = 0.5 |
Random vector | R is a vector of uniform random numbers in | |
Fish Aggregating Devices (FADs) | FADs = 0.2 | |
Binary vector | U = 0 or 1 | |
RSA | Sensitive parameter | |
Sensitive parameter | ||
Evolutionary Sense (ES) | ES: randomly decreasing values between 2 and −2 | |
AVOA | L1, L2 | 0.8, 0.2 |
w | 2.5 | |
P1, P2, P3 | 0.6, 0.4, 0.6 | |
WSO | Fmin and Fmax | 0.07, 0.75 |
τ, a0 , a1 , a2 | 4.125, 6.25, 100, 0.0005 |
KOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 5.42 × 109 | 3646.942 | 9.67 × 109 | 33,430,909 | 1.65 × 109 | 6,111,054 | 7131.038 | 83,576,400 | 1.39 × 108 | 712.6012 | 2984.583 | 11,229,309 |
best | 100 | 4.46 × 109 | 114.7977 | 8.36 × 109 | 10,619.9 | 3.53 × 108 | 4,449,740 | 4537.763 | 26,341.55 | 62,120,924 | 100.0182 | 332.7586 | 5,814,967 | |
worst | 100 | 7.02 × 109 | 11,292.36 | 1.15 × 1010 | 1.21 × 108 | 3.59 × 109 | 8,045,954 | 10,505.13 | 3.04 × 108 | 3.36 × 108 | 1701.327 | 8827.164 | 16,120,640 | |
std | 0 | 1.2 × 109 | 5643.075 | 1.54 × 109 | 63,706,411 | 1.56 × 109 | 1,644,930 | 3021.388 | 1.59 × 108 | 1.43 × 108 | 748.8068 | 4251.125 | 4,655,595 | |
median | 100 | 5.09 × 109 | 1590.305 | 9.41 × 109 | 6,127,683 | 1.32 × 109 | 5,974,262 | 6740.631 | 15,317,772 | 79,652,751 | 524.5298 | 1389.204 | 11,490,815 | |
rank | 1 | 12 | 4 | 13 | 8 | 11 | 6 | 5 | 9 | 10 | 2 | 3 | 7 | |
C17-F3 | mean | 300 | 8545.047 | 301.7937 | 9154.734 | 1349.094 | 10627.2 | 1654.399 | 300.0517 | 2922.734 | 703.7751 | 9732.523 | 300 | 14,009.65 |
best | 300 | 4204.342 | 300 | 4943.483 | 765.3836 | 4056.697 | 602.4388 | 300.012 | 1463.459 | 462.1985 | 6130.294 | 300 | 4135.906 | |
worst | 300 | 11,420.58 | 303.8366 | 12,243.1 | 2417.003 | 15,018.3 | 3170.638 | 300.1178 | 5592.507 | 861.5824 | 13,222.67 | 300 | 22,134.76 | |
std | 0 | 3413.27 | 2.249265 | 3607.385 | 823.5855 | 5030.939 | 1307.715 | 0.050225 | 2058.964 | 189.2264 | 3161.605 | 5.02 × 10−14 | 10,161.97 | |
median | 300 | 9277.635 | 301.6691 | 9716.179 | 1106.994 | 11716.9 | 1422.259 | 300.0385 | 2317.485 | 745.6598 | 9788.562 | 300 | 14,883.97 | |
rank | 1 | 9 | 4 | 10 | 6 | 12 | 7 | 3 | 8 | 5 | 11 | 2 | 13 | |
C17-F4 | mean | 400 | 912.8675 | 404.5044 | 1301.509 | 406.3768 | 567.2482 | 423.8418 | 403.1612 | 411.1278 | 408.6941 | 404.3164 | 419.2569 | 413.954 |
best | 400 | 690.8376 | 401.1767 | 821.7783 | 402.3193 | 473.7955 | 406.1071 | 401.5111 | 405.7731 | 407.95 | 403.3764 | 400.1002 | 411.0716 | |
worst | 400 | 1112.692 | 406.1874 | 1771.409 | 410.788 | 676.3611 | 469.7346 | 404.6409 | 426.8867 | 409.1638 | 405.7603 | 466.7173 | 417.4808 | |
std | 0 | 209.9105 | 2.551559 | 438.1046 | 4.514927 | 107.3145 | 33.16825 | 1.758815 | 11.35517 | 0.562504 | 1.181624 | 34.54932 | 3.031633 | |
median | 400 | 923.97 | 405.3267 | 1306.424 | 406.2 | 559.4181 | 409.7628 | 403.2464 | 405.9257 | 408.8312 | 404.0645 | 405.1051 | 413.6319 | |
rank | 1 | 12 | 4 | 13 | 5 | 11 | 10 | 2 | 7 | 6 | 3 | 9 | 8 | |
C17-F5 | mean | 501.2464 | 562.3634 | 542.2295 | 569.7676 | 512.4027 | 561.6767 | 539.2849 | 522.754 | 512.538 | 532.6659 | 551.6227 | 526.777 | 526.884 |
best | 500.9951 | 548.7241 | 525.743 | 555.7886 | 508.0904 | 541.4349 | 522.5012 | 509.838 | 508.2057 | 527.4 | 546.955 | 510.7172 | 522.3658 | |
worst | 501.9917 | 571.2765 | 560.2126 | 584.1212 | 517.2861 | 592.3801 | 573.6615 | 536.4622 | 519.5033 | 536.0354 | 562.8635 | 549.6066 | 532.3901 | |
std | 0.537048 | 11.20594 | 19.53923 | 17.01542 | 5.237015 | 24.42791 | 25.90124 | 12.01489 | 5.259868 | 4.100836 | 8.206794 | 19.38461 | 4.88069 | |
median | 500.9993 | 564.7264 | 541.4811 | 569.5803 | 512.1171 | 556.4458 | 530.4886 | 522.3578 | 511.2215 | 533.6141 | 548.3362 | 523.3922 | 526.3901 | |
rank | 1 | 12 | 9 | 13 | 2 | 11 | 8 | 4 | 3 | 7 | 10 | 5 | 6 | |
C17-F6 | mean | 600 | 631.2585 | 616.6484 | 639.1286 | 601.1476 | 623.8678 | 622.2694 | 602.0665 | 601.0833 | 606.5967 | 616.5387 | 607.1419 | 609.8626 |
best | 600 | 627.7654 | 615.6829 | 636.0406 | 600.6833 | 614.4904 | 607.2346 | 600.4538 | 600.573 | 604.5743 | 602.8033 | 601.3022 | 606.6375 | |
worst | 600 | 635.2624 | 619.101 | 643.2172 | 602.3052 | 638.8541 | 643.4482 | 604.1461 | 601.6524 | 609.7501 | 634.7421 | 618.513 | 613.9428 | |
std | 0 | 3.529052 | 1.772351 | 3.485675 | 0.836288 | 11.35957 | 16.48107 | 1.793347 | 0.482948 | 2.550371 | 15.96967 | 8.437511 | 3.499868 | |
median | 600 | 631.003 | 615.9048 | 638.6283 | 600.8009 | 621.0634 | 619.1973 | 601.8331 | 601.054 | 606.0311 | 614.3047 | 604.3763 | 609.435 | |
rank | 1 | 12 | 9 | 13 | 3 | 11 | 10 | 4 | 2 | 5 | 8 | 6 | 7 | |
C17-F7 | mean | 711.1267 | 802.7762 | 763.4548 | 800.7578 | 724.117 | 823.9431 | 760.1147 | 730.1162 | 725.4394 | 750.4728 | 716.8883 | 731.9086 | 735.8794 |
best | 710.6726 | 781.8022 | 742.6204 | 788.0238 | 720.0761 | 785.3852 | 749.5597 | 716.9869 | 717.224 | 746.1048 | 714.7148 | 725.0479 | 725.955 | |
worst | 711.7995 | 821.2507 | 790.1525 | 812.9158 | 728.3524 | 863.7992 | 788.4426 | 748.6276 | 742.2706 | 758.2657 | 720.4627 | 743.0075 | 740.2679 | |
std | 0.553542 | 18.15716 | 23.61747 | 12.62505 | 3.762887 | 36.81428 | 20.47025 | 14.39328 | 12.43131 | 5.870293 | 2.693729 | 8.863192 | 7.262378 | |
median | 711.0174 | 804.0259 | 760.5232 | 801.0458 | 724.0197 | 823.294 | 751.2283 | 727.4252 | 721.1315 | 748.7603 | 716.1878 | 729.7895 | 738.6474 | |
rank | 1 | 12 | 10 | 11 | 3 | 13 | 9 | 5 | 4 | 8 | 2 | 6 | 7 | |
C17-F8 | mean | 801.4928 | 847.3854 | 829.9963 | 851.707 | 812.2457 | 846.5042 | 835.0363 | 811.4403 | 815.3054 | 836.332 | 819.1693 | 821.9628 | 816.2124 |
best | 800.995 | 838.3184 | 819.5556 | 840.9358 | 808.5515 | 830.9475 | 817.9146 | 807.1841 | 810.1642 | 829.6671 | 811.6011 | 815.1364 | 812.3596 | |
worst | 801.9912 | 856.3685 | 845.1869 | 856.7313 | 814.3296 | 865.0493 | 846.7926 | 816.0273 | 820.0848 | 844.0017 | 826.6263 | 828.1893 | 823.6925 | |
std | 0.621323 | 8.618492 | 11.69136 | 7.878719 | 2.87132 | 16.40915 | 13.40674 | 3.926693 | 4.487302 | 7.92135 | 6.910815 | 6.993148 | 5.494601 | |
median | 801.4926 | 847.4274 | 827.6213 | 854.5804 | 813.0508 | 845.0101 | 837.7191 | 811.2749 | 815.4864 | 835.8295 | 819.2249 | 822.2628 | 814.3987 | |
rank | 1 | 12 | 8 | 13 | 3 | 11 | 9 | 2 | 4 | 10 | 6 | 7 | 5 | |
C17-F9 | mean | 900 | 1403.175 | 1177.093 | 1445.594 | 904.9995 | 1362.32 | 1357.11 | 900.7708 | 911.4786 | 911.3753 | 900 | 904.0802 | 904.9163 |
best | 900 | 1269.436 | 951.6727 | 1353.459 | 900.315 | 1157.773 | 1067.465 | 900.001 | 900.5514 | 906.9562 | 900 | 900.865 | 902.6913 | |
worst | 900 | 1539.412 | 1632.062 | 1577.82 | 912.8331 | 1639.549 | 1627.449 | 902.9957 | 931.8665 | 919.2412 | 900 | 911.849 | 908.7317 | |
std | 0 | 133.8949 | 340.7487 | 103.2504 | 6.089832 | 225.3145 | 254.7876 | 1.603621 | 15.87842 | 5.835298 | 0 | 5.668996 | 2.952723 | |
median | 900 | 1401.927 | 1062.319 | 1425.548 | 903.4249 | 1325.979 | 1366.763 | 900.0433 | 906.7482 | 909.6519 | 900 | 901.8034 | 904.1211 | |
rank | 1 | 11 | 8 | 12 | 5 | 10 | 9 | 2 | 7 | 6 | 1 | 3 | 4 | |
C17-F10 | mean | 1006.179 | 2242.673 | 1740.928 | 2503.746 | 1492.149 | 1983.773 | 1976.532 | 1743.756 | 1690.998 | 2116.596 | 2217.678 | 1901.082 | 1681.718 |
best | 1000.284 | 2011.33 | 1460.938 | 2341.214 | 1373.017 | 1721.259 | 1428.434 | 1434.112 | 1513.627 | 1744.542 | 1951.564 | 1534.181 | 1395.362 | |
worst | 1012.668 | 2443.533 | 2347.261 | 2846.267 | 1563.4 | 2224.291 | 2475.855 | 2221.473 | 1944.864 | 2390.909 | 2318.319 | 2287.687 | 2058.089 | |
std | 7.194373 | 212.8061 | 450.1048 | 254.2606 | 96.90673 | 286.6101 | 547.4841 | 412.238 | 198.1502 | 296.9816 | 192.1263 | 334.4831 | 307.243 | |
median | 1005.882 | 2257.915 | 1577.756 | 2413.751 | 1516.089 | 1994.772 | 2000.92 | 1659.719 | 1652.75 | 2165.467 | 2300.415 | 1891.231 | 1636.71 | |
rank | 1 | 12 | 5 | 13 | 2 | 9 | 8 | 6 | 4 | 10 | 11 | 7 | 3 | |
C17-F11 | mean | 1100 | 3931.298 | 1146.151 | 3844.336 | 1125.734 | 5248.161 | 1148.486 | 1126.173 | 1152.592 | 1148.443 | 1137.292 | 1141.417 | 2320.565 |
best | 1100 | 2748.781 | 1116.222 | 1441.219 | 1112.56 | 5107.121 | 1112.331 | 1105.277 | 1120.573 | 1135.997 | 1118.692 | 1130.687 | 1114.315 | |
worst | 1100 | 5068.238 | 1196.85 | 6217.9 | 1155.93 | 5325.546 | 1169.558 | 1146.541 | 1222.149 | 1168.801 | 1165.288 | 1161.87 | 5742.625 | |
std | 0 | 1127.521 | 38.35607 | 2320.262 | 22.13462 | 104.9245 | 28.56128 | 22.28304 | 51.17725 | 15.30439 | 21.49395 | 15.17738 | 2466.306 | |
median | 1100 | 3954.085 | 1135.767 | 3859.113 | 1117.223 | 5279.989 | 1156.028 | 1126.437 | 1133.822 | 1144.486 | 1132.595 | 1136.556 | 1212.661 | |
rank | 1 | 12 | 6 | 11 | 2 | 13 | 8 | 3 | 9 | 7 | 4 | 5 | 10 | |
C17-F12 | mean | 1352.959 | 3.37 × 108 | 1,050,072 | 6.73 × 108 | 541,542 | 991,960.6 | 2,245,918 | 981,879.2 | 1,350,349 | 4,820,499 | 973,553.4 | 7780.181 | 577,271.4 |
best | 1318.646 | 75,442,697 | 339,707.7 | 1.49 × 108 | 19,010.6 | 514,431.2 | 163,914.5 | 8485.281 | 43,408.79 | 1,290,069 | 452,782.8 | 2463.035 | 167,249.5 | |
worst | 1438.176 | 5.89 × 108 | 1,904,244 | 1.18 × 109 | 847,465.2 | 1,217,819 | 3,725,865 | 3,084,075 | 2,113,661 | 8,533,694 | 1,646,391 | 13,344.2 | 1,018,988 | |
std | 61.92816 | 2.81 × 108 | 790,915.3 | 5.62 × 108 | 394,461.6 | 358,486.6 | 1,789,591 | 1,535,516 | 986,202.2 | 4,146,912 | 54,6081.3 | 5357.753 | 377,994.9 | |
median | 1327.506 | 3.42 × 108 | 978,168.8 | 6.83 × 108 | 649,846.1 | 1,117,796 | 2,546,947 | 417,478.1 | 1,622,163 | 4,729,116 | 897,520 | 7656.745 | 561,424 | |
rank | 1 | 12 | 8 | 13 | 3 | 7 | 10 | 6 | 9 | 11 | 5 | 2 | 4 | |
C17-F13 | mean | 1305.324 | 16,403,745 | 17,548.34 | 32,796,754 | 5244.269 | 12,211.23 | 7290.03 | 6478.772 | 9884.935 | 16,016.06 | 9667.689 | 6376.406 | 52,004.5 |
best | 1303.114 | 1,369,343 | 2657.747 | 2,722,927 | 3609.484 | 7298.455 | 3190.013 | 1382.32 | 6267.734 | 15,126.74 | 4875.201 | 2329.488 | 8210.392 | |
worst | 1308.508 | 54,446,115 | 30,025.46 | 1.09 × 108 | 6400.179 | 19,311.59 | 14,516.01 | 11,869.56 | 13,785.16 | 18,188.27 | 13,592.34 | 16,005.28 | 171,820.9 | |
std | 2.456412 | 27,470,086 | 15,291.58 | 54,938,775 | 1438.543 | 5603.79 | 5580.27 | 5871.155 | 3329.694 | 1580.064 | 3982.217 | 7014.873 | 86382.3 | |
median | 1304.837 | 4,899,761 | 18,755.07 | 9,792,476 | 5483.707 | 11,117.44 | 5727.048 | 6331.604 | 9743.423 | 15,374.63 | 10,101.61 | 3585.426 | 13,993.35 | |
rank | 1 | 12 | 10 | 13 | 2 | 8 | 5 | 4 | 7 | 9 | 6 | 3 | 11 | |
C17-F14 | mean | 1400.746 | 3965.806 | 1993.916 | 5169.404 | 1915.876 | 3297.27 | 1513.73 | 1564.223 | 2303.898 | 1582.307 | 5378.146 | 2923.968 | 12,441.63 |
best | 1400 | 3075.259 | 1666.562 | 4532.996 | 1433.46 | 1484.029 | 1478.206 | 1422.121 | 1459.571 | 1510.971 | 4457.979 | 1431.065 | 3622.123 | |
worst | 1400.995 | 5446.187 | 2763.948 | 6650.15 | 2835.899 | 5395.317 | 1551.67 | 1966.952 | 4803.25 | 1611.243 | 7276.959 | 6599.163 | 24,730.34 | |
std | 0.537676 | 1189.978 | 558.9709 | 1074.876 | 710.916 | 2248.705 | 40.57658 | 290.2479 | 1800.898 | 51.64711 | 1427.55 | 2669.493 | 9664.281 | |
median | 1400.995 | 3670.889 | 1772.578 | 4747.234 | 1697.073 | 3154.867 | 1512.521 | 1433.91 | 1476.386 | 1603.507 | 4888.823 | 1832.823 | 10,707.02 | |
rank | 1 | 10 | 6 | 11 | 5 | 9 | 2 | 3 | 7 | 4 | 12 | 8 | 13 | |
C17-F15 | mean | 1500.331 | 9923.716 | 5127.088 | 13317.23 | 3864.416 | 6754.881 | 6005.951 | 1539.98 | 5620.1 | 1699.806 | 22873 | 8659.656 | 4412.735 |
best | 1500.001 | 2822.72 | 2046.732 | 2678.572 | 3145.722 | 2282.713 | 1991.354 | 1524.768 | 3476.988 | 1580.333 | 10,788.43 | 2809.879 | 1872.988 | |
worst | 1500.5 | 17,572.85 | 12,126.03 | 29,059.94 | 4739.333 | 12,048.5 | 12,909.3 | 1551.486 | 6656.821 | 1785.449 | 34,294.88 | 14,195.79 | 7720.872 | |
std | 0.254447 | 6588.979 | 5082.111 | 12,449.64 | 714.5172 | 4535.851 | 5143.584 | 12.61657 | 1579.156 | 108.7942 | 12137.14 | 5143.125 | 3142.31 | |
median | 1500.413 | 9649.649 | 3167.794 | 10,765.2 | 3786.305 | 6344.154 | 4561.573 | 1541.833 | 6173.294 | 1716.721 | 23204.34 | 8816.476 | 4028.54 | |
rank | 1 | 11 | 6 | 12 | 4 | 9 | 8 | 2 | 7 | 3 | 13 | 10 | 5 | |
C17-F16 | mean | 1600.76 | 1998.51 | 1800.135 | 1997.635 | 1680.458 | 2027.117 | 1934.677 | 1806.505 | 1722.723 | 1673.458 | 2051.818 | 1909.049 | 1793.242 |
best | 1600.356 | 1927.649 | 1640.379 | 1809.456 | 1639.913 | 1850.597 | 1757.659 | 1720.858 | 1615.162 | 1648.669 | 1931.467 | 1812.419 | 1713.384 | |
worst | 1601.12 | 2164.347 | 1911.539 | 2259.074 | 1709.675 | 2203.316 | 2057.119 | 1865.397 | 1815.303 | 1725.282 | 2237.85 | 2061.587 | 1822.905 | |
std | 0.341437 | 120.0836 | 123.4574 | 205.2288 | 32.43533 | 172.9718 | 153.8331 | 66.0704 | 89.25039 | 38.59988 | 150.5739 | 124.7427 | 57.58986 | |
median | 1600.781 | 1951.022 | 1824.31 | 1961.004 | 1686.121 | 2027.277 | 1961.965 | 1819.883 | 1730.215 | 1659.94 | 2018.978 | 1881.095 | 1818.339 | |
rank | 1 | 11 | 6 | 10 | 3 | 12 | 9 | 7 | 4 | 2 | 13 | 8 | 5 | |
C17-F17 | mean | 1700.099 | 1811.032 | 1748.702 | 1813.071 | 1734.143 | 1797.616 | 1835.539 | 1836.38 | 1765.464 | 1755.775 | 1840.193 | 1750.025 | 1753.483 |
best | 1700.02 | 1806.017 | 1732.879 | 1796.914 | 1720.932 | 1783.119 | 1770.312 | 1775.004 | 1723.38 | 1746.088 | 1745.794 | 1743.685 | 1750.49 | |
worst | 1700.332 | 1816.495 | 1790.749 | 1821.878 | 1771.561 | 1808.017 | 1880.859 | 1939.243 | 1863.908 | 1765.275 | 1960.858 | 1756.411 | 1755.807 | |
std | 0.1677 | 4.781214 | 30.37525 | 11.99733 | 26.97435 | 11.55907 | 51.90246 | 84.05218 | 71.29364 | 10.26317 | 118.527 | 5.882847 | 2.595165 | |
median | 1700.022 | 1810.809 | 1735.591 | 1816.747 | 1722.039 | 1799.664 | 1845.492 | 1815.637 | 1737.285 | 1755.869 | 1827.061 | 1750.002 | 1753.817 | |
rank | 1 | 9 | 3 | 10 | 2 | 8 | 11 | 12 | 7 | 6 | 13 | 4 | 5 | |
C17-F18 | mean | 1805.36 | 2,720,945 | 11,379.46 | 5,427,103 | 10,610.98 | 11,572.34 | 22,285.37 | 20,036.95 | 19,045.42 | 28,187.83 | 9337.384 | 20,922.06 | 12,291.63 |
best | 1800.003 | 139,186.2 | 4700.101 | 268,745.2 | 4046.981 | 7197.034 | 6229.563 | 8374.975 | 6109.303 | 22,936.29 | 6176.433 | 2829.558 | 3358.621 | |
worst | 1820.451 | 7,885,942 | 14,941.16 | 15,754,410 | 15,819.61 | 15,599.76 | 34,954.29 | 32,194.69 | 32,078.69 | 35,234.85 | 11,378.71 | 38,889.97 | 17,690.1 | |
std | 10.87647 | 3,878,075 | 4962.863 | 7,754,807 | 5786.63 | 3777.008 | 14,959.81 | 12,120.25 | 14,233.07 | 6114.069 | 2399.699 | 20,119.65 | 6765.819 | |
median | 1800.492 | 1,429,325 | 12,938.29 | 2,842,628 | 11,288.65 | 11,746.28 | 23,978.81 | 19,789.06 | 18,996.84 | 27290.1 | 9897.196 | 20,984.36 | 14,058.91 | |
rank | 1 | 12 | 4 | 13 | 3 | 5 | 10 | 8 | 7 | 11 | 2 | 9 | 6 | |
C17-F19 | mean | 1900.445 | 382,128.4 | 6480.047 | 670,534.1 | 5422.75 | 119643 | 33,241.73 | 1914.076 | 5218.417 | 4563.893 | 38,592.68 | 23850.92 | 5979.281 |
best | 1900.039 | 23,669.33 | 2163.674 | 43,727.29 | 2298.029 | 1946.892 | 7386.054 | 1908.976 | 1942.621 | 2036.535 | 10,666.06 | 2590.192 | 2198.397 | |
worst | 1901.559 | 807,918.7 | 12,704.9 | 1,440,333 | 9059.158 | 238,893.5 | 60,779.89 | 1923.162 | 13,242.88 | 11,986.18 | 55,936.27 | 73,319.61 | 9503.385 | |
std | 0.804778 | 363,558.4 | 5540.043 | 680,945.1 | 3724.541 | 146,862.2 | 23,690.54 | 7.245959 | 5842.633 | 5348.197 | 21,912.64 | 36,044.78 | 3257.444 | |
median | 1900.09 | 348,462.7 | 5525.808 | 599,038.2 | 5166.907 | 118,865.8 | 32,400.49 | 1912.082 | 2844.083 | 2116.429 | 43,884.19 | 9746.935 | 6107.67 | |
rank | 1 | 12 | 7 | 13 | 5 | 11 | 9 | 2 | 4 | 3 | 10 | 8 | 6 | |
C17-F20 | mean | 2000.312 | 2204.87 | 2162.463 | 2212.433 | 2087.948 | 2197.531 | 2196.784 | 2132.936 | 2161.848 | 2068.592 | 2241.649 | 2160.956 | 2047.84 |
best | 2000.312 | 2147.953 | 2029.856 | 2156.715 | 2069.305 | 2101.643 | 2093.668 | 2044.722 | 2124.703 | 2058.09 | 2178.862 | 2137.978 | 2034.123 | |
worst | 2000.312 | 2273.291 | 2280.509 | 2265.22 | 2117.006 | 2305.659 | 2274.207 | 2235.683 | 2234.319 | 2078.517 | 2330.323 | 2191.288 | 2055.236 | |
std | 0 | 55.95046 | 121.8733 | 57.71282 | 22.09133 | 93.40801 | 93.27596 | 84.74551 | 53.40734 | 9.256346 | 79.64236 | 28.63668 | 10.52061 | |
median | 2000.312 | 2199.118 | 2169.743 | 2213.898 | 2082.741 | 2191.412 | 2209.631 | 2125.669 | 2144.184 | 2068.881 | 2228.705 | 2157.279 | 2051 | |
rank | 1 | 11 | 8 | 12 | 4 | 10 | 9 | 5 | 7 | 3 | 13 | 6 | 2 | |
C17-F21 | mean | 2200 | 2289.451 | 2213.16 | 2263.977 | 2254.517 | 2319.303 | 2304.709 | 2250.653 | 2307.984 | 2295.016 | 2360.425 | 2313.231 | 2293.568 |
best | 2200 | 2243.728 | 2203.935 | 2222.833 | 2252.144 | 2220.235 | 2217.531 | 2200.007 | 2303.973 | 2203.545 | 2343.766 | 2305.548 | 2225.313 | |
worst | 2200 | 2313.224 | 2237.184 | 2287.371 | 2256.934 | 2364.061 | 2346.83 | 2302.568 | 2312.721 | 2331.891 | 2376.94 | 2320.429 | 2326.589 | |
std | 0 | 35.38769 | 17.36401 | 30.84939 | 2.191022 | 72.61342 | 63.60808 | 63.21616 | 3.888176 | 66.38128 | 14.98381 | 7.910979 | 49.80776 | |
median | 2200 | 2300.426 | 2205.761 | 2272.853 | 2254.494 | 2346.458 | 2327.237 | 2250.019 | 2307.621 | 2322.315 | 2360.496 | 2313.473 | 2311.184 | |
rank | 1 | 6 | 2 | 5 | 4 | 12 | 9 | 3 | 10 | 8 | 13 | 11 | 7 | |
C17-F22 | mean | 2300.073 | 2735.26 | 2308.571 | 2887.391 | 2304.777 | 2694.741 | 2322.704 | 2286.437 | 2308.206 | 2318.672 | 2300.008 | 2312.66 | 2317.103 |
best | 2300 | 2612.518 | 2304.162 | 2688.154 | 2300.9 | 2442.249 | 2318.25 | 2232.7 | 2301.208 | 2312.71 | 2300 | 2300.609 | 2314.334 | |
worst | 2300.29 | 2877.797 | 2310.632 | 3033.613 | 2308.929 | 2892.997 | 2329.991 | 2305.061 | 2321.374 | 2329.864 | 2300.032 | 2343.368 | 2321.375 | |
std | 0.156805 | 135.1716 | 3.217222 | 157.2229 | 3.655692 | 217.4236 | 5.666251 | 38.73174 | 10.02473 | 8.486782 | 0.017512 | 22.17284 | 3.252344 | |
median | 2300 | 2725.362 | 2309.746 | 2913.897 | 2304.639 | 2721.858 | 2321.286 | 2303.994 | 2305.122 | 2316.057 | 2300 | 2303.333 | 2316.352 | |
rank | 3 | 12 | 6 | 13 | 4 | 11 | 10 | 1 | 5 | 9 | 2 | 7 | 8 | |
C17-F23 | mean | 2600.919 | 2696.384 | 2640.282 | 2696.181 | 2613.729 | 2717.995 | 2646.632 | 2619.402 | 2613.171 | 2640.736 | 2783.332 | 2642.401 | 2653.732 |
best | 2600.003 | 2652.88 | 2629.345 | 2668.577 | 2611.49 | 2632.886 | 2629.516 | 2606.881 | 2607.585 | 2630.312 | 2721.168 | 2635.614 | 2634.636 | |
worst | 2602.87 | 2721.482 | 2657.221 | 2734.934 | 2616.275 | 2760.405 | 2666.012 | 2630.427 | 2619.553 | 2649.718 | 2915.529 | 2653.755 | 2661.733 | |
std | 1.427016 | 34.47961 | 14.2173 | 33.55836 | 2.476768 | 62.28981 | 21.24948 | 11.06696 | 6.702293 | 9.295428 | 98.69733 | 8.898797 | 13.97597 | |
median | 2600.403 | 2705.587 | 2637.282 | 2690.607 | 2613.575 | 2739.345 | 2645.5 | 2620.151 | 2612.773 | 2641.457 | 2748.316 | 2640.118 | 2659.279 | |
rank | 1 | 11 | 5 | 10 | 3 | 12 | 8 | 4 | 2 | 6 | 13 | 7 | 9 | |
C17-F24 | mean | 2630.488 | 2766.593 | 2761.5 | 2840.118 | 2630.645 | 2666.605 | 2754.816 | 2680.964 | 2743.511 | 2750.251 | 2742.257 | 2759.547 | 2718.993 |
best | 2516.677 | 2707.392 | 2726.529 | 2815.839 | 2612.188 | 2534.895 | 2724.621 | 2502.024 | 2715.242 | 2733.589 | 2504.848 | 2748.125 | 2546.618 | |
worst | 2732.32 | 2853.043 | 2783.053 | 2903.567 | 2641.946 | 2808.346 | 2788.924 | 2758.212 | 2758.78 | 2765.011 | 2890.232 | 2783.848 | 2807.47 | |
std | 125.9143 | 75.9419 | 27.6873 | 45.77957 | 14.62564 | 158.6431 | 28.97391 | 129.9664 | 21.1953 | 16.62111 | 179.2091 | 17.7425 | 126.4467 | |
median | 2636.477 | 2752.969 | 2768.209 | 2820.534 | 2634.224 | 2661.59 | 2752.86 | 2731.809 | 2750.01 | 2751.202 | 2786.974 | 2753.108 | 2760.941 | |
rank | 1 | 12 | 11 | 13 | 2 | 3 | 9 | 4 | 7 | 8 | 6 | 10 | 5 | |
C17-F25 | mean | 2932.639 | 3160.476 | 2914.357 | 3261.191 | 2918.565 | 3124.511 | 2908.677 | 2922.579 | 2938.422 | 2933.489 | 2922.742 | 2923.757 | 2951.355 |
best | 2898.047 | 3059.126 | 2899.047 | 3196.151 | 2915.169 | 2907.548 | 2772.937 | 2902.876 | 2922.403 | 2915.286 | 2904.47 | 2898.64 | 2936.383 | |
worst | 2945.793 | 3377.692 | 2948.782 | 3332.197 | 2924.264 | 3623.252 | 2956.366 | 2943.701 | 2945.776 | 2951.903 | 2943.394 | 2946.519 | 2961.892 | |
std | 24.95556 | 158.0947 | 24.97843 | 60.78711 | 4.621638 | 363.3763 | 97.86807 | 24.42714 | 11.68901 | 21.3807 | 22.74034 | 27.8157 | 11.82051 | |
median | 2943.359 | 3102.544 | 2904.799 | 3258.209 | 2917.413 | 2983.623 | 2952.703 | 2921.87 | 2942.754 | 2933.383 | 2921.552 | 2924.935 | 2953.573 | |
rank | 7 | 12 | 2 | 13 | 3 | 11 | 1 | 4 | 9 | 8 | 5 | 6 | 10 | |
C17-F26 | mean | 2900 | 3590.504 | 2976.275 | 3717.955 | 3006.657 | 3588.502 | 3170.338 | 2900.141 | 3248.952 | 3192.893 | 3818.581 | 2903.878 | 2897.341 |
best | 2900 | 3253.229 | 2811.168 | 3408.598 | 2892.468 | 3133.274 | 2925.995 | 2900.108 | 2966.126 | 2911.514 | 2811.168 | 2811.168 | 2716.041 | |
worst | 2900 | 3838.081 | 3145.308 | 4039.913 | 3275.942 | 4208.271 | 3563.03 | 2900.185 | 3862.063 | 3832.048 | 4284.157 | 3004.343 | 3100.218 | |
std | 4.01 × 10−13 | 318.5314 | 206.0825 | 294.2025 | 194.9322 | 568.1313 | 301.0223 | 0.036937 | 445.8368 | 463.5612 | 737.6724 | 85.37276 | 210.3024 | |
median | 2900 | 3635.352 | 2974.312 | 3711.654 | 2929.108 | 3506.23 | 3096.163 | 2900.136 | 3083.81 | 3014.005 | 4089.499 | 2900 | 2886.553 | |
rank | 2 | 11 | 5 | 12 | 6 | 10 | 7 | 3 | 9 | 8 | 13 | 4 | 1 | |
C17-F27 | mean | 3089.518 | 3202.346 | 3118.638 | 3224.783 | 3104.012 | 3175.498 | 3190.204 | 3091.534 | 3114.92 | 3113.947 | 3219.915 | 3133.99 | 3156.849 |
best | 3089.518 | 3155.296 | 3095.047 | 3125.526 | 3092.121 | 3101.851 | 3175.022 | 3089.702 | 3094.217 | 3095.122 | 3208.298 | 3096.756 | 3118.008 | |
worst | 3089.518 | 3268.648 | 3176.831 | 3408.258 | 3131.827 | 3215.862 | 3201.44 | 3094.72 | 3172.873 | 3167.605 | 3240.504 | 3179.191 | 3213.141 | |
std | 2.84 × 10−13 | 51.46529 | 42.05219 | 135.3805 | 20.18765 | 55.82681 | 11.91661 | 2.551364 | 41.79912 | 38.67197 | 15.48972 | 37.46758 | 43.47098 | |
median | 3089.518 | 3192.721 | 3101.337 | 3182.674 | 3096.05 | 3192.139 | 3192.177 | 3090.856 | 3096.294 | 3096.53 | 3215.43 | 3130.007 | 3148.123 | |
rank | 1 | 11 | 6 | 13 | 3 | 9 | 10 | 2 | 5 | 4 | 12 | 7 | 8 | |
C17-F28 | mean | 3100 | 3613.12 | 3229.856 | 3748.016 | 3213.098 | 3563.939 | 3278.224 | 3232.355 | 3333.69 | 3314.747 | 3434.636 | 3296.217 | 3239.629 |
best | 3100 | 3564.242 | 3100 | 3669.487 | 3163.857 | 3398.145 | 3150.272 | 3100.118 | 3190.342 | 3208.737 | 3421.984 | 3173.571 | 3142.818 | |
worst | 3100 | 3658.602 | 3376.998 | 3804.7 | 3236.846 | 3763.532 | 3377.485 | 3376.998 | 3397.699 | 3377.228 | 3452.218 | 3377.203 | 3494.4 | |
std | 0 | 45.32491 | 132.4232 | 67.82996 | 36.51153 | 204.8201 | 126.2074 | 165.3185 | 104.0978 | 86.92067 | 15.1415 | 99.78275 | 184.2716 | |
median | 3100 | 3614.818 | 3221.214 | 3758.937 | 3225.844 | 3547.04 | 3292.569 | 3226.152 | 3373.359 | 3336.512 | 3432.171 | 3317.047 | 3160.649 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 9 | 8 | 10 | 7 | 5 | |
C17-F29 | mean | 3132.241 | 3314.139 | 3277.755 | 3364.373 | 3199.962 | 3231.62 | 3339.237 | 3199.563 | 3259.274 | 3209.074 | 3336.362 | 3260.107 | 3232.573 |
best | 3130.076 | 3287.353 | 3206.836 | 3296.097 | 3164.379 | 3164.684 | 3231.004 | 3141.96 | 3187.414 | 3164.081 | 3229.306 | 3166.223 | 3186.047 | |
worst | 3134.841 | 3333.919 | 3355.015 | 3428.46 | 3239.695 | 3298.457 | 3479.7 | 3279.517 | 3368.515 | 3230.887 | 3612.426 | 3339.331 | 3279.39 | |
std | 2.682921 | 24.34197 | 82.5024 | 73.75275 | 35.7886 | 59.16538 | 112.7108 | 62.92391 | 93.13042 | 33.84792 | 199.7285 | 84.89115 | 42.47972 | |
median | 3132.023 | 3317.643 | 3274.584 | 3366.468 | 3197.887 | 3231.669 | 3323.123 | 3188.387 | 3240.583 | 3220.665 | 3251.858 | 3267.436 | 3232.427 | |
rank | 1 | 10 | 9 | 13 | 3 | 5 | 12 | 2 | 7 | 4 | 11 | 8 | 6 | |
C17-F30 | mean | 3418.734 | 2,094,369 | 280,491.5 | 3,496,344 | 394,645.1 | 584,643.1 | 943,812.6 | 288,243.6 | 890,238.3 | 57,836.15 | 744,606.5 | 368,495.7 | 1,452,803 |
best | 3394.682 | 1,139,771 | 99,730.8 | 787,314.7 | 15,318.09 | 106,985.2 | 4415.907 | 7241.996 | 32,113.8 | 28,026.15 | 572,501.3 | 6250.265 | 500,267.8 | |
worst | 3442.907 | 3,222,881 | 730,437.6 | 5,522,322 | 582,379.3 | 1,236,001 | 3,562,526 | 1,098,507 | 1,288,325 | 96,953.6 | 950,837.1 | 730,472.4 | 3,309,498 | |
std | 30.01454 | 927,639.1 | 325,084.1 | 2,142,747 | 278,341 | 518,513.2 | 1,889,224 | 584,012.6 | 637,919.8 | 36,384.93 | 169,923.6 | 451,146.3 | 1,431,174 | |
median | 3418.673 | 2007,412 | 145,898.9 | 3,837,870 | 490,441.6 | 497,792.9 | 104,154.4 | 23613 | 1,120,257 | 53,182.43 | 727,543.8 | 368,630 | 1,000,724 | |
rank | 1 | 12 | 3 | 13 | 6 | 7 | 10 | 4 | 9 | 2 | 8 | 5 | 11 | |
Sum rank | 38 | 325 | 177 | 347 | 106 | 282 | 239 | 116 | 188 | 191 | 238 | 183 | 197 | |
Mean rank | 1.31 | 11.2 | 6.10 | 12 | 3.66 | 9.72 | 8.24 | 4.00 | 6.48 | 6.59 | 8.21 | 6.31 | 6.79 | |
Total rank | 1 | 12 | 4 | 13 | 2 | 11 | 10 | 3 | 6 | 7 | 9 | 5 | 8 |
KOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 2.49 × 1010 | 2952.398 | 3.89 × 1010 | 25,349.41 | 1.7 × 1010 | 1.61 × 109 | 508,943.7 | 1.58 × 109 | 5.84 × 109 | 9,943,348 | 1.33 × 109 | 1.69 × 108 |
best | 100 | 2.14 × 1010 | 270.1836 | 3.47 × 1010 | 11,668.69 | 1.07 × 1010 | 1.27 × 109 | 395,393.4 | 2.6 × 108 | 3.69 × 109 | 2400.729 | 3551.009 | 1.26 × 108 | |
worst | 100 | 3.11 × 1010 | 7250.693 | 4.79 × 1010 | 38,538.32 | 2.31 × 1010 | 2 × 109 | 647,323.3 | 4.76 × 109 | 8.71 × 109 | 34,713,198 | 5.31 × 109 | 2.33 × 108 | |
std | 8.87 × 10−15 | 4.89 × 109 | 3536.471 | 6.56 × 109 | 14,034.64 | 6.3 × 109 | 4.03 × 108 | 134,582.1 | 2.3 × 109 | 2.26 × 109 | 18,032,225 | 2.87 × 109 | 49,948,590 | |
median | 100 | 2.35 × 1010 | 2144.357 | 3.65 × 1010 | 25,595.31 | 1.7 × 1010 | 1.58 × 109 | 496,529 | 6.51 × 108 | 5.48 × 109 | 2,528,896 | 3,024,996 | 1.58 × 108 | |
rank | 1 | 12 | 2 | 13 | 3 | 11 | 9 | 4 | 8 | 10 | 5 | 7 | 6 | |
C17-F3 | mean | 300 | 92,153.76 | 42,326.24 | 69,683.06 | 1059.571 | 44,689.85 | 219,526.4 | 1696.502 | 39,453.42 | 32,842.34 | 90,744.25 | 30,201.43 | 158,298.6 |
best | 300 | 84,157.35 | 22,988.07 | 53,966.73 | 821.5916 | 42,342.1 | 181,622.8 | 1336.346 | 34,468.66 | 27,963.1 | 78,127.36 | 21,553 | 119,788.6 | |
worst | 300 | 101,179 | 54,730.87 | 75,694.69 | 1300.824 | 47,088.12 | 252,193.8 | 2324.308 | 44,060.35 | 35,568.41 | 99,929.63 | 38,785.04 | 219,938.2 | |
std | 0 | 9080.451 | 14,710.29 | 11,360.72 | 232.5882 | 2570.157 | 31,725.49 | 473.5833 | 4252.853 | 3701.235 | 10,628.4 | 8483.986 | 51,375.34 | |
median | 300 | 91,639.33 | 45,793 | 74,535.41 | 1057.934 | 44,664.59 | 222,144.5 | 1562.677 | 39,642.33 | 33,918.93 | 92,460.01 | 30,233.85 | 146,733.9 | |
rank | 1 | 11 | 7 | 9 | 2 | 8 | 13 | 3 | 6 | 5 | 10 | 4 | 12 | |
C17-F4 | mean | 458.5616 | 6128.233 | 511.6871 | 9325.613 | 491.3039 | 4327.565 | 835.7871 | 494.7428 | 565.8432 | 883.973 | 587.5266 | 615.3381 | 793.266 |
best | 458.5616 | 3452.638 | 490.0475 | 5985.996 | 481.3822 | 1016.012 | 774.1829 | 487.3012 | 513.1528 | 687.9052 | 568.2553 | 512.664 | 743.8779 | |
worst | 458.5616 | 8287.243 | 528.8878 | 13026.04 | 511.9059 | 7178.144 | 912.6984 | 507.5081 | 595.5328 | 1262.83 | 609.6755 | 793.8941 | 815.7684 | |
std | 0 | 2165.688 | 17.41837 | 3158.382 | 15.15013 | 2812.58 | 68.3073 | 9.658623 | 39.12174 | 278.2517 | 19.52181 | 139.5195 | 36.4108 | |
median | 458.5616 | 6386.526 | 513.9066 | 9145.206 | 485.9638 | 4558.052 | 828.1336 | 492.081 | 577.3437 | 792.5785 | 586.0879 | 577.3971 | 806.7089 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 9 | 3 | 5 | 10 | 6 | 7 | 8 | |
C17-F5 | mean | 502.4874 | 827.2903 | 713.9748 | 864.4705 | 579.0909 | 779.0051 | 806.7678 | 613.4365 | 615.7996 | 756.6456 | 711.5144 | 625.9249 | 692.1274 |
best | 500.995 | 808.357 | 678.9904 | 839.7565 | 557.682 | 751.8996 | 779.2013 | 599.2833 | 577.3504 | 735.1627 | 693.0098 | 602.6682 | 645.5771 | |
worst | 503.9798 | 847.5287 | 769.6813 | 896.8244 | 600.8691 | 810.9206 | 819.8405 | 646.7345 | 643.1417 | 781.6338 | 736.4281 | 672.8274 | 751.9071 | |
std | 1.388273 | 17.6368 | 44.33189 | 29.45868 | 19.55685 | 30.05426 | 20.08862 | 24.1357 | 35.13228 | 24.27559 | 20.94377 | 34.45568 | 47.6562 | |
median | 502.4874 | 826.6379 | 703.6137 | 860.6505 | 578.9063 | 776.6002 | 814.0148 | 603.8641 | 621.3532 | 754.893 | 708.3097 | 614.1021 | 685.5127 | |
rank | 1 | 12 | 8 | 13 | 2 | 10 | 11 | 3 | 4 | 9 | 7 | 5 | 6 | |
C17-F6 | mean | 600 | 675.4703 | 644.1356 | 678.461 | 603.0903 | 672.7694 | 672.0451 | 623.0537 | 611.238 | 640.938 | 653.3996 | 644.3518 | 628.5215 |
best | 600 | 674.2169 | 642.2589 | 673.4417 | 601.8882 | 658.2745 | 661.7335 | 611.8056 | 604.4229 | 634.2103 | 652.6949 | 632.8396 | 621.8723 | |
worst | 600 | 676.7159 | 647.0704 | 684.7624 | 604.4175 | 681.2908 | 677.1697 | 635.0517 | 617.9433 | 651.9022 | 654.3359 | 654.5071 | 632.8719 | |
std | 7.09 × 10−14 | 1.113644 | 2.247546 | 5.651016 | 1.187816 | 11.69702 | 7.612886 | 11.8271 | 6.014296 | 8.405992 | 0.781807 | 10.3672 | 5.178989 | |
median | 600 | 675.4743 | 643.6065 | 677.8199 | 603.0277 | 675.7562 | 674.6386 | 622.6788 | 611.2929 | 638.8197 | 653.2839 | 645.0302 | 629.671 | |
rank | 1 | 12 | 7 | 13 | 2 | 11 | 10 | 4 | 3 | 6 | 9 | 8 | 5 | |
C17-F7 | mean | 733.478 | 1268.013 | 1124.657 | 1306.605 | 841.0554 | 1198.026 | 1276.514 | 848.0105 | 877.9558 | 1057.553 | 958.8085 | 871.0261 | 955.2704 |
best | 732.8186 | 1222.778 | 1014.897 | 1293.645 | 815.4113 | 1060.213 | 1235.449 | 797.4056 | 811.3341 | 974.0064 | 914.078 | 850.9112 | 917.6521 | |
worst | 734.5199 | 1302.862 | 1278.106 | 1328.756 | 892.1383 | 1340.273 | 1353.189 | 918.1625 | 916.1328 | 1130.318 | 1025.628 | 896.943 | 1007.187 | |
std | 0.814948 | 37.47192 | 125.7292 | 16.8812 | 37.51134 | 131.312 | 59.11282 | 55.88792 | 49.56736 | 88.24602 | 52.88124 | 21.53589 | 40.50579 | |
median | 733.2867 | 1273.207 | 1102.813 | 1302.01 | 828.3361 | 1195.808 | 1258.709 | 838.2369 | 892.1782 | 1062.945 | 947.7642 | 868.125 | 948.1212 | |
rank | 1 | 11 | 9 | 13 | 2 | 10 | 12 | 3 | 5 | 8 | 7 | 4 | 6 | |
C17-F8 | mean | 803.3298 | 1070.174 | 942.2719 | 1105.554 | 886.447 | 1045.612 | 1018.567 | 889.0451 | 887.7806 | 1011.206 | 953.4965 | 917.6519 | 976.862 |
best | 801.2023 | 1055.725 | 913.5956 | 1086.05 | 880.0891 | 1003.491 | 964.9791 | 859.9631 | 881.1796 | 993.2392 | 930.3884 | 906.5052 | 961.5987 | |
worst | 804.1574 | 1089.433 | 962.762 | 1131.271 | 894.2287 | 1144.329 | 1058.264 | 917.3973 | 895.4335 | 1042.625 | 978.9794 | 932.744 | 996.3589 | |
std | 1.535629 | 16.69147 | 24.14288 | 24.80971 | 6.318887 | 71.82849 | 43.10224 | 27.18019 | 6.702496 | 23.36502 | 23.19143 | 12.62398 | 18.97697 | |
median | 803.9798 | 1067.769 | 946.365 | 1102.447 | 885.7352 | 1017.314 | 1025.513 | 889.41 | 887.2546 | 1004.481 | 952.3092 | 915.6791 | 974.7452 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 4 | 3 | 9 | 7 | 5 | 8 | |
C17-F9 | mean | 900 | 10,428.87 | 4615.015 | 10,107.64 | 1075.025 | 10,925.08 | 10487.61 | 5212.126 | 2015.128 | 5513.265 | 3910.222 | 3406.802 | 1272.37 |
best | 900 | 8917.718 | 3422.76 | 9859.698 | 928.2135 | 6674.676 | 8027.565 | 4160.937 | 1504.993 | 3995.937 | 3401.26 | 2052.368 | 1071.172 | |
worst | 900 | 11,851.73 | 5252.057 | 10,233.16 | 1219.778 | 14,741.2 | 12,497.63 | 7944.628 | 2760.734 | 8299.525 | 4694.308 | 5168.799 | 1472.054 | |
std | 7.09 × 10−14 | 1319.296 | 884.851 | 181.7597 | 145.6568 | 3601.656 | 2430.474 | 1973.745 | 658.5688 | 2105.111 | 615.622 | 1428.948 | 203.3894 | |
median | 900 | 10,473 | 4892.621 | 10168.85 | 1076.054 | 111,42.23 | 10,712.61 | 4371.469 | 1897.392 | 4878.799 | 3772.66 | 3203.022 | 1273.127 | |
rank | 1 | 11 | 7 | 10 | 2 | 13 | 12 | 8 | 4 | 9 | 6 | 5 | 3 | |
C17-F10 | mean | 2293.267 | 6968.874 | 5292.417 | 7618.404 | 3904.89 | 6343.463 | 6283.162 | 4530.69 | 4662.67 | 7637.039 | 4718.957 | 4901.116 | 5947.831 |
best | 1851.756 | 6395.829 | 4601.986 | 6781.76 | 3569.884 | 4998.608 | 5444.387 | 4262.331 | 4179.57 | 7294.433 | 4471.779 | 4672.72 | 5493.727 | |
worst | 2525.027 | 7274.901 | 5750.32 | 8221.579 | 4309.538 | 6917.445 | 7526.832 | 4906.336 | 4954.674 | 7810.147 | 5116.464 | 5348.142 | 6464.514 | |
std | 324.6445 | 424.0634 | 597.1511 | 655.0785 | 369.1495 | 974.92 | 997.2449 | 345.3045 | 366.0832 | 251.5575 | 328.7644 | 330.2447 | 496.3163 | |
median | 2398.142 | 7102.382 | 5408.681 | 7735.139 | 3870.069 | 6728.9 | 6080.714 | 4477.045 | 4758.219 | 7721.789 | 4643.792 | 4791.8 | 5916.541 | |
rank | 1 | 11 | 7 | 12 | 2 | 10 | 9 | 3 | 4 | 13 | 5 | 6 | 8 | |
C17-F11 | mean | 1102.987 | 7176.983 | 1250.189 | 8409.622 | 1166.464 | 4925.027 | 7473.318 | 1303.696 | 2139.493 | 1942.773 | 2806.902 | 1242.149 | 8757.885 |
best | 1100.995 | 5915.713 | 1186.572 | 6856.566 | 1121.261 | 3511.464 | 5386.337 | 1262.477 | 1375.234 | 1564.539 | 2184.741 | 1214.111 | 3247.773 | |
worst | 1105.977 | 8212.328 | 1311.123 | 9458.04 | 1198.506 | 7406.649 | 11,036.34 | 1343.487 | 4172.022 | 2640.713 | 3444.25 | 1268.793 | 16,401.46 | |
std | 2.32642 | 1091.276 | 56.12963 | 1288.136 | 36.05235 | 1891.211 | 2661.731 | 49.30714 | 1466.531 | 515.0742 | 641.6108 | 28.63459 | 6093.036 | |
median | 1102.487 | 7289.945 | 1251.531 | 8661.941 | 1173.044 | 4390.997 | 6735.297 | 1304.409 | 1505.358 | 1782.92 | 2799.309 | 1242.846 | 7691.156 | |
rank | 1 | 10 | 4 | 12 | 2 | 9 | 11 | 5 | 7 | 6 | 8 | 3 | 13 | |
C17-F12 | mean | 1744.553 | 6.67 × 109 | 19,805,086 | 1.04 × 1010 | 20,633.44 | 4.81 × 109 | 2.35 × 108 | 10,662,962 | 49,904,305 | 2.87 × 108 | 1.89 × 108 | 2,434,411 | 7,299,327 |
best | 1721.81 | 5.51 × 109 | 2,786,976 | 9.23 × 109 | 14,762.4 | 2.48 × 109 | 60150408 | 4,951,435 | 4,843,965 | 1.83 × 108 | 36548589 | 263,184.6 | 5,054,160 | |
worst | 1764.937 | 8.47 × 109 | 48,369,635 | 1.3 × 1010 | 26,305.47 | 6.3 × 109 | 4.7 × 108 | 25,798,820 | 1.05 × 108 | 4.98 × 108 | 6.04 × 108 | 4,840,042 | 9,554,266 | |
std | 21.78111 | 1.37 × 109 | 21,685,993 | 1.95 × 109 | 5316.077 | 1.78 × 109 | 2.04 × 108 | 10,922,498 | 47,029,306 | 1.54 × 108 | 2.99 × 108 | 2,133,734 | 2,205,980 | |
median | 1745.733 | 6.35 × 109 | 14,031,866 | 9.58 × 109 | 20,732.95 | 5.24 × 109 | 2.06 × 108 | 5,950,797 | 45,060,704 | 2.33 × 108 | 57944215 | 2,317,209 | 7,294,441 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 9 | 5 | 7 | 10 | 8 | 3 | 4 | |
C17-F13 | mean | 1315.791 | 5.42 × 109 | 142,111.3 | 1 × 1010 | 1860.563 | 1.39 × 109 | 858,772.9 | 86,428.26 | 716,806.2 | 83,718,700 | 34,704.4 | 30,802.39 | 11,311,917 |
best | 1314.587 | 2.64 × 109 | 78,705.99 | 5.26 × 109 | 1599.709 | 18,730,491 | 405,245.9 | 34,645.94 | 86,601.55 | 58,138,598 | 28,163.04 | 12,779.66 | 3,069,111 | |
worst | 1318.646 | 7.6 × 109 | 224,731.1 | 1.23 × 1010 | 2371.471 | 4.82 × 109 | 1,269,702 | 173,553.6 | 2,224,190 | 1.23 × 108 | 50,752.28 | 69,517.33 | 24,331,862 | |
std | 2.092732 | 2.22 × 109 | 65,540.46 | 3.48 × 109 | 376.9899 | 2.49 × 109 | 487,133.8 | 70,503.7 | 1,100,210 | 30,542,225 | 11,691.81 | 28,221.27 | 9,848,338 | |
median | 1314.967 | 5.73 × 109 | 132,504 | 1.13 × 1010 | 1735.535 | 3.58 × 108 | 880,071.8 | 68,756.73 | 278,216.3 | 76,643,172 | 29,951.14 | 20,456.29 | 8,923,348 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 8 | 5 | 7 | 10 | 4 | 3 | 9 | |
C17-F14 | mean | 1423.017 | 1,797,166 | 257,250.7 | 2,082,651 | 1439.516 | 1,113,810 | 2,108,486 | 19,356.09 | 505,563.4 | 132,706.9 | 1,084,630 | 17,864.1 | 1,903,549 |
best | 1422.014 | 1,108,273 | 36,037.67 | 1,046,798 | 1436.282 | 797,013.4 | 34,119.66 | 4805.772 | 32,658.35 | 77,153.62 | 703,827 | 3083.949 | 315,132.9 | |
worst | 1423.993 | 2,274,971 | 595,484.3 | 3,101,244 | 1444.053 | 1,573,489 | 6,441,173 | 32,904.74 | 1,083,474 | 152,680.3 | 1,637,610 | 32,561.19 | 3,209,189 | |
std | 0.873477 | 590,204.9 | 266,785.8 | 1,068,141 | 3.836186 | 385,143.4 | 3,179,950 | 13,081.47 | 576,571.5 | 40,043.56 | 474,950 | 13,917.18 | 1,442,616 | |
median | 1423.03 | 1,902,710 | 198,740.4 | 2,091,282 | 1438.864 | 1,042,369 | 979,324.6 | 19,856.93 | 453,060.4 | 150,496.8 | 998,541.5 | 17,905.64 | 2,044,936 | |
rank | 1 | 10 | 6 | 12 | 2 | 9 | 13 | 4 | 7 | 5 | 8 | 3 | 11 | |
C17-F15 | mean | 1503.129 | 2.88 × 108 | 35,569.23 | 5.66 × 108 | 1612.888 | 13,622,278 | 4,780,527 | 40,622.22 | 14,998,288 | 4,865,200 | 15,307.25 | 4607.767 | 905,696.1 |
best | 1502.462 | 2.49 × 108 | 10,436.55 | 4.89 × 108 | 1577.289 | 5,366,361 | 220,281.9 | 23,546.64 | 93,188.24 | 1,104,763 | 10,895.36 | 1892.48 | 166,303.4 | |
worst | 1504.265 | 3.19 × 108 | 57,716.98 | 6.25 × 108 | 1628.803 | 31,688,091 | 15,521,689 | 67,155.27 | 56,155,773 | 9,158,236 | 20,732.11 | 8499.218 | 2,029,134 | |
std | 0.924686 | 37401288 | 21,580.75 | 72366016 | 25.84869 | 13,131,914 | 7,844,999 | 20,427.96 | 29,669,958 | 3,569,005 | 4444.669 | 3162.61 | 921,310.6 | |
median | 1502.893 | 2.92 × 108 | 37061.7 | 5.76 × 108 | 1622.73 | 8,717,330 | 1,690,069 | 35,893.49 | 1,872,096 | 4,598,900 | 14,800.76 | 4019.686 | 713,673.5 | |
rank | 1 | 12 | 5 | 13 | 2 | 10 | 8 | 6 | 11 | 9 | 4 | 3 | 7 | |
C17-F16 | mean | 1663.469 | 4179.978 | 2931.478 | 4803.049 | 2008.781 | 3188.323 | 4109.782 | 2540.403 | 2498.513 | 3370.786 | 3562.069 | 2865.142 | 2883.088 |
best | 1614.72 | 3864.085 | 2506.541 | 4063.573 | 1726.769 | 2785.57 | 3390.133 | 2316.58 | 2354.879 | 3186.311 | 3383.684 | 2632.807 | 2554.441 | |
worst | 1744.118 | 4441.066 | 3426.897 | 5467.226 | 2248.557 | 3431.42 | 4915.665 | 2791.01 | 2613.187 | 3592.217 | 3727.743 | 3130.503 | 3214.078 | |
std | 66.97934 | 285.5894 | 409.083 | 811.8548 | 253.5446 | 308.6033 | 679.296 | 221.1256 | 142.7455 | 193.5071 | 165.786 | 271.8786 | 346.6355 | |
median | 1647.519 | 4207.381 | 2896.238 | 4840.699 | 2029.899 | 3268.152 | 4066.665 | 2527.01 | 2512.993 | 3352.309 | 3568.425 | 2848.63 | 2881.917 | |
rank | 1 | 12 | 7 | 13 | 2 | 8 | 11 | 4 | 3 | 9 | 10 | 5 | 6 | |
C17-F17 | mean | 1728.099 | 3324.479 | 2438.547 | 3613.262 | 1858.056 | 3196.77 | 2794.085 | 2065.676 | 1925.308 | 2173.563 | 2486.032 | 2307.397 | 2137.267 |
best | 1718.761 | 2752.707 | 2299.939 | 3251.306 | 1752.386 | 2197.969 | 2338.319 | 2016.464 | 1801.98 | 1956.937 | 2390.162 | 2082.368 | 2092.547 | |
worst | 1733.659 | 4032.229 | 2548.404 | 4253.792 | 1916.907 | 5812.541 | 3103.359 | 2208.975 | 2067.097 | 2455.83 | 2629.866 | 2682.335 | 2204.127 | |
std | 7.250066 | 588.8234 | 117.6491 | 490.701 | 78.4514 | 1887.423 | 353.6048 | 103.2636 | 136.4408 | 228.6407 | 126.3251 | 291.0375 | 55.36113 | |
median | 1729.987 | 3256.489 | 2452.922 | 3473.974 | 1881.465 | 2388.285 | 2867.33 | 2018.633 | 1916.078 | 2140.743 | 2462.051 | 2232.443 | 2126.196 | |
rank | 1 | 12 | 8 | 13 | 2 | 11 | 10 | 4 | 3 | 6 | 9 | 7 | 5 | |
C17-F18 | mean | 1825.696 | 26,931,134 | 2,510,229 | 30,965,156 | 1893.241 | 34,433,844 | 5,592,013 | 606,481.9 | 397,606.5 | 1,578,660 | 488,013.6 | 130,103.3 | 3,454,546 |
best | 1822.524 | 7,758,022 | 267,396.5 | 10,011,130 | 1871.842 | 1,262,746 | 1,884,521 | 152,677.2 | 74,409.88 | 732,924.3 | 273,634.5 | 92,598.72 | 2,696,975 | |
worst | 1828.42 | 52,301,633 | 5,008,394 | 60,834,279 | 1905.758 | 65,253,789 | 11,541,782 | 1,641,661 | 1,021,471 | 1,984,645 | 950,086.7 | 154,354 | 5,063,684 | |
std | 2.920243 | 21,282,724 | 2,401,473 | 23,292,806 | 16.42987 | 38,406,296 | 4,485,278 | 750,625.6 | 481,717.9 | 622,015.2 | 337,280 | 29,181.38 | 1,172,748 | |
median | 1825.92 | 23,832,440 | 2,382,564 | 26,507,607 | 1897.682 | 35,609,421 | 4,470,874 | 315,794.9 | 247,272.6 | 1,798,535 | 364,166.6 | 136,730.3 | 3,028,763 | |
rank | 1 | 11 | 8 | 12 | 2 | 13 | 10 | 6 | 4 | 7 | 5 | 3 | 9 | |
C17-F19 | mean | 1910.989 | 5.5 × 108 | 64,244.08 | 9.28 × 108 | 1923.18 | 2.79 × 108 | 13,576,235 | 890,246 | 3,821,835 | 5,449,857 | 77,576.92 | 42,261.41 | 1,536,207 |
best | 1908.84 | 4.12 × 108 | 13,773.69 | 6.7 × 108 | 1920.673 | 3464988 | 1,766,689 | 22,555.99 | 67,193.05 | 2,828,858 | 42,121.24 | 8400.832 | 607,052 | |
worst | 1913.095 | 7.16 × 108 | 142,987 | 1.41 × 109 | 1927.772 | 7.73 × 108 | 23,442,333 | 2,001,464 | 12,323,882 | 7,746,868 | 104,364.3 | 126,378.5 | 2,729,001 | |
std | 2.088116 | 1.65 × 108 | 60,833.73 | 3.53 × 108 | 3.409684 | 3.84 × 108 | 10,683,239 | 1,040,847 | 6,167,780 | 2,614,547 | 28,005.75 | 60,818.97 | 967,255 | |
median | 1911.01 | 5.37 × 108 | 50,107.82 | 8.18 × 108 | 1922.138 | 1.7 × 108 | 14,547,958 | 768,481.8 | 1,448,133 | 5,611,851 | 81,911.05 | 17,133.15 | 1,404,386 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 10 | 6 | 8 | 9 | 5 | 3 | 7 | |
C17-F20 | mean | 2065.787 | 2861.078 | 2609.892 | 2912.496 | 2171.656 | 2814.376 | 2802.585 | 2580.819 | 2361.243 | 2764.973 | 2966.569 | 2525.574 | 2456.993 |
best | 2029.521 | 2772.475 | 2456.75 | 2741.1 | 2059.851 | 2675.689 | 2611.744 | 2358.871 | 2193.895 | 2683.202 | 2608.142 | 2475.735 | 2409.455 | |
worst | 2161.126 | 2969.379 | 2833.462 | 3016.856 | 2260.42 | 2958.251 | 2974.494 | 2972.518 | 2523.041 | 2881.522 | 3428.076 | 2650.355 | 2491.316 | |
std | 68.78908 | 87.95898 | 176.5827 | 130.5254 | 90.25521 | 126.4284 | 167.7548 | 291.3799 | 145.3611 | 100.6955 | 371.7545 | 90.13694 | 37.95021 | |
median | 2036.25 | 2851.229 | 2574.679 | 2946.014 | 2183.176 | 2811.782 | 2812.052 | 2495.944 | 2364.018 | 2747.584 | 2915.028 | 2488.104 | 2463.601 | |
rank | 1 | 11 | 7 | 12 | 2 | 10 | 9 | 6 | 3 | 8 | 13 | 5 | 4 | |
C17-F21 | mean | 2308.456 | 2608.644 | 2435.242 | 2663.434 | 2363.914 | 2525.058 | 2597.048 | 2401.026 | 2386.5 | 2487.264 | 2558.71 | 2429.096 | 2484.514 |
best | 2304.034 | 2518.58 | 2221.839 | 2588.295 | 2354.475 | 2308.061 | 2523.336 | 2366.7 | 2352.907 | 2475.477 | 2541.004 | 2410.516 | 2452.745 | |
worst | 2312.987 | 2668.213 | 2585.45 | 2752.462 | 2379.402 | 2653.222 | 2660.071 | 2429.705 | 2401.211 | 2497.343 | 2593.162 | 2442.179 | 2533.053 | |
std | 4.819332 | 76.35051 | 165.502 | 77.25403 | 11.8397 | 164.6534 | 72.8331 | 28.30641 | 24.66245 | 11.63614 | 25.27778 | 16.83741 | 36.99578 | |
median | 2308.402 | 2623.892 | 2466.84 | 2656.49 | 2360.89 | 2569.475 | 2602.391 | 2403.85 | 2395.942 | 2488.118 | 2550.336 | 2431.845 | 2476.128 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 11 | 4 | 3 | 8 | 10 | 5 | 7 | |
C17-F22 | mean | 2300 | 7730.487 | 5617.266 | 7498.517 | 2302.796 | 8485.27 | 7178.241 | 3880.696 | 2685.993 | 5534.065 | 6147.871 | 4769.329 | 2684.245 |
best | 2300 | 7406.201 | 2302.919 | 6514.137 | 2301.824 | 8264.458 | 6264.079 | 2306.212 | 2562.444 | 2704.811 | 3925.426 | 2450.695 | 2612.661 | |
worst | 2300 | 8236.5 | 6897.797 | 8487.871 | 2304.438 | 8589.519 | 7993.792 | 5835.971 | 2939.979 | 8670.963 | 7124.591 | 7013.27 | 2739.565 | |
std | 0 | 383.5138 | 2391.94 | 916.8349 | 1.267341 | 165.0934 | 776.8943 | 1992.539 | 186.6203 | 3511.039 | 1611.848 | 2267.796 | 67.97661 | |
median | 2300 | 7639.625 | 6634.174 | 7496.029 | 2302.461 | 8543.551 | 7227.546 | 3690.3 | 2620.775 | 5380.243 | 6770.735 | 4806.675 | 2692.377 | |
rank | 1 | 12 | 8 | 11 | 2 | 13 | 10 | 5 | 4 | 7 | 9 | 6 | 3 | |
C17-F23 | mean | 2655.081 | 3170.804 | 2916.435 | 3223.533 | 2646.423 | 3175.484 | 3031.962 | 2734.376 | 2747.574 | 2894.308 | 3724.216 | 2891.062 | 2962.989 |
best | 2653.745 | 3088.315 | 2811.411 | 3171.39 | 2478.867 | 3061.316 | 2861.72 | 2691.678 | 2728.555 | 2873.272 | 3620.24 | 2859.001 | 2934.863 | |
worst | 2657.377 | 3249.328 | 3082.548 | 3299.152 | 2710.309 | 3365.1 | 3127.898 | 2762.31 | 2767.576 | 2942.516 | 3826.997 | 2940.298 | 3024.002 | |
std | 1.786778 | 81.79862 | 128.3865 | 60.06802 | 121.0374 | 144.8298 | 127.7156 | 32.64114 | 18.18122 | 35.37896 | 118.3582 | 40.56704 | 44.366 | |
median | 2654.6 | 3172.787 | 2885.891 | 3211.795 | 2698.258 | 3137.761 | 3069.114 | 2741.758 | 2747.083 | 2880.722 | 3724.813 | 2882.475 | 2946.546 | |
rank | 2 | 10 | 7 | 12 | 1 | 11 | 9 | 3 | 4 | 6 | 13 | 5 | 8 | |
C17-F24 | mean | 2831.409 | 3296.848 | 3158.037 | 3393.084 | 2881.606 | 3263.916 | 3105.656 | 2902.994 | 2917.582 | 3034.353 | 3343.978 | 3119.77 | 3211.401 |
best | 2829.992 | 3260.373 | 3024.392 | 3307.127 | 2866.584 | 3158.668 | 3043.783 | 2856.611 | 2905.496 | 3011.572 | 3308.343 | 3046.659 | 3120.381 | |
worst | 2832.366 | 3372.507 | 3307.527 | 3542.546 | 2888.197 | 3313.313 | 3130.843 | 2924.994 | 2924.388 | 3069.382 | 3380.441 | 3229.636 | 3287.664 | |
std | 1.238124 | 55.19726 | 134.4146 | 117.6224 | 10.96633 | 77.97751 | 44.80036 | 33.87131 | 9.179607 | 26.62799 | 34.43815 | 84.7416 | 83.90434 | |
median | 2831.64 | 3277.257 | 3150.115 | 3361.332 | 2885.822 | 3291.842 | 3123.998 | 2915.185 | 2920.222 | 3028.23 | 3343.564 | 3101.392 | 3218.78 | |
rank | 1 | 11 | 8 | 13 | 2 | 10 | 6 | 3 | 4 | 5 | 12 | 7 | 9 | |
C17-F25 | mean | 2886.698 | 3898.903 | 2907.836 | 4500.07 | 2891.104 | 3446.751 | 3074.216 | 2908.624 | 2989.141 | 3067.347 | 2991.194 | 2894.634 | 3099.011 |
best | 2886.691 | 3536.836 | 2894.158 | 3919.097 | 2884.617 | 3083.235 | 3039.124 | 2884.613 | 2952.551 | 2951.169 | 2980.071 | 2887.569 | 3082.866 | |
worst | 2886.707 | 4170.01 | 2945.463 | 5274.43 | 2897.059 | 3824.188 | 3092.665 | 2970.316 | 3057.272 | 3199.466 | 3003.259 | 2911.21 | 3110.566 | |
std | 0.00822 | 285.7001 | 27.13135 | 610.0829 | 6.077511 | 391.4253 | 27.21077 | 44.57098 | 52.48505 | 128.3309 | 10.34894 | 12.00107 | 13.22934 | |
median | 2886.698 | 3944.383 | 2895.861 | 4403.376 | 2891.37 | 3439.79 | 3082.537 | 2889.784 | 2973.372 | 3059.377 | 2990.723 | 2889.879 | 3101.307 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 9 | 5 | 6 | 8 | 7 | 3 | 10 | |
C17-F26 | mean | 3578.65 | 8951.361 | 7176.459 | 9515.634 | 2976.112 | 8524.239 | 8181.363 | 4738 | 4524.954 | 5828.595 | 7315.992 | 4796.903 | 4360.868 |
best | 3559.841 | 8541.253 | 5941.453 | 8710.682 | 2973.861 | 7888.519 | 7475.009 | 4405.337 | 4144.872 | 4500.499 | 6305.049 | 3546.88 | 3990.712 | |
worst | 3607.686 | 9687.167 | 7903.144 | 10,940.76 | 2979.46 | 8925.221 | 9002.183 | 5345.139 | 5113.309 | 7089.473 | 7842.161 | 6284.299 | 4813.412 | |
std | 24.61688 | 577.1178 | 932.4917 | 1131.659 | 2.89745 | 480.5102 | 677.8715 | 471.9772 | 446.6385 | 1282.693 | 774.509 | 1381.508 | 372.9654 | |
median | 3573.536 | 8788.512 | 7430.62 | 9205.547 | 2975.565 | 8641.608 | 8124.131 | 4600.762 | 4420.818 | 5862.204 | 7558.38 | 4678.216 | 4319.674 | |
rank | 2 | 12 | 8 | 13 | 1 | 11 | 10 | 5 | 4 | 7 | 9 | 6 | 3 | |
C17-F27 | mean | 3207.018 | 3595.037 | 3349.708 | 3744.391 | 3214.319 | 3463.398 | 3419.111 | 3230.47 | 3248.194 | 3313.698 | 4903.936 | 3275.914 | 3450.04 |
best | 3200.749 | 3538.093 | 3266.538 | 3474.172 | 3200.956 | 3334.416 | 3255.937 | 3212.443 | 3239.412 | 3239.11 | 4470.334 | 3238.363 | 3375.739 | |
worst | 3210.656 | 3691.737 | 3422.578 | 4020.914 | 3233.651 | 3703.463 | 3540.445 | 3255.803 | 3262.719 | 3383.508 | 5219.687 | 3316.924 | 3493.865 | |
std | 5.023361 | 74.0999 | 88.62389 | 253.3399 | 16.22388 | 177.9035 | 131.9415 | 19.66992 | 10.89568 | 64.60731 | 396.689 | 36.71613 | 55.61351 | |
median | 3208.335 | 3575.159 | 3354.858 | 3741.239 | 3211.335 | 3407.856 | 3440.031 | 3226.816 | 3245.322 | 3316.086 | 4962.861 | 3274.185 | 3465.278 | |
rank | 1 | 11 | 7 | 12 | 2 | 10 | 8 | 3 | 4 | 6 | 13 | 5 | 9 | |
C17-F28 | mean | 3100 | 4715.982 | 3259.465 | 5591.034 | 3209.553 | 4117.781 | 3425.654 | 3250.611 | 3578.289 | 3647.974 | 3505.382 | 3320.401 | 3564.58 |
best | 3100 | 4488.68 | 3229.694 | 5292.726 | 3193.586 | 3580.19 | 3366.85 | 3215.783 | 3386.277 | 3503.148 | 3436.694 | 3190.728 | 3514.318 | |
worst | 3100 | 4962.36 | 3290.424 | 5903.482 | 3238.681 | 4666.198 | 3478.795 | 3282.413 | 4047.397 | 3979.443 | 3649.532 | 3519.049 | 3619.148 | |
std | 2.84 × 10−13 | 219.3937 | 26.8343 | 315.3407 | 21.78097 | 543.4944 | 52.65941 | 29.60263 | 340.0468 | 241.5308 | 105.1355 | 164.2269 | 53.83889 | |
median | 3100 | 4706.444 | 3258.871 | 5583.963 | 3202.972 | 4112.368 | 3428.485 | 3252.125 | 3439.74 | 3554.653 | 3467.65 | 3285.913 | 3562.427 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 6 | 3 | 9 | 10 | 7 | 5 | 8 | |
C17-F29 | mean | 3353.75 | 5321.805 | 4294.249 | 5533.458 | 3646.04 | 5169.464 | 5021.186 | 3824.482 | 3774.045 | 4466.786 | 4998.063 | 4137.498 | 4251.863 |
best | 3325.385 | 4887.175 | 3953.036 | 4925.474 | 3498.469 | 4645.242 | 4760.858 | 3700.725 | 3694.296 | 4148.96 | 4734.963 | 3945.945 | 3881.835 | |
worst | 3370.797 | 5782.959 | 4501.103 | 6368.181 | 3780.651 | 6023.404 | 5187.571 | 3942.033 | 3889.131 | 4932.794 | 5246.778 | 4373.878 | 4596.038 | |
std | 21.27976 | 466.7615 | 262.5544 | 766.6237 | 134.739 | 697.3597 | 197.3984 | 110.3398 | 94.00128 | 361.6177 | 296.0413 | 190.8879 | 345.3411 | |
median | 3359.41 | 5308.544 | 4361.429 | 5420.09 | 3652.519 | 5004.604 | 5068.157 | 3827.585 | 3756.376 | 4392.696 | 5005.255 | 4115.085 | 4264.79 | |
rank | 1 | 12 | 7 | 13 | 2 | 11 | 10 | 4 | 3 | 8 | 9 | 5 | 6 | |
C17-F30 | mean | 5007.854 | 1.36 × 109 | 1,359,178 | 2.69 × 109 | 7559.769 | 36,618,487 | 37,367,034 | 2,947,714 | 6,078,409 | 36,074,281 | 2,156,344 | 259,931.3 | 669,154.3 |
best | 4955.449 | 1 × 109 | 479,425.3 | 1.93 × 109 | 6312.163 | 12,519,461 | 7,452,113 | 529,406.7 | 1,356,066 | 19,310,289 | 1,882,361 | 7470.567 | 185,303.8 | |
worst | 5086.396 | 1.5 × 109 | 2,406,694 | 2.97 × 109 | 10,000.4 | 85,561,300 | 59,876,989 | 4,220,278 | 16,413,710 | 75,668,870 | 2,594,450 | 983,374.7 | 1,279,873 | |
std | 63.73953 | 2.6 × 108 | 870,882.7 | 5.47 × 108 | 1868.254 | 35,834,239 | 23,618,797 | 1,779,169 | 7,516,367 | 28,689,990 | 331,326.2 | 521,521 | 575,976.5 | |
median | 4994.785 | 1.48 × 109 | 1,275,296 | 2.93 × 109 | 6963.255 | 24,196,594 | 41,069,518 | 3,520,585 | 3,271,931 | 24,658,982 | 2,074,283 | 24,440 | 605,720.2 | |
rank | 1 | 12 | 5 | 13 | 2 | 10 | 11 | 7 | 8 | 9 | 6 | 3 | 4 | |
Sum rank | 31 | 334 | 182 | 361 | 57 | 305 | 284 | 128 | 151 | 232 | 231 | 139 | 204 | |
Mean rank | 1.07 | 11.5 | 6.28 | 12.4 | 1.97 | 10.5 | 9.79 | 4.41 | 5.21 | 8.00 | 7.97 | 4.79 | 7.03 | |
Total rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 3 | 5 | 9 | 8 | 4 | 7 |
KOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 5.65 × 1010 | 8,732,323 | 8.85 × 1010 | 5,320,127 | 3.6 × 1010 | 7.27 × 109 | 3,840,463 | 8.84 × 109 | 1.96 × 1010 | 1.62 × 1010 | 2.39 × 109 | 9.82 × 109 |
best | 100 | 5.04 × 1010 | 1,039,624 | 7.74 × 1010 | 2,053,288 | 3.31 × 1010 | 4.29 × 109 | 2,748,680 | 6.37 × 109 | 1.33 × 1010 | 1.29 × 1010 | 9.81 × 1008 | 9.35 × 109 | |
worst | 100 | 6.05 × 1010 | 23,107,831 | 9.67 × 1010 | 13,489,625 | 3.87 × 1010 | 1.09 × 1010 | 4,780,327 | 1.21 × 1010 | 2.64 × 1010 | 1.94 × 1010 | 3.19 × 109 | 1.06 × 1010 | |
std | 0 | 4.79 × 109 | 10,597,589 | 9.11 × 109 | 5,928,769 | 2.5 × 109 | 3.37 × 109 | 903,719.7 | 2.58 × 109 | 6.88 × 109 | 2.85 × 109 | 1.05 × 109 | 6.22 × 108 | |
median | 100 | 5.75 × 1010 | 5,390,919 | 8.99 × 1010 | 2,868,796 | 3.6 × 1010 | 6.96 × 109 | 3,916,422 | 8.44 × 109 | 1.93 × 1010 | 1.62 × 1010 | 2.7 × 109 | 9.68 × 109 | |
rank | 1 | 12 | 4 | 13 | 3 | 11 | 6 | 2 | 7 | 10 | 9 | 5 | 8 | |
C17-F3 | mean | 300 | 149,583.9 | 138,352.8 | 149,030.3 | 16,943.78 | 103,002.4 | 220,840.5 | 43,670.63 | 122,679.4 | 92,792.69 | 167,990.6 | 136,635.8 | 248,646.8 |
best | 300 | 128,298.8 | 106,309.5 | 135,194 | 14,639.09 | 90,497.96 | 166,559 | 34,628.8 | 107,779 | 70,179.53 | 151,707.6 | 102,695.6 | 207,248.4 | |
worst | 300 | 172,029 | 168,328.7 | 162,452.7 | 19,994.51 | 109,817.3 | 336,875 | 54,310.2 | 137,706 | 105,874.8 | 189,799.9 | 178,041.7 | 285,707.9 | |
std | 0 | 19,900.14 | 30,273.96 | 13,080.54 | 2598.191 | 9650.742 | 86,695.78 | 8871.025 | 13,217.26 | 17,616.45 | 19,901.6 | 35,320.14 | 34,727.35 | |
median | 300 | 149,004 | 139,386.6 | 149,237.2 | 16,570.75 | 105,847.1 | 189,964 | 42,871.76 | 122,616.4 | 97,558.22 | 165,227.4 | 132,903 | 250,815.5 | |
rank | 1 | 10 | 8 | 9 | 2 | 5 | 12 | 3 | 6 | 4 | 11 | 7 | 13 | |
C17-F4 | mean | 470.3679 | 13,956.83 | 684.8009 | 22,448.11 | 527.6775 | 7871.064 | 1857.265 | 557.9105 | 1381.66 | 2664.031 | 2918.089 | 985.3263 | 1465.974 |
best | 428.5127 | 10,846.92 | 669.6698 | 14,824.78 | 492.1734 | 6310.075 | 1187.093 | 521.0501 | 1032.473 | 1515.614 | 2439.486 | 669.7292 | 1268.232 | |
worst | 525.7252 | 15,889.86 | 708.8812 | 26,809.34 | 579.9513 | 10,160.22 | 2218.682 | 629.8218 | 1684.796 | 4543.687 | 3103.746 | 1738.409 | 1585.165 | |
std | 53.57701 | 2437.601 | 19.91459 | 5912.057 | 44.54252 | 1758.579 | 499.2023 | 53.51063 | 317.6341 | 1438.256 | 346.4791 | 545.1676 | 150.7205 | |
median | 463.6168 | 14,545.27 | 680.3262 | 24,079.17 | 519.2927 | 7506.981 | 2011.642 | 540.3851 | 1404.685 | 2298.413 | 3064.563 | 766.5837 | 1505.249 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 8 | 3 | 6 | 9 | 10 | 5 | 7 | |
C17-F5 | mean | 504.7261 | 1065.433 | 837.4285 | 1092.993 | 722.7024 | 1109.837 | 929.9259 | 725.1277 | 712.5915 | 970.3472 | 788.6582 | 772.5602 | 869.4968 |
best | 503.9798 | 1034.652 | 808.7226 | 1075.198 | 645.7768 | 975.5303 | 891.6619 | 655.8271 | 686.7938 | 930.8254 | 739.0804 | 721.1544 | 841.164 | |
worst | 505.9698 | 1103.502 | 876.4592 | 1105.322 | 783.0094 | 1217.212 | 953.6909 | 831.6686 | 739.3389 | 996.3264 | 823.1554 | 833.2044 | 889.5473 | |
std | 1.029571 | 35.75922 | 31.60248 | 14.9716 | 62.21624 | 126.9977 | 29.8511 | 85.07309 | 30.38572 | 31.62067 | 42.82098 | 49.85016 | 24.82183 | |
median | 504.4773 | 1061.789 | 832.2661 | 1095.727 | 731.0116 | 1123.303 | 937.1754 | 706.5076 | 712.1166 | 977.1185 | 796.1986 | 767.941 | 873.638 | |
rank | 1 | 11 | 7 | 12 | 3 | 13 | 9 | 4 | 2 | 10 | 6 | 5 | 8 | |
C17-F6 | mean | 600 | 689.4033 | 656.5336 | 691.3502 | 610.6613 | 684.4566 | 691.9562 | 635.373 | 621.4235 | 660.3259 | 654.4208 | 650.3345 | 645.6004 |
best | 600 | 686.586 | 652.0101 | 689.2108 | 608.0459 | 665.3258 | 686.9105 | 625.7742 | 616.0881 | 648.3769 | 649.8097 | 648.1898 | 633.4675 | |
worst | 600 | 694.0688 | 661.6627 | 694.1036 | 614.1181 | 700.135 | 699.6824 | 657.9483 | 630.6965 | 668.465 | 657.1603 | 653.6786 | 657.4692 | |
std | 0 | 3.733946 | 4.819692 | 2.475418 | 2.810919 | 16.71551 | 5.995706 | 16.56411 | 7.084689 | 9.290449 | 3.495826 | 2.681362 | 10.85583 | |
median | 600 | 688.4793 | 656.2309 | 691.0432 | 610.2406 | 686.1829 | 690.6159 | 628.8848 | 619.4548 | 662.2308 | 655.3566 | 649.7347 | 645.7324 | |
rank | 1 | 11 | 8 | 12 | 2 | 10 | 13 | 4 | 3 | 9 | 7 | 6 | 5 | |
C17-F7 | mean | 756.7298 | 1731.165 | 1612.083 | 1825.017 | 1012.626 | 1627.768 | 1651.629 | 1036.242 | 1047.359 | 1435.796 | 1372.132 | 1173.181 | 1274.479 |
best | 754.7543 | 1707.594 | 1545.095 | 1748.785 | 959.0639 | 1484.474 | 1592.429 | 1000.577 | 1025.438 | 1316.109 | 1213.45 | 1022.934 | 1200.637 | |
worst | 758.3522 | 1761.078 | 1674.633 | 1922.444 | 1057.935 | 1768.548 | 1733.263 | 1064.965 | 1065.255 | 1493.97 | 1493.801 | 1392.142 | 1322.701 | |
std | 1.678837 | 24.06938 | 59.46511 | 80.53832 | 51.74499 | 143.179 | 71.00264 | 29.43994 | 20.11823 | 87.36261 | 136.5406 | 172.2738 | 58.16152 | |
median | 756.9065 | 1727.993 | 1614.302 | 1814.419 | 1016.753 | 1629.026 | 1640.413 | 1039.713 | 1049.372 | 1466.552 | 1390.637 | 1138.824 | 1287.289 | |
rank | 1 | 12 | 9 | 13 | 2 | 10 | 11 | 3 | 4 | 8 | 7 | 5 | 6 | |
C17-F8 | mean | 805.721 | 1383.747 | 1105.554 | 1409.746 | 998.4823 | 1400.121 | 1294.188 | 1009.222 | 1020.516 | 1291.782 | 1120.587 | 1041.767 | 1231.146 |
best | 802.9849 | 1329.89 | 1061.81 | 1379.857 | 969.3698 | 1306.445 | 1168.316 | 971.7921 | 987.8738 | 1238.631 | 1112.55 | 1001.552 | 1191.784 | |
worst | 810.9445 | 1425.038 | 1150.513 | 1430.397 | 1028.234 | 1526.639 | 1397.851 | 1076.128 | 1056.699 | 1344.626 | 1134.428 | 1103.928 | 1253.498 | |
std | 3.864789 | 46.39957 | 54.21158 | 23.03374 | 33.11967 | 102.6223 | 102.3809 | 49.57683 | 33.2358 | 47.41642 | 10.58349 | 52.43473 | 29.22653 | |
median | 804.4773 | 1390.03 | 1104.946 | 1414.365 | 998.1629 | 1383.7 | 1305.294 | 994.4836 | 1018.745 | 1291.936 | 1117.686 | 1030.794 | 1239.651 | |
rank | 1 | 11 | 6 | 13 | 2 | 12 | 10 | 3 | 4 | 9 | 7 | 5 | 8 | |
C17-F9 | mean | 900 | 34,017.31 | 12,532.18 | 34,198.38 | 3177.381 | 35,681.16 | 31,068.86 | 18,528.59 | 6510.378 | 22,640.43 | 10,076.76 | 9719.426 | 12,073.9 |
best | 900 | 32,673.96 | 11,946.23 | 32,133.22 | 2002.422 | 32,892.84 | 28,919.61 | 9937.486 | 5666.427 | 17447.6 | 9185.167 | 9007.899 | 9942.128 | |
worst | 900 | 37,146.23 | 13,346.71 | 35,882.85 | 4583.441 | 39,793.84 | 36,333.24 | 24,489.87 | 7408.203 | 26,631.57 | 10,878.18 | 11,039.89 | 13,899.21 | |
std | 1 × 10−13 | 2290.983 | 654.6614 | 1919.083 | 1152.366 | 3213.01 | 3805.245 | 7397.037 | 977.6157 | 4122.296 | 760.6097 | 987.5776 | 2266.459 | |
median | 900 | 33,124.53 | 12,417.9 | 34,388.73 | 3061.83 | 35,018.98 | 29511.3 | 19,843.5 | 6483.442 | 23,241.29 | 10,121.84 | 9414.956 | 12,227.13 | |
rank | 1 | 11 | 7 | 12 | 2 | 13 | 10 | 8 | 3 | 9 | 5 | 4 | 6 | |
C17-F10 | mean | 4347.157 | 12,501.61 | 8106.923 | 13,649.47 | 6421.64 | 11,350.83 | 11,358.13 | 7480.766 | 8426.742 | 13,449.81 | 8363.771 | 7602.505 | 11,284.14 |
best | 3555.132 | 11,986.21 | 7592.666 | 13,341.92 | 5583.099 | 10,422.06 | 10,135.81 | 6201.663 | 6491.304 | 12,737.64 | 7552.501 | 7404.352 | 10,755.79 | |
worst | 5099.795 | 13,238.04 | 8574.312 | 14,051.99 | 7036.682 | 12,391.52 | 12,472.96 | 8513.43 | 13,314.41 | 13,992.03 | 9435.288 | 8097.764 | 11,957.84 | |
std | 696.8528 | 648.0204 | 444.9295 | 348.1376 | 748.2319 | 920.4325 | 1107.857 | 1070.697 | 3548.154 | 691.959 | 849.0965 | 357.7925 | 557.7497 | |
median | 4366.851 | 12,391.09 | 8130.356 | 13,601.99 | 6533.389 | 11,294.87 | 11,411.87 | 7603.986 | 6950.626 | 13,534.78 | 8233.648 | 7453.953 | 11,211.46 | |
rank | 1 | 11 | 5 | 13 | 2 | 9 | 10 | 3 | 7 | 12 | 6 | 4 | 8 | |
C17-F11 | mean | 1128.435 | 14,581.89 | 1578.784 | 19,859.3 | 1248.085 | 12,260.21 | 4870.902 | 1544.047 | 5845.583 | 4885.891 | 13455.6 | 1641.182 | 22712 |
best | 1121.25 | 13,439.55 | 1465.724 | 17,672.52 | 1202.111 | 10,546.11 | 4299.987 | 1401.329 | 3534.593 | 4585.473 | 12623.46 | 1383.954 | 13,300.14 | |
worst | 1133.132 | 15,307.05 | 1722.936 | 21,518.66 | 1277.336 | 14,706.61 | 6080.301 | 1688.152 | 10,104.49 | 5431.524 | 15242.9 | 1948.663 | 30,437.42 | |
std | 5.882766 | 892.6061 | 128.4513 | 1736.908 | 36.19834 | 1938.428 | 884.7653 | 134.8492 | 3279.846 | 420.9414 | 1301.835 | 261.2576 | 7660.041 | |
median | 1129.678 | 14,790.49 | 1563.238 | 20,123.01 | 1256.447 | 11,894.07 | 4551.66 | 1543.353 | 4871.626 | 4763.284 | 12978.01 | 1616.056 | 23,555.22 | |
rank | 1 | 11 | 4 | 12 | 2 | 9 | 6 | 3 | 8 | 7 | 10 | 5 | 13 | |
C17-F12 | mean | 2905.102 | 4.12 × 1010 | 69,333,380 | 6.72 × 1010 | 13,605,050 | 2.44 × 1010 | 1.25 × 109 | 74,845,249 | 9.05 × 108 | 4.77 × 109 | 2.05 × 109 | 1.52 × 109 | 1.93 × 108 |
best | 2527.376 | 3.46 × 1010 | 29,368,335 | 4.9 × 1010 | 12,815,734 | 1.03 × 1010 | 1.03 × 109 | 40,312,005 | 1.42 × 108 | 2.69 × 109 | 6.75 × 108 | 11,998,079 | 60,941,738 | |
worst | 3168.37 | 4.94 × 1010 | 1.07 × 108 | 9.22 × 1010 | 14,242,998 | 4.11 × 1010 | 1.7 × 109 | 1.19 × 108 | 1.68 × 109 | 9.39 × 109 | 3.69 × 109 | 4.38 × 109 | 2.67 × 108 | |
std | 295.8235 | 7.22 × 109 | 45,023,338 | 2.15 × 1010 | 720,098.7 | 1.38 × 1010 | 3.32 × 108 | 35,795,915 | 8.3 × 108 | 3.39 × 109 | 1.35 × 109 | 2.2 × 109 | 98012316 | |
median | 2962.331 | 4.04 × 1010 | 70,415,577 | 6.39 × 1010 | 13,680,735 | 2.32 × 1010 | 1.13 × 109 | 69,985,918 | 8.98 × 108 | 3.51 × 109 | 1.92 × 109 | 8.35 × 108 | 2.22 × 108 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 7 | 4 | 6 | 10 | 9 | 8 | 5 | |
C17-F13 | mean | 1340.1 | 2.32 × 1010 | 140,897.8 | 4.07 × 1010 | 15,504.05 | 9.53 × 109 | 89,692,261 | 228,031.4 | 3.38 × 108 | 5.53 × 108 | 17,510,759 | 4.51 × 108 | 39,233,118 |
best | 1333.781 | 1.34 × 1010 | 32,451.57 | 2.06 × 1010 | 8237.933 | 5.06 × 109 | 67,431,253 | 142,302.5 | 1.53 × 108 | 4.51 × 108 | 29,576.44 | 482,13.45 | 25,574,069 | |
worst | 1343.015 | 3.17 × 1010 | 310,391.5 | 5.86 × 1010 | 18,238.2 | 1.48 × 1010 | 1.02 × 108 | 355,794.9 | 8.49 × 108 | 7.56 × 108 | 59,025,621 | 1.14 × 109 | 52,436,717 | |
std | 4.628289 | 8.68 × 109 | 128,454.8 | 1.72 × 1010 | 5240.914 | 4.47 × 109 | 16,449,744 | 98,176.65 | 3.69 × 108 | 1.49 × 108 | 30,426,143 | 6 × 108 | 12,965,594 | |
median | 1341.801 | 2.39 × 1010 | 110,374.1 | 4.19 × 1010 | 17,770.04 | 9.11 × 109 | 94,744,815 | 207,014.2 | 1.74 × 108 | 5.03 × 108 | 5,493,918 | 3.33 × 108 | 39,460,843 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 7 | 4 | 8 | 10 | 5 | 9 | 6 | |
C17-F14 | mean | 1429.458 | 24,547,842 | 1,156,499 | 45,767,518 | 1555.593 | 2,541,057 | 4,508,830 | 180,566.8 | 1,089,071 | 818,521.1 | 14,325,101 | 542,813 | 10,601,656 |
best | 1425.995 | 8,018,287 | 358,272.2 | 14,037,026 | 1542.966 | 671,287.8 | 3,991,939 | 114,408 | 84,867 | 674,927.6 | 3,247,926 | 195,033.9 | 5,216,894 | |
worst | 1431.939 | 48,055,805 | 2,754,473 | 92,664,890 | 1578.888 | 4,030,294 | 5,358,038 | 350,420 | 2,101,517 | 944,373.3 | 23,520,465 | 869,340.2 | 18,246,361 | |
std | 2.833096 | 18,261,458 | 1,177,220 | 36,148,276 | 17.75996 | 1,505,301 | 637,596.4 | 122,802.9 | 889,843.5 | 151,902 | 9,933,238 | 298,267.8 | 5,945,636 | |
median | 1429.95 | 21,058,639 | 756,625.2 | 38,184,079 | 1550.258 | 2,731,324 | 4,342,672 | 128,719.6 | 1,084,951 | 827,391.7 | 15,266,006 | 553,439 | 9,471,685 | |
rank | 1 | 12 | 7 | 13 | 2 | 8 | 9 | 3 | 6 | 5 | 11 | 4 | 10 | |
C17-F15 | mean | 1530.66 | 2.46 × 109 | 36,017.3 | 3.96 × 109 | 2221.151 | 1.61 × 109 | 9,383,591 | 114,874.9 | 5,626,635 | 66,737,994 | 1.87 × 108 | 10,348.77 | 8,110,945 |
best | 1526.359 | 1.74 × 109 | 22,265.22 | 3.09 × 109 | 2095.201 | 5.54 × 108 | 864,975.3 | 47,605.91 | 40,115.14 | 39,133,444 | 18,196.86 | 2707.533 | 2,756,255 | |
worst | 1532.953 | 3.23 × 109 | 66,256.73 | 4.69 × 109 | 2360.307 | 3.51 × 109 | 17,520,860 | 171,303.9 | 14,819,639 | 86,871,947 | 7.25 × 108 | 20,257.53 | 17,603,160 | |
std | 3.171095 | 7.54 × 108 | 22,039.2 | 7.66 × 108 | 151.7346 | 1.48 × 109 | 7,912,741 | 59,427.02 | 6,970,083 | 21,577,152 | 3.88 × 108 | 8430.859 | 7,096,598 | |
median | 1531.664 | 2.44 × 109 | 27,773.62 | 4.02 × 109 | 2214.548 | 1.19 × 109 | 9,574,265 | 120,294.8 | 3,823,394 | 70,473,293 | 11,294,126 | 92,15.01 | 6,042,184 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 8 | 5 | 6 | 9 | 10 | 3 | 7 | |
C17-F16 | mean | 2062.891 | 6055.705 | 4230.866 | 7286.688 | 2715.947 | 4502.88 | 5307.482 | 3259.66 | 3256.914 | 4410.308 | 3853.938 | 3272.332 | 3814.265 |
best | 1728.6 | 5263.506 | 3906.274 | 5485.973 | 2565.283 | 3956.823 | 4366.29 | 3042.062 | 2885.687 | 4023.354 | 3533.835 | 2884.743 | 3220.098 | |
worst | 2242.663 | 7712.695 | 4629.947 | 10,846.63 | 2972.475 | 4797.383 | 5941.226 | 3497.433 | 3815.358 | 4684.977 | 4243.311 | 3702.034 | 4321.48 | |
std | 251.732 | 1242.726 | 370.6909 | 2648.976 | 207.9269 | 410.7924 | 747.5385 | 203.9334 | 487.8471 | 301.2195 | 372.8875 | 442.5776 | 518.7537 | |
median | 2140.15 | 5623.309 | 4193.621 | 6407.076 | 2663.014 | 4628.656 | 5461.206 | 3249.573 | 3163.305 | 4466.451 | 3819.303 | 3251.275 | 3857.742 | |
rank | 1 | 12 | 8 | 13 | 2 | 10 | 11 | 4 | 3 | 9 | 7 | 5 | 6 | |
C17-F17 | mean | 2021.151 | 7318.249 | 3475.427 | 10565.46 | 2529.709 | 3852.955 | 4398.159 | 3013.855 | 2917.177 | 4034.141 | 3723.2 | 3279.233 | 3500.279 |
best | 1900.43 | 5587.931 | 3048.898 | 7733.522 | 2457.896 | 3105.043 | 3948.283 | 2486.807 | 2773.782 | 3424.845 | 3287.92 | 3067.102 | 3274.936 | |
worst | 2138.267 | 8946.153 | 3980.719 | 13693.19 | 2586.617 | 4291.887 | 4614.205 | 3479.429 | 3181.295 | 4400.552 | 4018.469 | 3599.306 | 3731.108 | |
std | 145.0735 | 1495.612 | 477.3995 | 2652.838 | 59.50525 | 559.1043 | 336.93 | 443.0295 | 195.5701 | 466.1732 | 342.289 | 271.9751 | 230.6331 | |
median | 2022.954 | 7369.456 | 3436.045 | 10417.56 | 2537.161 | 4007.445 | 4515.074 | 3044.593 | 2856.815 | 4155.583 | 3793.205 | 3225.261 | 3497.537 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 11 | 4 | 3 | 10 | 8 | 5 | 7 | |
C17-F18 | mean | 1830.62 | 71,644,933 | 2,282,053 | 1.06 × 108 | 24,933.8 | 33,174,787 | 42,757,812 | 2,499,198 | 5,417,447 | 7,761,805 | 7,959,184 | 780,149.2 | 8,964,267 |
best | 1822.239 | 57,331,012 | 295,708.8 | 47,785,454 | 3639.966 | 2,982,075 | 11,579,835 | 1,472,444 | 1,032,978 | 5,338,148 | 3,763,256 | 332,571.7 | 3,212,137 | |
worst | 1841.673 | 84,482,938 | 4,179,812 | 1.47 × 108 | 37,239.95 | 94,779,822 | 77,398,257 | 3,890,401 | 10,806,504 | 10,789,188 | 14,873,844 | 1,279,249 | 21,549,980 | |
std | 8.802698 | 12,676,296 | 2,127,114 | 52,960,169 | 15,864.59 | 45,596,982 | 35,182,593 | 1,250,349 | 5,511,839 | 2,492,407 | 5,474,104 | 469,263.6 | 9,154,274 | |
median | 1829.285 | 72,382,892 | 2,326,346 | 1.15 × 108 | 29,427.64 | 17,468,625 | 41,026,578 | 2,316,973 | 4,915,153 | 7,459,941 | 6,599,817 | 754,387.7 | 5,547,476 | |
rank | 1 | 12 | 4 | 13 | 2 | 10 | 11 | 5 | 6 | 7 | 8 | 3 | 9 | |
C17-F19 | mean | 1925.185 | 2.58 × 109 | 245,908.8 | 3.63 × 109 | 2073.532 | 2.53 × 109 | 6,475,385 | 4,850,397 | 1,100,770 | 47,980,587 | 427,886.7 | 372,637.8 | 938,716.6 |
best | 1924.437 | 1.23 × 109 | 86,374.43 | 2.45 × 109 | 2015.54 | 9254734 | 974,023.2 | 3,692,101 | 538,842.2 | 40,733,792 | 246,096.2 | 2846.643 | 734,316.2 | |
worst | 1926.121 | 4.3 × 109 | 507,060.7 | 4.5 × 109 | 2102.175 | 7.39 × 109 | 15,261,932 | 6,015,265 | 1,692,437 | 60,929,130 | 937,548.3 | 930,588.7 | 1,271,577 | |
std | 0.855282 | 1.4 × 109 | 197,321.6 | 9.82 × 108 | 42.77584 | 3.57 × 109 | 6,635,893 | 1,025,132 | 521,283.7 | 9,716,370 | 367,361.1 | 478,110 | 274,030 | |
median | 1925.091 | 2.39 × 109 | 195,100.1 | 3.8 × 109 | 2088.206 | 1.36 × 109 | 4,832,792 | 4,847,111 | 1,085,900 | 45,129,714 | 263,951.2 | 278,557.9 | 874,486.6 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 9 | 8 | 7 | 10 | 5 | 4 | 6 | |
C17-F20 | mean | 2160.172 | 3739.708 | 3206.236 | 3993.273 | 2632.62 | 3366.622 | 3665.426 | 3219.449 | 2598.753 | 3689.507 | 3941.403 | 3228.136 | 3113.444 |
best | 2104.423 | 3417.755 | 2647.545 | 3723.93 | 2361.815 | 2932.995 | 3379.457 | 2994.244 | 2404.456 | 3567.919 | 3676.154 | 2839.06 | 3047.135 | |
worst | 2323.891 | 3908.591 | 3710.536 | 4160.335 | 2899.03 | 3574.769 | 4219.373 | 3661.5 | 2802.626 | 3850.492 | 4204.9 | 3393.829 | 3232.907 | |
std | 117.9742 | 242.6596 | 492.3778 | 203.6536 | 245.8431 | 317.2803 | 414.1949 | 330.2313 | 222.9824 | 131.9757 | 234.3118 | 282.0011 | 89.87337 | |
median | 2106.186 | 3816.244 | 3233.432 | 4044.414 | 2634.817 | 3479.362 | 3531.436 | 3111.026 | 2593.965 | 3669.808 | 3942.28 | 3339.828 | 3086.866 | |
rank | 1 | 11 | 5 | 13 | 3 | 8 | 9 | 6 | 2 | 10 | 12 | 7 | 4 | |
C17-F21 | mean | 2314.895 | 2958.552 | 2733.348 | 2995.17 | 2442.254 | 2925.395 | 2916.744 | 2560.302 | 2510.584 | 2796.451 | 2815.649 | 2641.299 | 2727.929 |
best | 2309.045 | 2923.947 | 2617.377 | 2895.165 | 2423.487 | 2823.876 | 2807.691 | 2526.766 | 2458.473 | 2773.337 | 2747.894 | 2572.718 | 2705.321 | |
worst | 2329.683 | 2992.548 | 2912.56 | 3077.266 | 2465.361 | 3086.454 | 3007.585 | 2595.961 | 2551.222 | 2838.569 | 2852.73 | 2743.557 | 2745.95 | |
std | 10.6856 | 36.84403 | 137.6229 | 93.90139 | 23.25965 | 122.2094 | 92.7019 | 38.81585 | 42.5424 | 32.71981 | 51.42597 | 81.54098 | 21.65185 | |
median | 2310.426 | 2958.857 | 2701.727 | 3004.125 | 2440.085 | 2895.624 | 2925.85 | 2559.24 | 2516.321 | 2786.948 | 2830.986 | 2624.459 | 2730.223 | |
rank | 1 | 12 | 7 | 13 | 2 | 11 | 10 | 4 | 3 | 8 | 9 | 5 | 6 | |
C17-F22 | mean | 3095.169 | 14,381.28 | 10,735.22 | 15,586.33 | 5238.992 | 13,204.05 | 13,134.48 | 8696.273 | 8577.841 | 15,062.48 | 11,011.68 | 9417.496 | 8539.763 |
best | 2300 | 14,075.99 | 8477.805 | 15,337.64 | 2319.192 | 12,757.95 | 12,515.38 | 6902.035 | 7540.137 | 14,564.9 | 10,682.75 | 8607.223 | 3940.882 | |
worst | 5480.678 | 14,614.08 | 12,338.27 | 15,901.64 | 8225.291 | 13,754.75 | 13,440.31 | 9900.313 | 9093.964 | 15,587.42 | 11,455.85 | 9873.749 | 13,014.37 | |
std | 1718.838 | 252.9608 | 1986.881 | 297.0998 | 3431.247 | 461.0354 | 459.4987 | 1378.681 | 763.6749 | 524.5437 | 354.9343 | 643.2589 | 5437.789 | |
median | 2300 | 14,417.51 | 11,062.41 | 15,553.02 | 5205.742 | 13,151.75 | 13,291.11 | 8991.372 | 8838.632 | 15,048.8 | 10,954.06 | 9594.506 | 8601.899 | |
rank | 1 | 11 | 7 | 13 | 2 | 10 | 9 | 5 | 4 | 12 | 8 | 6 | 3 | |
C17-F23 | mean | 2743.354 | 3773.165 | 3267.399 | 3845.773 | 2883.332 | 3699.586 | 3702.012 | 2978.122 | 3007.731 | 3257.733 | 4667.345 | 3349.089 | 3335.195 |
best | 2729.988 | 3697.11 | 3186.145 | 3800.165 | 2870.86 | 3497.727 | 3526.302 | 2937.802 | 2930.594 | 3172.86 | 4480.352 | 3284.399 | 3209.871 | |
worst | 2752.657 | 3867.238 | 3345.548 | 3885.063 | 2902.648 | 4024.291 | 3799.342 | 3048.593 | 3141.995 | 3323.727 | 4832.166 | 3404.779 | 3468.512 | |
std | 10.82585 | 80.48427 | 81.78723 | 38.4172 | 14.81681 | 271.1811 | 131.9987 | 56.41876 | 99.99404 | 67.63572 | 155.9564 | 69.12909 | 114.4869 | |
median | 2745.387 | 3764.156 | 3268.952 | 3848.932 | 2879.909 | 3638.163 | 3741.202 | 2963.047 | 2979.168 | 3267.174 | 4678.432 | 3353.588 | 3331.199 | |
rank | 1 | 11 | 6 | 12 | 2 | 9 | 10 | 3 | 4 | 5 | 13 | 8 | 7 | |
C17-F24 | mean | 2919.043 | 4158.336 | 3489.092 | 4422.753 | 3059.509 | 3961.155 | 3793.065 | 3126.536 | 3187.581 | 3426.834 | 4322.995 | 3441.03 | 3634.107 |
best | 2909.046 | 3912.993 | 3382.367 | 3954.227 | 3030.994 | 3868.606 | 3686.068 | 3089.738 | 3092.641 | 3352.168 | 4289.373 | 3286.781 | 3595.241 | |
worst | 2924.412 | 4706.895 | 3667.655 | 5570.329 | 3096.139 | 4095.636 | 3844.358 | 3160.497 | 3312.122 | 3483.627 | 4373.877 | 3591.621 | 3729.153 | |
std | 7.375459 | 398.7304 | 133.6558 | 835.2546 | 31.62752 | 112.601 | 79.15459 | 33.14311 | 98.95744 | 66.27591 | 42.52424 | 146.7457 | 68.72469 | |
median | 2921.358 | 4006.728 | 3453.172 | 4083.228 | 3055.451 | 3940.189 | 3820.917 | 3127.955 | 3172.78 | 3435.77 | 4314.364 | 3442.86 | 3606.016 | |
rank | 1 | 11 | 7 | 13 | 2 | 10 | 9 | 3 | 4 | 5 | 12 | 6 | 8 | |
C17-F25 | mean | 2983.145 | 8358.473 | 3169.846 | 11550.19 | 3064.409 | 5875.926 | 4102.998 | 3051.876 | 3987.845 | 4312.736 | 4220.542 | 3115.534 | 4001.888 |
best | 2980.235 | 6904.775 | 3142.826 | 9298.866 | 3044.6 | 4799.928 | 3711.576 | 3018.797 | 3799.736 | 3847.277 | 3887.124 | 3072.536 | 3898.905 | |
worst | 2991.831 | 9278.402 | 3214.139 | 12932.72 | 3082.091 | 6899.094 | 4398.395 | 3070.37 | 4183.116 | 4880.249 | 4852.507 | 3162.809 | 4119.426 | |
std | 6.258337 | 1137.135 | 33.26204 | 1845.364 | 16.73698 | 975.136 | 315.7771 | 25.35295 | 215.8708 | 563.6518 | 490.7048 | 49.57299 | 98.33715 | |
median | 2980.257 | 8625.356 | 3161.209 | 11984.59 | 3065.473 | 5902.342 | 4151.01 | 3059.169 | 3984.264 | 4261.709 | 4071.269 | 3113.396 | 3994.61 | |
rank | 1 | 12 | 5 | 13 | 3 | 11 | 8 | 2 | 6 | 10 | 9 | 4 | 7 | |
C17-F26 | mean | 3776.432 | 13,660.32 | 10,678.55 | 14,603.91 | 3346.367 | 12,259.93 | 13,401.96 | 5707.421 | 6402.076 | 9477.971 | 11,225.99 | 7944.296 | 8773.46 |
best | 3748.807 | 13,432.6 | 10,187.45 | 14,009.68 | 3152.363 | 10,228.86 | 12,511.53 | 5236.83 | 6026.365 | 8701.664 | 10,888.84 | 7391.57 | 6977.404 | |
worst | 3793.643 | 13,844.31 | 11,170.63 | 15,517.04 | 3624.726 | 13,476.25 | 15,057.43 | 5962.706 | 6754.967 | 10,201.56 | 11,612.76 | 8484.606 | 11,098.61 | |
std | 21.02196 | 205.2241 | 434.607 | 707.3723 | 231.469 | 1523.052 | 1220.589 | 355.1918 | 410.8507 | 679.9345 | 326.2241 | 529.5801 | 2118.333 | |
median | 3781.639 | 13,682.2 | 10,678.05 | 14,444.45 | 3304.189 | 12,667.3 | 13,019.43 | 5815.074 | 6413.485 | 9504.333 | 11,201.18 | 7950.503 | 8508.914 | |
rank | 2 | 12 | 8 | 13 | 1 | 10 | 11 | 3 | 4 | 7 | 9 | 5 | 6 | |
C17-F27 | mean | 3251.26 | 4734.4 | 3825.496 | 4915.84 | 3378.218 | 4648.455 | 4409.715 | 3357.69 | 3624.023 | 3806.748 | 7887.712 | 3629.276 | 4394.857 |
best | 3227.701 | 4428.353 | 3780.013 | 4554.826 | 3273.743 | 3963.317 | 3857.547 | 3318.37 | 3579.701 | 3620.846 | 7642.785 | 3375.58 | 4287.832 | |
worst | 3313.631 | 4943.81 | 3887.409 | 5174.739 | 3474.196 | 5125.306 | 4961.724 | 3424.965 | 3671.332 | 3970.743 | 8232.623 | 3865.274 | 4534.067 | |
std | 45.07966 | 245.282 | 53.15123 | 319.8348 | 88.96046 | 546.2171 | 561.1654 | 50.84626 | 51.51511 | 168.3518 | 307.5623 | 239.8878 | 112.9655 | |
median | 3231.854 | 4782.718 | 3817.282 | 4966.898 | 3382.467 | 4752.599 | 4409.794 | 3343.713 | 3622.53 | 3817.701 | 7837.719 | 3638.124 | 4378.764 | |
rank | 1 | 11 | 7 | 12 | 3 | 10 | 9 | 2 | 4 | 6 | 13 | 5 | 8 | |
C17-F28 | mean | 3258.849 | 8498.986 | 3579.443 | 10,843.58 | 3348.462 | 7086.436 | 4756.321 | 3284.876 | 4355.288 | 5165.78 | 4984.769 | 3846.733 | 4965.869 |
best | 3258.849 | 7680.203 | 3500.359 | 9615.557 | 3313.193 | 5764.138 | 4172.184 | 3263.878 | 4095.464 | 4569.582 | 4926.445 | 3541.393 | 4722.747 | |
worst | 3258.849 | 10,568.39 | 3665.74 | 14105.18 | 3391.773 | 8447.196 | 4979.887 | 3303.061 | 4681.937 | 5690.371 | 5099.843 | 4341.775 | 5145.847 | |
std | 0 | 1503.213 | 88.19974 | 2354.415 | 41.65681 | 1470.184 | 422.2117 | 20.76792 | 295.661 | 497.7929 | 85.16528 | 374.3908 | 221.6401 | |
median | 3258.849 | 7873.678 | 3575.837 | 9826.799 | 3344.442 | 7067.205 | 4936.606 | 3286.283 | 4321.875 | 5201.584 | 4956.394 | 3751.881 | 4997.441 | |
rank | 1 | 12 | 4 | 13 | 3 | 11 | 7 | 2 | 6 | 10 | 9 | 5 | 8 | |
C17-F29 | mean | 3263.038 | 13193.72 | 5410.664 | 18815.8 | 4060.692 | 6750.47 | 8803.392 | 4773.422 | 4809.39 | 6400.658 | 7974.326 | 4776.587 | 6030.774 |
best | 3247.132 | 8747.727 | 5271.406 | 10,011.71 | 3718.13 | 6321.401 | 5975.384 | 4344.624 | 4611.737 | 5532.581 | 6592.523 | 4554.931 | 5732.968 | |
worst | 3278.787 | 18,067.57 | 5545.833 | 29,679.85 | 4295.145 | 7256.817 | 11,494.21 | 5348.985 | 5097.581 | 7352.586 | 10,413.84 | 4859.451 | 6612.477 | |
std | 18.86722 | 4636.255 | 121.2592 | 9468.58 | 282.1155 | 419.2955 | 2456.69 | 454.5769 | 240.968 | 931.8459 | 1860.347 | 159.8595 | 445.044 | |
median | 3263.116 | 12,979.79 | 5412.707 | 17,785.82 | 4114.748 | 6711.83 | 8871.987 | 4700.039 | 4764.122 | 6358.733 | 7445.468 | 4845.984 | 5888.826 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 11 | 3 | 5 | 8 | 10 | 4 | 7 | |
C17-F30 | mean | 623,575.2 | 3.1 × 109 | 20,745,165 | 5.2 × 109 | 1,604,261 | 1.57 × 109 | 1.5 × 108 | 66,811,920 | 1.32 × 108 | 2.85 × 108 | 1.75 × 108 | 4,592,435 | 55,400,197 |
best | 582,411.6 | 2.4 × 109 | 12,686,412 | 3.19 × 109 | 1,222,345 | 1.93 × 108 | 1.02 × 108 | 60,379,936 | 63,953,348 | 1.98 × 108 | 1.34 × 108 | 3,217,030 | 44,705,905 | |
worst | 655,637.4 | 4.21 × 109 | 28,422,580 | 8.17 × 109 | 2,594,292 | 3.19 × 109 | 2.07 × 108 | 76,849,184 | 1.96 × 108 | 3.6 × 108 | 2.29 × 108 | 6,374,175 | 77,753,600 | |
std | 35,305.29 | 8.56 × 108 | 8,355,125 | 2.32 × 109 | 716,597.8 | 1.67 × 109 | 57,361,836 | 7,724,811 | 72,107,272 | 73395175 | 43188598 | 1,687,509 | 16,536,183 | |
median | 628,125.9 | 2.9 × 109 | 20,935,834 | 4.73 × 109 | 1,300,204 | 1.45 × 109 | 1.46 × 108 | 65,009,280 | 1.34 × 108 | 2.9 × 108 | 1.68 × 108 | 4,389,268 | 49,570,641 | |
rank | 1 | 12 | 4 | 13 | 2 | 11 | 8 | 6 | 7 | 10 | 9 | 3 | 5 | |
Sum rank | 30 | 335 | 166 | 367 | 63 | 294 | 269 | 112 | 144 | 248 | 254 | 150 | 207 | |
Mean rank | 1.03 | 11.6 | 5.72 | 12.7 | 2.17 | 10.1 | 9.28 | 3.86 | 4.97 | 8.55 | 8.76 | 5.17 | 7.14 | |
Total rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 3 | 4 | 8 | 9 | 5 | 7 |
KOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C17-F1 | mean | 100 | 1.58 × 1011 | 3.62 × 109 | 2.2 × 1011 | 4.92 × 108 | 1.19 × 1011 | 5.93 × 1010 | 62,253,430 | 5.4 × 1010 | 8.63 × 1010 | 1.29 × 1011 | 1.9 × 1010 | 5.31 × 1010 |
best | 100 | 1.54 × 1011 | 1.76 × 109 | 2.17 × 1011 | 3.72 × 108 | 1.05 × 1011 | 5.61 × 1010 | 51,873,540 | 4.68 × 1010 | 8.21 × 1010 | 1.19 × 1011 | 1.28 × 1010 | 5.02 × 1010 | |
worst | 100 | 1.62 × 1011 | 5.21 × 109 | 2.22 × 1011 | 6.21 × 108 | 1.33 × 1011 | 6.64 × 1010 | 72,902,555 | 6.12 × 1010 | 9.51 × 1010 | 1.38 × 1011 | 2.58 × 1010 | 6 × 1010 | |
std | 1.25 × 10−14 | 3.49 × 109 | 1.53 × 109 | 2.74 × 109 | 1.3 × 108 | 1.27 × 1010 | 5.16 × 109 | 11,099,561 | 7.35 × 109 | 6.46 × 109 | 8.88 × 109 | 7.73 × 109 | 5.01 × 109 | |
median | 100 | 1.58 × 1011 | 3.76 × 109 | 2.21 × 1011 | 4.87 × 108 | 1.19 × 1011 | 5.74 × 1010 | 62,118,813 | 5.41 × 1010 | 8.4 × 1010 | 1.3 × 1011 | 1.86 × 1010 | 5.1 × 1010 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 8 | 2 | 7 | 9 | 11 | 5 | 6 | |
C17-F3 | mean | 300 | 404,928 | 308,705.2 | 305,078.4 | 149,288.1 | 343,809.3 | 746,230.4 | 440,732.8 | 348,188.2 | 280,055.7 | 324,723.4 | 511,448.9 | 545,904.9 |
best | 300 | 368,992.5 | 301,489 | 294,284.2 | 114,279.6 | 275,513.4 | 653,126.4 | 366,098.8 | 318,613.1 | 262,693.3 | 300,559.7 | 387,456.7 | 523,506.8 | |
worst | 300 | 423,506.9 | 315,620.7 | 311,426.4 | 180,638.3 | 392,636.1 | 864,185.5 | 527,615.9 | 381,299.2 | 296,333.9 | 355,410.5 | 717,963.1 | 563,654.1 | |
std | 0 | 27,550.87 | 6455.142 | 8675.46 | 31,154.28 | 53,608.71 | 98,334.04 | 88,879.94 | 36,246.4 | 14,858.87 | 24,599.61 | 165,406 | 19,163.79 | |
median | 300 | 413,606.4 | 308,855.5 | 307,301.5 | 151,117.3 | 353,543.8 | 733,804.8 | 434,608.2 | 346,420.3 | 280,597.9 | 321,461.8 | 470,188 | 548,229.4 | |
rank | 1 | 9 | 5 | 4 | 2 | 7 | 13 | 10 | 8 | 3 | 6 | 11 | 12 | |
C17-F4 | mean | 602.1722 | 42,138.29 | 1502.374 | 71,028.99 | 995.9106 | 15,163.2 | 10374.2 | 751.7312 | 4255.296 | 10,185.59 | 32,273.01 | 2370.108 | 8733.789 |
best | 592.0676 | 38,782.36 | 1266.555 | 64,387.23 | 889.1278 | 9932.833 | 8841.988 | 699.3299 | 3275.684 | 9707.125 | 25,669.07 | 1446.025 | 8255.076 | |
worst | 612.2769 | 46,196.97 | 1651.894 | 79,138.29 | 1106.866 | 20,151.17 | 11,387.64 | 808.4239 | 6380.153 | 11,011.91 | 36,518.9 | 2982.036 | 9277.937 | |
std | 12.61058 | 3445.179 | 189.1307 | 6610.851 | 113.7622 | 4563.887 | 1170.386 | 49.21291 | 1545.055 | 670.7662 | 5662.855 | 715.5603 | 514.181 | |
median | 602.1722 | 41,786.92 | 1545.524 | 70,295.22 | 993.8243 | 15284.4 | 10,633.58 | 749.5855 | 3682.673 | 10,011.66 | 33,452.04 | 2526.186 | 8701.071 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 9 | 2 | 6 | 8 | 11 | 5 | 7 | |
C17-F5 | mean | 512.9345 | 1875.442 | 1245.443 | 1846.994 | 1162.661 | 2018.132 | 1732.529 | 1172.417 | 1123.255 | 1765.013 | 1265.907 | 1338.14 | 1494.762 |
best | 510.9445 | 1857.699 | 1234.193 | 1813.979 | 1044 | 1994.674 | 1641.963 | 1070.597 | 1070.278 | 1739.553 | 1234.13 | 1245.053 | 1358.062 | |
worst | 514.9244 | 1886.314 | 1254.082 | 1879.377 | 1242.711 | 2045.421 | 1874.127 | 1237.929 | 1168.535 | 1792.377 | 1295.293 | 1499.148 | 1576.841 | |
std | 1.963315 | 13.38656 | 9.021254 | 35.65558 | 103.5764 | 25.30619 | 108.9261 | 81.39582 | 46.37727 | 23.34161 | 34.43228 | 128.972 | 106.3335 | |
median | 512.9345 | 1878.878 | 1246.749 | 1847.309 | 1181.966 | 2016.216 | 1707.014 | 1190.572 | 1127.102 | 1764.06 | 1267.103 | 1304.179 | 1522.073 | |
rank | 1 | 12 | 5 | 11 | 3 | 13 | 9 | 4 | 2 | 10 | 6 | 7 | 8 | |
C17-F6 | mean | 600 | 697.8946 | 656.8698 | 696.2964 | 634.3171 | 702.0988 | 695.5838 | 668.6175 | 636.9566 | 674.7253 | 658.8237 | 656.4638 | 657.9726 |
best | 600 | 695.399 | 653.1221 | 691.7436 | 630.7892 | 690.7201 | 686.5543 | 662.3883 | 632.3377 | 666.5929 | 656.4249 | 649.8042 | 651.1735 | |
worst | 600 | 700.2302 | 660.7982 | 698.9958 | 640.2906 | 709.9386 | 711.556 | 674.4143 | 642.7928 | 679.6217 | 662.7141 | 661.8933 | 663.1022 | |
std | 0 | 2.356801 | 3.419722 | 3.464414 | 4.86788 | 10.02518 | 12.12875 | 5.583037 | 4.901089 | 6.734223 | 2.998644 | 6.206345 | 6.49099 | |
median | 600 | 697.9746 | 656.7795 | 697.2231 | 633.0944 | 703.8682 | 692.1125 | 668.8336 | 636.3479 | 676.3432 | 658.0778 | 657.0789 | 658.8074 | |
rank | 1 | 12 | 5 | 11 | 2 | 13 | 10 | 8 | 3 | 9 | 7 | 4 | 6 | |
C17-F7 | mean | 811.392 | 3384.456 | 2895.673 | 3491.538 | 1755.078 | 3223.741 | 3357.825 | 1906.897 | 1921.165 | 2910.907 | 2934.314 | 2338.869 | 2429.204 |
best | 810.0205 | 3303.584 | 2747.83 | 3407.135 | 1700.904 | 3057.858 | 3245.78 | 1756.368 | 1745.893 | 2776.807 | 2812.989 | 2091.564 | 2336.126 | |
worst | 813.1726 | 3479.205 | 3019.769 | 3563.237 | 1830.313 | 3380.477 | 3520.905 | 2021.001 | 2050.532 | 3021.071 | 3135.055 | 2449.042 | 2632.894 | |
std | 1.579207 | 77.97248 | 146.985 | 72.46239 | 60.45772 | 157.4048 | 136.5337 | 119.0395 | 137.7656 | 109.0443 | 151.8379 | 183.0957 | 148.6763 | |
median | 811.1874 | 3377.518 | 2907.546 | 3497.891 | 1744.548 | 3228.315 | 3332.307 | 1925.109 | 1944.117 | 2922.875 | 2894.607 | 2407.434 | 2373.898 | |
rank | 1 | 12 | 7 | 13 | 2 | 10 | 11 | 3 | 4 | 8 | 9 | 5 | 6 | |
C17-F8 | mean | 812.437 | 2286.799 | 1659.732 | 2337.135 | 1378.597 | 2265.896 | 2192.315 | 1400.374 | 1456.862 | 2132.372 | 1740.834 | 1630.792 | 1929.733 |
best | 808.9546 | 2239.937 | 1608.077 | 2314.305 | 1220.571 | 2202.749 | 2006.981 | 1259.576 | 1359.291 | 2072.598 | 1664.978 | 1592.233 | 1882.246 | |
worst | 816.9143 | 2342.537 | 1685.519 | 2351.528 | 1476.704 | 2346.692 | 2334.862 | 1568.602 | 1586.323 | 2181.048 | 1861.416 | 1718.649 | 1977.445 | |
std | 3.673025 | 47.51148 | 38.48614 | 17.31721 | 121.5195 | 74.94211 | 181.4813 | 137.8975 | 110.5319 | 50.88975 | 94.97685 | 63.7038 | 43.93465 | |
median | 811.9395 | 2282.361 | 1672.667 | 2341.353 | 1408.557 | 2257.071 | 2213.708 | 1386.66 | 1440.917 | 2137.922 | 1718.471 | 1606.142 | 1929.621 | |
rank | 1 | 12 | 6 | 13 | 2 | 11 | 10 | 3 | 4 | 9 | 7 | 5 | 8 | |
C17-F9 | mean | 900 | 82,357.33 | 24,238.04 | 70,609.31 | 20534.9 | 110,065.6 | 70,164.92 | 54,136.77 | 32,881.11 | 68,027.74 | 21,571.53 | 30,064.46 | 42,041.39 |
best | 900 | 73,524.29 | 20,181.86 | 68,255.4 | 19,115.08 | 90,235.06 | 54,566.97 | 45,653.35 | 20,357.27 | 65,153.88 | 20,080.31 | 25,427.36 | 38,078.22 | |
worst | 900 | 95,138.23 | 27,278.31 | 72,536.97 | 21,177.59 | 137,283.4 | 88,423.61 | 61,570.09 | 44,704.04 | 69,555.68 | 22,726.29 | 33,483.09 | 47,354.09 | |
std | 1 × 10−13 | 10,079.51 | 3196.155 | 2016.478 | 1031.208 | 21,350.02 | 18,271.2 | 7083.24 | 12,846.03 | 2171.179 | 1195.911 | 3871.169 | 4210.184 | |
median | 900 | 80,383.4 | 24,746.01 | 70,822.43 | 20,923.46 | 106,372.1 | 68,834.55 | 54,661.83 | 33,231.56 | 68,700.7 | 21,739.76 | 30673.7 | 41,366.63 | |
rank | 1 | 12 | 4 | 11 | 2 | 13 | 10 | 8 | 6 | 9 | 3 | 5 | 7 | |
C17-F10 | mean | 11,023.04 | 28,764.18 | 15,559.65 | 29,986.93 | 13,634.91 | 27,925.44 | 26,965.42 | 16,501.04 | 14,842.15 | 29,995.83 | 16,716.58 | 16,576.16 | 24,908.94 |
best | 9625.608 | 28,501.48 | 13,149.25 | 29,169.72 | 12,988.72 | 27,288.18 | 26,175.72 | 15,914.27 | 13,748.85 | 28,785.02 | 15,044.3 | 14,929.99 | 24,375.93 | |
worst | 11,858.81 | 29,077.7 | 17,675.53 | 30,462.85 | 14,449.59 | 28,802.58 | 28,299.11 | 17,067.07 | 15,395.76 | 31,002.21 | 17,671.53 | 17718.83 | 25,453.71 | |
std | 1047.15 | 280.1557 | 2147.914 | 640.6182 | 673.5145 | 744.1283 | 1034.361 | 532.7258 | 812.0447 | 1002.222 | 1299.163 | 1274.408 | 476.2344 | |
median | 11,303.87 | 28,738.77 | 15,706.92 | 30,157.57 | 13,550.67 | 27,805.5 | 26,693.43 | 16,511.41 | 15,112 | 30,098.05 | 17,075.24 | 16,827.92 | 24,903.06 | |
rank | 1 | 11 | 4 | 12 | 2 | 10 | 9 | 5 | 3 | 13 | 7 | 6 | 8 | |
C17-F11 | mean | 1162.329 | 152,618.7 | 59,526.88 | 191,511 | 4526.662 | 60,681.68 | 193,293.4 | 4339.101 | 80,911.4 | 66,616.12 | 160,253.9 | 48,336.21 | 129,219.1 |
best | 1139.568 | 118,460.4 | 53,490.28 | 146,528.4 | 3580.408 | 27,691.6 | 112,503.9 | 3785.463 | 67,217 | 56,196.42 | 133,547.3 | 22,017.74 | 98,621.27 | |
worst | 1220.662 | 177,615.2 | 71,119.92 | 272,854.4 | 5398.409 | 86,791.06 | 311,624.6 | 4595.548 | 91,165.53 | 84,913.49 | 186,954.5 | 98,740.3 | 178,142.1 | |
std | 42.18991 | 27,488.35 | 8816.241 | 61,513.04 | 845.6541 | 26,477.2 | 100,114.6 | 403.6663 | 11,075.45 | 13,609.17 | 23,840.8 | 37,083.83 | 37,651.49 | |
median | 1144.542 | 157,199.6 | 56,748.65 | 173,330.6 | 4563.915 | 64,122.04 | 174,522.6 | 4487.696 | 82631.53 | 62,677.29 | 160,256.9 | 36,293.39 | 120,056.5 | |
rank | 1 | 10 | 5 | 12 | 3 | 6 | 13 | 2 | 8 | 7 | 11 | 4 | 9 | |
C17-F12 | mean | 5974.805 | 9.79 × 1010 | 6.11 × 108 | 1.59 × 1011 | 2.42 × 108 | 5.27 × 1010 | 1.22 × 1010 | 3.08 × 108 | 1.06 × 1010 | 2.03 × 1010 | 6.2 × 1010 | 9.36 × 109 | 1.14 × 1010 |
best | 5383.905 | 6.95 × 1010 | 3.24 × 108 | 1.19 × 1011 | 1.35 × 108 | 2.7 × 1010 | 9.93 × 109 | 1.96 × 108 | 7.35 × 109 | 1.6 × 1010 | 5.37 × 1010 | 1.22 × 109 | 1.04 × 1010 | |
worst | 6570.199 | 1.09 × 1011 | 9.75 × 108 | 1.85 × 1011 | 2.9 × 108 | 8.74 × 1010 | 1.4 × 1010 | 4.84 × 108 | 1.26 × 1010 | 2.8 × 1010 | 7.29 × 1010 | 1.78 × 1010 | 1.35 × 1010 | |
std | 534.4265 | 2.05 × 1010 | 3.04 × 108 | 3.27 × 1010 | 77639019 | 2.73 × 1010 | 1.84 × 109 | 1.37 × 108 | 2.46 × 109 | 5.95 × 109 | 8.62 × 109 | 8.16 × 109 | 1.52 × 109 | |
median | 5972.559 | 1.06 × 1011 | 5.72 × 108 | 1.66 × 1011 | 2.71 × 108 | 4.82 × 1010 | 1.25 × 1010 | 2.77 × 108 | 1.12 × 1010 | 1.87 × 1010 | 6.06 × 1010 | 9.22 × 109 | 1.09 × 1010 | |
rank | 1 | 12 | 4 | 13 | 2 | 10 | 8 | 3 | 6 | 9 | 11 | 5 | 7 | |
C17-F13 | mean | 1407.28 | 2.58 × 1010 | 91,256.28 | 3.96 × 1010 | 90,004.15 | 1.98 × 1010 | 4.85 × 108 | 328,704.5 | 8.79 × 108 | 2.61 × 109 | 8.1 × 109 | 1.64 × 109 | 1.62 × 108 |
best | 1371.145 | 2.25 × 1010 | 64,482.87 | 3.06 × 1010 | 38,600.78 | 1.41 × 1010 | 3.45 × 108 | 289,666.1 | 75804760 | 1.81 × 109 | 4.98 × 109 | 1.8 × 108 | 1.27 × 108 | |
worst | 1439.935 | 2.87 × 1010 | 124,386.1 | 4.49 × 1010 | 223,420.4 | 2.37 × 1010 | 6.56 × 108 | 383,212.3 | 2.32 × 109 | 3.16 × 109 | 1.04 × 1010 | 2.96 × 109 | 1.95 × 108 | |
std | 37.55799 | 3.47 × 109 | 27,453.11 | 7.12 × 109 | 96,700.25 | 4.42 × 109 | 1.73 × 108 | 44,258.34 | 1.12 × 109 | 6.68 × 108 | 2.45 × 109 | 1.48 × 109 | 38092155 | |
median | 1409.02 | 2.61 × 1010 | 88,078.07 | 4.15 × 1010 | 48,997.69 | 2.07 × 1010 | 4.7 × 108 | 320,969.8 | 5.58 × 108 | 2.74 × 109 | 8.51 × 109 | 1.7 × 109 | 1.63 × 108 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 7 | 9 | 10 | 8 | 5 | |
C17-F14 | mean | 1467.509 | 42,216,311 | 6,204,107 | 74,060,256 | 84,566.61 | 8,269,863 | 13,526,119 | 2,820,503 | 8,941,375 | 12,930,337 | 10,688,997 | 757,803.5 | 9,764,305 |
best | 1458.803 | 36,457,596 | 3,762,266 | 67,546,820 | 24,206.95 | 3,756,391 | 7,786,344 | 851,265 | 5,655,602 | 9,633,942 | 8,238,887 | 360,174.1 | 5,463,372 | |
worst | 1472.733 | 48,225,605 | 10,299,057 | 81,072,680 | 179,579.5 | 16,135,326 | 18,489,581 | 3,882,368 | 13,404,428 | 16,523,669 | 16,030,636 | 1,573,345 | 14,383,968 | |
std | 6.533884 | 5,586,786 | 3,112,254 | 7,022,252 | 75,198.33 | 5,894,917 | 4,756,293 | 1,460,448 | 3,671,034 | 3,893,637 | 3,892,590 | 596,855.2 | 4,013,341 | |
median | 1469.25 | 42,091,021 | 5,377,553 | 73,810,762 | 67,240.01 | 6,593,868 | 13,914,276 | 3,274,190 | 8,352,736 | 12,781,869 | 9,243,232 | 548,847.3 | 9,604,939 | |
rank | 1 | 12 | 5 | 13 | 2 | 6 | 11 | 4 | 7 | 10 | 9 | 3 | 8 | |
C17-F15 | mean | 1609.893 | 1.43 × 1010 | 78,513.4 | 2.19 × 1010 | 52,157.64 | 1.12 × 1010 | 65,169,852 | 117,705.4 | 4.66 × 108 | 1.11 × 109 | 1.15 × 109 | 3.1 × 108 | 11,796,816 |
best | 1551.154 | 1.32 × 1010 | 64,221.08 | 1.56 × 1010 | 15,118.62 | 2.33 × 108 | 36,296,713 | 80,566.26 | 3,057,2171 | 3.7 × 108 | 4.62 × 108 | 57,252.33 | 7,606,569 | |
worst | 1652.294 | 1.61 × 1010 | 98,545.34 | 2.73 × 1010 | 79,155.02 | 2.1 × 1010 | 1.25 × 108 | 173,167.1 | 1.4 × 109 | 2.37 × 109 | 1.48 × 109 | 1.22 × 109 | 20,100,543 | |
std | 47.73046 | 1.34 × 109 | 17,735.99 | 6.24 × 109 | 29,217.94 | 9.74 × 109 | 43,882,701 | 44,064.82 | 6.83 × 108 | 9.46 × 108 | 5.07 × 108 | 6.59 × 108 | 6,134,076 | |
median | 1618.063 | 1.4 × 1010 | 75,643.59 | 2.23 × 1010 | 57,178.46 | 1.18 × 1010 | 49,580,925 | 108,544.1 | 2.19 × 108 | 8.48 × 108 | 1.34 × 109 | 8,025,672 | 9,740,076 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 4 | 8 | 9 | 10 | 7 | 5 | |
C17-F16 | mean | 2711.795 | 17,807.45 | 6829.288 | 21,253.99 | 5332.392 | 13,739.07 | 15,293.69 | 6329.66 | 5869.532 | 10,884.72 | 10,477.1 | 6225.534 | 9999.215 |
best | 2171.69 | 16598 | 5742.525 | 16,745.04 | 5239.684 | 11,341.61 | 12,487.67 | 5625.82 | 5308.174 | 10,390.05 | 9089.455 | 5978.097 | 9046.099 | |
worst | 3397.326 | 18,341.03 | 7514.044 | 23745.9 | 5460.054 | 16,458.29 | 16,919.1 | 6794.504 | 6497.975 | 11,891.14 | 12,089.74 | 6424.768 | 10,750.83 | |
std | 551.162 | 879.6119 | 831.8722 | 3433.857 | 106.0604 | 2272.515 | 2146.317 | 563.4107 | 667.5113 | 764.3616 | 1452.409 | 199.4727 | 836.6546 | |
median | 2639.081 | 18,145.39 | 7030.292 | 22,262.51 | 5314.915 | 13,578.19 | 15,884 | 6449.159 | 5835.99 | 10,628.84 | 10,364.6 | 6249.636 | 10,099.97 | |
rank | 1 | 12 | 6 | 13 | 2 | 10 | 11 | 5 | 3 | 9 | 8 | 4 | 7 | |
C17-F17 | mean | 2716.564 | 3,927,275 | 5624.724 | 7,725,893 | 4511.263 | 203,733.2 | 16042.01 | 4809.563 | 5308.937 | 8323.727 | 43,381.69 | 5860.353 | 6845.326 |
best | 2275.021 | 1,151,113 | 5414.129 | 2,094,250 | 4288.731 | 9678.96 | 9909.52 | 4382.975 | 4306.933 | 8195.078 | 28,508.01 | 5606.956 | 6686.242 | |
worst | 3429.127 | 8,935,000 | 6060.028 | 17,777,316 | 4710.347 | 540,996.5 | 27,054.55 | 5129.665 | 6853.048 | 8495.943 | 70,408.53 | 6081.679 | 7005.675 | |
std | 556.02 | 3,965,848 | 328.0954 | 7,974,652 | 229.3653 | 250,918.8 | 8340.432 | 407.3598 | 1220.069 | 157.2312 | 20,046.65 | 216.3887 | 143.4659 | |
median | 2581.054 | 2,811,493 | 5512.37 | 5,516,003 | 4522.987 | 132,128.7 | 13,601.98 | 4862.807 | 5037.884 | 8301.944 | 37,305.12 | 5876.389 | 6844.694 | |
rank | 1 | 12 | 5 | 13 | 2 | 11 | 9 | 3 | 4 | 8 | 10 | 6 | 7 | |
C17-F18 | mean | 1903.746 | 54,356,713 | 2,621,689 | 95,922,318 | 216,127.9 | 13,870,673 | 11,171,762 | 4,568,794 | 10,201,355 | 15,082,925 | 10,942,616 | 5,991,480 | 5,620,042 |
best | 1881.15 | 24,625,693 | 1,303,737 | 37,231,272 | 150,714.8 | 5,195,488 | 8,309,688 | 3,383,599 | 3,212,533 | 11,114,282 | 5,044,896 | 3,700,303 | 4,506,220 | |
worst | 1919.921 | 98,298,865 | 4,144,976 | 1.75 × 108 | 389,411.7 | 28,344,410 | 13,234,559 | 7,674,482 | 16,485,084 | 21,319,750 | 24,326,599 | 8,631,796 | 8,136,061 | |
std | 20.94507 | 34,014,380 | 1,391,324 | 62,946,116 | 125,243.3 | 11,273,064 | 2,425,796 | 2,246,539 | 5,902,257 | 4,738,024 | 9,823,889 | 2,476,657 | 1,846,375 | |
median | 1906.955 | 47,251,148 | 2,519,022 | 85,531,102 | 162,192.5 | 10,971,396 | 11,571,401 | 3,608,547 | 10,553,901 | 13,948,834 | 7,199,485 | 5,816,911 | 4,918,944 | |
rank | 1 | 12 | 3 | 13 | 2 | 10 | 9 | 4 | 7 | 11 | 8 | 6 | 5 | |
C17-F19 | mean | 1972.839 | 1.18 × 1010 | 2,680,996 | 2.08 × 1010 | 260,890.9 | 4.7 × 109 | 1.25 × 108 | 15,497,056 | 3.36 × 108 | 6.23 × 108 | 1.47 × 109 | 2.51 × 108 | 11,920,249 |
best | 1967.139 | 1.04 × 1010 | 1,026,475 | 1.52 × 1010 | 54,987 | 2.08 × 109 | 49,517,164 | 9,038,752 | 2,665,277 | 2.7 × 108 | 2.65 × 108 | 41735153 | 6,085,280 | |
worst | 1977.869 | 1.39 × 1010 | 4,935,230 | 2.59 × 1010 | 441,843 | 9.34 × 109 | 2.1 × 108 | 24,632,296 | 1.01 × 109 | 1.43 × 109 | 2.78 × 109 | 5.43 × 108 | 21,558,115 | |
std | 4.903424 | 1.7 × 109 | 1,785,587 | 4.78 × 109 | 173,544.5 | 3.47 × 109 | 80,527,497 | 8,319,908 | 5.08 × 108 | 5.9 × 108 | 1.35 × 109 | 2.63 × 108 | 7,420,795 | |
median | 1973.174 | 1.15 × 1010 | 2,381,140 | 2.11 × 1010 | 273,366.8 | 3.69 × 109 | 1.2 × 108 | 14,158,588 | 1.65 × 108 | 3.94 × 108 | 1.42 × 109 | 2.1 × 108 | 10,018,800 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 6 | 5 | 8 | 9 | 10 | 7 | 4 | |
C17-F20 | mean | 3192.04 | 7023.285 | 5985.235 | 7260.025 | 4412.931 | 6781.841 | 6793.6 | 5644.431 | 5890.077 | 6984.874 | 6120.649 | 5233.459 | 6075.159 |
best | 2806.762 | 6829.743 | 5654.233 | 7149.763 | 4348.395 | 6182.804 | 6387.46 | 5349.746 | 4727.223 | 6213.519 | 5707.013 | 4530.691 | 5488.476 | |
worst | 3662.121 | 7208.922 | 6244.551 | 7348.729 | 4462.415 | 7523.552 | 7159.203 | 6141.253 | 6760.14 | 7304.646 | 6356.099 | 6062.992 | 6518.798 | |
std | 474.8604 | 174.0937 | 305.793 | 89.29151 | 54.68408 | 625.1056 | 363.8662 | 371.3965 | 1086.402 | 559.1247 | 314.4945 | 708.369 | 532.1535 | |
median | 3149.639 | 7027.237 | 6021.078 | 7270.804 | 4420.457 | 6710.503 | 6813.868 | 5543.363 | 6036.472 | 7210.666 | 6209.742 | 5170.075 | 6146.681 | |
rank | 1 | 12 | 6 | 13 | 2 | 9 | 10 | 4 | 5 | 11 | 8 | 3 | 7 | |
C17-F21 | mean | 2342.155 | 4151.348 | 3574.821 | 4266.647 | 2799.036 | 3997.715 | 4093.548 | 3175.182 | 2932.013 | 3613.086 | 4549.153 | 3496.065 | 3343.183 |
best | 2338.689 | 4107.393 | 3376.278 | 4194.602 | 2757.144 | 3862.258 | 3811.848 | 3110.225 | 2854.849 | 3461.704 | 4028.685 | 3319.511 | 3309.565 | |
worst | 2346.015 | 4217.579 | 3704.394 | 4320.067 | 2831.742 | 4089.581 | 4311.231 | 3297.735 | 2982.826 | 3785.023 | 4967.745 | 3829.46 | 3390.042 | |
std | 3.641031 | 56.93501 | 152.9064 | 58.93068 | 34.17408 | 120.6932 | 241.6377 | 90.93975 | 58.8322 | 148.8337 | 423.2554 | 249.8118 | 37.59003 | |
median | 2341.959 | 4140.209 | 3609.306 | 4275.959 | 2803.629 | 4019.511 | 4125.556 | 3146.383 | 2945.189 | 3602.808 | 4600.09 | 3417.645 | 3336.562 | |
rank | 1 | 11 | 7 | 12 | 2 | 9 | 10 | 4 | 3 | 8 | 13 | 6 | 5 | |
C17-F22 | mean | 11,739 | 30,389.97 | 19,679.11 | 31,939.77 | 18,226.43 | 29,450.95 | 27,924.04 | 16,910.76 | 22,548.19 | 31,825.23 | 20,522.33 | 21,234.75 | 27,607.99 |
best | 11,119.08 | 29,591.74 | 18,382.78 | 31,596.57 | 16,981.68 | 28,324.93 | 26,479.85 | 15,962.66 | 18,088.1 | 30,868.7 | 19,828.32 | 19,895.94 | 26,619.11 | |
worst | 12,601.6 | 30,838.34 | 21,415.94 | 32,523.91 | 19,791.77 | 30,521.39 | 29,094.01 | 17,579.6 | 32,990.52 | 32,297.18 | 20,865.15 | 22,720.8 | 28,365.86 | |
std | 705.4602 | 624.8952 | 1474.099 | 465.5068 | 1281.164 | 971.7317 | 1246.104 | 857.364 | 7647.385 | 700.4176 | 508.5205 | 1275.296 | 909.2197 | |
median | 11,617.67 | 30,564.91 | 19,458.85 | 31,819.29 | 18,066.14 | 29,478.73 | 28,061.15 | 17,050.39 | 19,557.07 | 32,067.52 | 20,697.92 | 21,161.13 | 27,723.5 | |
rank | 1 | 11 | 4 | 13 | 3 | 10 | 9 | 2 | 7 | 12 | 5 | 6 | 8 | |
C17-F23 | mean | 2877.697 | 5183.395 | 4035.008 | 5185.429 | 3271.212 | 5296.835 | 5008.148 | 3447.223 | 3572.999 | 4129.891 | 7584.361 | 4745.825 | 4179.074 |
best | 2872.107 | 4945.115 | 3958.545 | 4931.657 | 3256.419 | 4577.595 | 4872.533 | 3360.159 | 3542.184 | 4079.205 | 7020.19 | 4252.255 | 4115.922 | |
worst | 2884.013 | 5462.627 | 4115.774 | 5384.701 | 3300.867 | 6271.779 | 5144.648 | 3559.774 | 3616.474 | 4204.22 | 7983.468 | 5007.602 | 4240.551 | |
std | 5.637338 | 250.2595 | 80.11963 | 202.7715 | 21.6953 | 819.3767 | 140.7254 | 91.22045 | 36.74315 | 57.3217 | 470.63 | 367.588 | 73.25936 | |
median | 2877.334 | 5162.918 | 4032.856 | 5212.679 | 3263.78 | 5168.984 | 5007.706 | 3434.48 | 3566.67 | 4118.07 | 7666.893 | 4861.722 | 4179.912 | |
rank | 1 | 10 | 5 | 11 | 2 | 12 | 9 | 3 | 4 | 6 | 13 | 8 | 7 | |
C17-F24 | mean | 3327.407 | 8237.866 | 5258.389 | 10,101.14 | 3694.095 | 6484.728 | 6209.392 | 3932.62 | 4240.506 | 4672.899 | 10,398.02 | 5813.699 | 5261.184 |
best | 3295.518 | 6456.699 | 5051.152 | 6815.066 | 3649.127 | 6017.893 | 5808.354 | 3866.027 | 4014.79 | 4451.077 | 9777.358 | 5457.958 | 5175.657 | |
worst | 3357.991 | 9447.59 | 5431.181 | 12,287.15 | 3757.133 | 6792.878 | 6818.978 | 4037.589 | 4443.96 | 4891.541 | 12026.38 | 6267.152 | 5422.226 | |
std | 32.01326 | 1546.525 | 182.1746 | 2862.73 | 55.89092 | 357.0162 | 475.2686 | 87.21459 | 239.8235 | 195.1663 | 1174.871 | 390.3473 | 121.0442 | |
median | 3328.059 | 8523.587 | 5275.612 | 10,651.17 | 3685.059 | 6564.071 | 6105.117 | 3913.432 | 4251.637 | 4674.488 | 9894.175 | 5764.842 | 5223.427 | |
rank | 1 | 11 | 6 | 12 | 2 | 10 | 9 | 3 | 4 | 5 | 13 | 8 | 7 | |
C17-F25 | mean | 3185.232 | 14,590.42 | 4086.698 | 20,310.76 | 3658.19 | 10,067.47 | 7074.01 | 3396.171 | 6250.883 | 8588.452 | 10594.16 | 4087.701 | 7625.964 |
best | 3137.371 | 13,878.09 | 3727.323 | 18,843.71 | 3489.381 | 9445.538 | 6483.569 | 3333.134 | 6101.685 | 7418.938 | 9782.467 | 3832.002 | 6948.964 | |
worst | 3261.571 | 16,259.31 | 4423.181 | 23,589.11 | 3778.549 | 10,467.63 | 7437.697 | 3461.629 | 6633.122 | 10,150.83 | 12,040.09 | 4493.102 | 8316.299 | |
std | 64.74694 | 1215.09 | 310.2059 | 2414.639 | 131.1693 | 501.7799 | 465.92 | 58.5326 | 276.6495 | 1350.275 | 1080.962 | 342.0666 | 767.1223 | |
median | 3170.992 | 14,112.14 | 4098.144 | 19,405.11 | 3682.415 | 10178.35 | 7187.386 | 3394.961 | 6134.363 | 8392.017 | 10277.05 | 4012.85 | 7619.298 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 7 | 2 | 6 | 9 | 11 | 5 | 8 | |
C17-F26 | mean | 5757.621 | 37,599.89 | 23,572.79 | 43,207.23 | 11,303.81 | 31,755.76 | 32,347.71 | 11,500.89 | 16,242.84 | 22,847.97 | 32,255.29 | 19,867.5 | 22,032.2 |
best | 5645.905 | 37,074.74 | 20,870.36 | 40,786.27 | 10,621.25 | 30,564.12 | 29,032.47 | 10,208.24 | 14,452.99 | 18,739.45 | 30,934.73 | 17,821.34 | 20,493.21 | |
worst | 5844.642 | 38,074.5 | 26,341.57 | 44706.3 | 12,019.7 | 32,501.94 | 35,155.84 | 13,765.58 | 17,757.37 | 28,060.05 | 33,983.27 | 21,759.69 | 23,073.9 | |
std | 90.69965 | 451.3916 | 2529.672 | 2034.296 | 747.0293 | 902.2386 | 3268.805 | 1686.672 | 1505.917 | 4178.487 | 1383.563 | 1793.502 | 1201.027 | |
median | 5769.969 | 37,625.15 | 23,539.62 | 43,668.18 | 11,287.15 | 31,978.48 | 32,601.27 | 11,014.87 | 16,380.51 | 22,296.19 | 32,051.58 | 19,944.49 | 22,280.85 | |
rank | 1 | 12 | 8 | 13 | 2 | 9 | 11 | 3 | 4 | 7 | 10 | 5 | 6 | |
C17-F27 | mean | 3309.493 | 9004.867 | 4118.41 | 11805.97 | 3522.956 | 6429.837 | 5864.661 | 3607.936 | 4041.885 | 4275.759 | 13479.04 | 4034.66 | 5372.113 |
best | 3278.01 | 7603.881 | 3953.301 | 8878.405 | 3486.441 | 6143.785 | 5196.528 | 3568.344 | 3879.077 | 4011.16 | 13152.01 | 3840.815 | 5123.343 | |
worst | 3344.5 | 10,418.38 | 4391.013 | 14849.6 | 3554.811 | 6785.19 | 6607.717 | 3699.249 | 4170.417 | 4711.741 | 13739.86 | 4228.793 | 5747.071 | |
std | 30.65647 | 1653.48 | 204.4777 | 3479.24 | 30.3614 | 300.5311 | 822.9413 | 66.8764 | 155.0178 | 336.4504 | 287.0312 | 231.2728 | 288.6769 | |
median | 3307.732 | 8998.604 | 4064.662 | 11747.94 | 3525.287 | 6395.185 | 5827.2 | 3582.075 | 4059.022 | 4190.067 | 13512.14 | 4034.515 | 5309.019 | |
rank | 1 | 11 | 6 | 12 | 2 | 10 | 9 | 3 | 5 | 7 | 13 | 4 | 8 | |
C17-F28 | mean | 3322.242 | 19,970.48 | 4634.162 | 26,913.35 | 3747.849 | 15,045.04 | 10,001.47 | 3451.906 | 8955.999 | 10,757.53 | 17,980.34 | 7416.474 | 11,054.79 |
best | 3318.742 | 18,603.57 | 4346.486 | 24,122.95 | 3629.68 | 11,836.61 | 8565.014 | 3371.964 | 7606.689 | 8432.049 | 15,531.52 | 5079.455 | 10,078.92 | |
worst | 3327.816 | 22,500.95 | 4846.292 | 30,405.94 | 3832.176 | 17,476.75 | 10942.3 | 3530.021 | 10,881.4 | 12,798.86 | 19,827.58 | 11,380.86 | 12,136.52 | |
std | 4.736062 | 1916.19 | 228.6993 | 2847.832 | 92.0496 | 2921.811 | 1093.816 | 70.30743 | 1492.568 | 2199.987 | 1942.042 | 3103.737 | 1190.622 | |
median | 3321.205 | 19,388.7 | 4671.935 | 26,562.25 | 3764.769 | 15,433.4 | 10,249.28 | 3452.819 | 8667.953 | 10,899.6 | 18,281.13 | 6602.789 | 11,001.85 | |
rank | 1 | 12 | 4 | 13 | 3 | 10 | 7 | 2 | 6 | 8 | 11 | 5 | 9 | |
C17-F29 | mean | 4450.696 | 173,640.1 | 9332.285 | 330,325.3 | 6743.429 | 17,673.7 | 15876.58 | 8443.804 | 8086.701 | 11,981.54 | 23,809.95 | 8409.62 | 11,421.28 |
best | 4169.151 | 99,002.72 | 8115.408 | 177,338.5 | 5954.734 | 13,612.53 | 13,266.43 | 7567.553 | 7913.373 | 11,160.53 | 19,685.19 | 7779.584 | 11,224.67 | |
worst | 4829.521 | 236,869.2 | 10,049.58 | 458,501.8 | 7479.424 | 22,334.88 | 18165 | 9053.309 | 8377.159 | 12,560.52 | 31,169.25 | 9253.719 | 11,868 | |
std | 305.1554 | 63,448.63 | 910.0788 | 129,502.2 | 675.575 | 3932.541 | 2606.5 | 696.2608 | 223.4335 | 643.3947 | 5778.63 | 752.3304 | 326.3862 | |
median | 4402.056 | 179,344.2 | 9582.073 | 342,730.4 | 6769.779 | 17,373.69 | 16,037.45 | 8577.176 | 8028.136 | 12,102.54 | 22,192.68 | 8302.588 | 11,296.22 | |
rank | 1 | 12 | 6 | 13 | 2 | 10 | 9 | 5 | 3 | 8 | 11 | 4 | 7 | |
C17-F30 | mean | 5407.166 | 2.18 × 1010 | 26,142,846 | 3.56 × 1010 | 4,427,168 | 1.26 × 1010 | 1.41 × 109 | 97,057,830 | 1.73 × 109 | 3.57 × 109 | 6.93 × 109 | 5.7 × 108 | 6.28 × 108 |
best | 5337.48 | 1.92 × 1010 | 14,897,444 | 3.32 × 1010 | 1,972,928 | 7.69 × 109 | 1.16 × 109 | 59,721,612 | 7.11 × 108 | 1.34 × 109 | 4.94 × 109 | 1.39 × 108 | 5.24 × 108 | |
worst | 5557.155 | 2.38 × 1010 | 45,972,422 | 3.84 × 1010 | 7,228,943 | 1.56 × 1010 | 1.92 × 109 | 1.19 × 108 | 2.26 × 109 | 6.62 × 109 | 8.39 × 109 | 1.77 × 109 | 6.73 × 108 | |
std | 109.3306 | 2.08 × 109 | 15,036,707 | 2.43 × 109 | 2,625,311 | 3.76 × 109 | 3.69 × 108 | 28729772 | 7.55 × 108 | 2.86 × 109 | 1.57 × 109 | 8.64 × 108 | 75569225 | |
median | 5367.014 | 2.22 × 1010 | 21,850,759 | 3.53 × 1010 | 4,253,401 | 1.36 × 1010 | 1.29 × 109 | 1.05 × 108 | 1.98 × 109 | 3.16 × 109 | 7.19 × 109 | 1.88 × 108 | 6.57 × 108 | |
rank | 1 | 12 | 3 | 13 | 2 | 11 | 7 | 4 | 8 | 9 | 10 | 5 | 6 | |
Sum rank | 29 | 336 | 140 | 355 | 65 | 293 | 265 | 114 | 156 | 249 | 272 | 162 | 203 | |
Mean rank | 1.00 | 11.6 | 4.83 | 12.2 | 2.24 | 10.1 | 9.14 | 3.93 | 5.38 | 8.59 | 9.38 | 5.59 | 7.00 | |
Total rank | 1 | 12 | 4 | 13 | 2 | 11 | 9 | 3 | 5 | 8 | 10 | 6 | 7 |
Compared Algorithm | Objective Function Type | |||
---|---|---|---|---|
CEC 2017 | ||||
D = 10 | D = 30 | D = 50 | D = 100 | |
KOA vs. WSO | 2.02 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. AVOA | 3.77 × 10−19 | 3.02 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. RSA | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. MPA | 2 × 10−18 | 1.56 × 10−16 | 6.62 × 10−18 | 1.97 × 10−21 |
KOA vs. TSA | 9.5 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. WOA | 9.5 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. MVO | 9.03 × 10−19 | 2.13 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. GWO | 5.23 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. TLBO | 3.69 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. GSA | 1.6 × 10−18 | 2.02 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. PSO | 1.54 × 10−19 | 2.35 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA vs. GA | 2.71 × 10−19 | 1.97 × 10−21 | 1.97 × 10−21 | 1.97 × 10−21 |
KOA | WSO | AVOA | RSA | MPA | TSA | WOA | MVO | GWO | TLBO | GSA | PSO | GA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C11-F1 | mean | 5.920103 | 17.69621 | 12.96467 | 21.97703 | 7.568894 | 18.42799 | 13.25656 | 14.01025 | 10.86648 | 18.45995 | 21.6979 | 17.96646 | 23.39238 |
best | 2E-10 | 15.32282 | 8.843037 | 20.11259 | 0.371001 | 17.49967 | 8.211643 | 11.67231 | 1.113002 | 17.0621 | 19.58887 | 10.44374 | 22.24898 | |
worst | 12.30606 | 20.53782 | 16.90606 | 24.49662 | 12.68518 | 19.88034 | 17.35422 | 16.01316 | 17.36624 | 19.9275 | 23.28124 | 24.29279 | 25.59286 | |
std | 7.399774 | 2.789025 | 4.832981 | 2.313631 | 6.116142 | 1.131403 | 4.572836 | 2.388968 | 7.500419 | 1.265393 | 1.662208 | 6.896339 | 1.616415 | |
median | 5.687176 | 17.4621 | 13.05478 | 21.64946 | 8.609699 | 18.16597 | 13.7302 | 14.17777 | 12.49333 | 18.42511 | 21.96075 | 18.56466 | 22.86384 | |
rank | 1 | 7 | 4 | 12 | 2 | 9 | 5 | 6 | 3 | 10 | 11 | 8 | 13 | |
C11-F2 | mean | −26.3179 | −14.5099 | −21.0989 | −11.7212 | −25.1038 | −11.4432 | −18.702 | -8.98275 | −22.6755 | −11.0541 | −15.6523 | −22.7239 | −13.0666 |
best | −27.0676 | −15.8192 | −21.6498 | −12.1497 | −25.7333 | −15.1217 | −22.0626 | −10.9937 | −24.7335 | −12.251 | −20.672 | −24.0624 | −15.3528 | |
worst | −25.4328 | −13.3261 | −20.3939 | −11.2765 | −23.7963 | −9.28114 | −14.7666 | −7.46542 | −19.1239 | −9.99702 | −11.6214 | −20.3886 | −11.4145 | |
std | 0.75982 | 1.374082 | 0.593766 | 0.518106 | 0.977426 | 2.981024 | 4.069634 | 1.659995 | 2.68147 | 1.011466 | 4.444806 | 1.736414 | 2.007767 | |
median | −26.3856 | −14.4472 | −21.176 | −11.7292 | −25.4427 | −10.6851 | −18.9893 | −8.73593 | −23.4223 | −10.9842 | −15.1579 | −23.2224 | −12.7496 | |
rank | 1 | 8 | 5 | 10 | 2 | 11 | 6 | 13 | 4 | 12 | 7 | 3 | 9 | |
C11-F4 | mean | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 |
best | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | |
worst | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | |
std | 2.06 × 10−19 | 2.23 × 10−11 | 2.56 × 10−9 | 5.02 × 10−11 | 1.25 × 10−15 | 2.4 × 10−14 | 6.12 × 10−19 | 1 × 10−12 | 3.75 × 10−15 | 7.88 × 10−14 | 2.01 × 10−19 | 6.24 × 10−20 | 2.77 × 10−18 | |
median | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | 1.15 × 10−5 | |
rank | 1 | 11 | 13 | 12 | 6 | 8 | 4 | 10 | 7 | 9 | 3 | 2 | 5 | |
C11-F4 | mean | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
best | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
worst | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
std | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
median | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
rank | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
C11-F5 | mean | −34.1274 | −24.9831 | −28.2273 | −20.2162 | −33.2934 | −27.268 | −27.7581 | −27.1305 | −31.6254 | −11.175 | −27.481 | −9.04533 | −9.89133 |
best | −34.7494 | −26.1071 | −29.2962 | −22.3239 | −33.8791 | −31.5884 | −27.9121 | −31.7824 | −34.1584 | −13.2553 | −31.5869 | −12.5467 | −11.3064 | |
worst | −33.3862 | −24.0719 | −27.7732 | −17.9006 | −31.9949 | −22.0431 | −27.3472 | −24.7046 | −27.6716 | −9.5842 | −24.3626 | −7.35878 | −8.26201 | |
std | 0.606664 | 0.954124 | 0.784459 | 2.5404 | 0.942943 | 4.250482 | 0.296382 | 3.570447 | 3.001446 | 1.69024 | 3.418314 | 2.641394 | 1.456586 | |
median | −34.1871 | −24.8768 | −27.9199 | −20.3201 | −33.6499 | −27.7202 | −27.8866 | −26.0175 | −32.3359 | −10.9302 | −26.9873 | −8.13789 | −9.99846 | |
rank | 1 | 9 | 4 | 10 | 2 | 7 | 5 | 8 | 3 | 11 | 6 | 13 | 12 | |
C11-F6 | mean | −24.1119 | −14.2181 | −19.1303 | −13.2402 | −22.6478 | −7.84618 | −20.0368 | −9.78463 | −19.7197 | −2.69281 | −21.935 | −3.54463 | −4.43655 |
best | −27.4298 | −14.7657 | −20.5764 | −13.8753 | −25.7881 | −16.6588 | −22.9903 | −17.5337 | −22.5047 | −3.06335 | −26.5427 | −6.47064 | −9.54426 | |
worst | −23.0059 | −13.9749 | −17.3535 | −12.2206 | −21.3642 | −4.61296 | −13.1388 | −2.5693 | −18.0809 | −2.5693 | −17.9788 | −2.5693 | −2.5693 | |
std | 2.390663 | 0.397953 | 1.588785 | 0.820027 | 2.291442 | 6.365898 | 5.059561 | 8.726487 | 2.281691 | 0.266989 | 3.995435 | 2.108302 | 3.688901 | |
median | −23.0059 | −14.0658 | −19.2956 | −13.4325 | −21.7195 | −5.05648 | −22.009 | −9.51776 | −19.1466 | −2.5693 | −21.6092 | −2.5693 | −2.81632 | |
rank | 1 | 7 | 6 | 8 | 2 | 10 | 4 | 9 | 5 | 13 | 3 | 12 | 11 | |
C11-F7 | mean | 0.860699 | 1.588929 | 1.274321 | 1.895534 | 0.928052 | 1.291753 | 1.723324 | 0.8806 | 1.06276 | 1.698963 | 1.074534 | 1.117448 | 1.72023 |
best | 0.582266 | 1.522831 | 1.135433 | 1.662115 | 0.753267 | 1.11618 | 1.60924 | 0.82157 | 0.819432 | 1.514974 | 0.877437 | 0.835816 | 1.331785 | |
worst | 1.025027 | 1.700462 | 1.415644 | 2.080803 | 1.011016 | 1.650959 | 1.89666 | 0.95286 | 1.28323 | 1.841822 | 1.270257 | 1.353691 | 1.92319 | |
std | 0.217481 | 0.085626 | 0.166357 | 0.187391 | 0.128277 | 0.262758 | 0.132348 | 0.068143 | 0.205983 | 0.153914 | 0.191356 | 0.287067 | 0.290068 | |
median | 0.91775 | 1.566211 | 1.273103 | 1.919609 | 0.973964 | 1.199937 | 1.693697 | 0.873984 | 1.074189 | 1.719527 | 1.07522 | 1.140142 | 1.812972 | |
rank | 1 | 9 | 7 | 13 | 3 | 8 | 12 | 2 | 4 | 10 | 5 | 6 | 11 | |
C11-F8 | mean | 220 | 283.7103 | 240.076 | 323.3338 | 222.3985 | 256.5766 | 265.1711 | 223.9974 | 227.1954 | 223.9974 | 245.8376 | 464.6706 | 222.4429 |
best | 220 | 257.7358 | 223.5533 | 283.1596 | 220 | 220 | 244.7841 | 220 | 220 | 220 | 220 | 247.5379 | 220 | |
worst | 220 | 317.7863 | 256.5988 | 367.1058 | 224.7969 | 351.9156 | 310.3422 | 235.9898 | 234.3908 | 235.9898 | 291.9539 | 563.2385 | 229.7715 | |
std | 0 | 28.41633 | 15.36966 | 37.21541 | 2.993307 | 69.08559 | 32.80142 | 8.640932 | 8.97992 | 8.640932 | 36.87853 | 161.4928 | 5.28057 | |
median | 220 | 279.6596 | 240.076 | 321.535 | 222.3985 | 227.1954 | 252.779 | 220 | 227.1954 | 220 | 235.6982 | 523.9529 | 220 | |
rank | 1 | 10 | 6 | 11 | 2 | 8 | 9 | 4 | 5 | 4 | 7 | 12 | 3 | |
C11-F9 | mean | 8789.286 | 547,069.9 | 371,511.9 | 1,042,447 | 19,988.23 | 65,162.08 | 367,913.7 | 131,066 | 42,386.12 | 401,241.9 | 808,215.2 | 1,062,531 | 1,906,799 |
best | 5457.674 | 365,873.9 | 328,486.9 | 680,930.6 | 10,949.51 | 46,760.89 | 203,657 | 74,302.37 | 18,223.63 | 331,972.8 | 691,779.1 | 852,885.8 | 1,827,490 | |
worst | 14,042.29 | 628,479.1 | 399,868.7 | 1,222,895 | 28,267.97 | 82,676.68 | 623,167.9 | 198,505.7 | 73,888.55 | 514,880.9 | 870,022.6 | 1,301,526 | 2,018,443 | |
std | 3999.103 | 133,854.2 | 33,856.02 | 265,605.1 | 8314.79 | 16,558.29 | 206,695.1 | 55,384.58 | 25,423.37 | 87,013.21 | 85,744.4 | 259,125.6 | 101,650 | |
median | 7828.591 | 596,963.3 | 378,846 | 1,132,982 | 20,367.72 | 65,605.38 | 322,415 | 125,728 | 38,716.15 | 379,057 | 835,529.5 | 1,047,857 | 1,890,632 | |
rank | 1 | 9 | 7 | 11 | 2 | 4 | 6 | 5 | 3 | 8 | 10 | 12 | 13 | |
C11-F10 | mean | −21.4889 | −14.12 | −17.0125 | −12.4613 | −19.0763 | −14.5312 | −13.0442 | −14.8369 | −14.2509 | −11.4892 | −13.3191 | −11.587 | −11.2973 |
best | −21.8299 | −15.3076 | −17.2046 | −12.8483 | −19.4648 | −18.9145 | −13.6865 | −21.1931 | −14.7348 | −11.5875 | −13.831 | −11.6414 | −11.351 | |
worst | −20.7878 | −13.528 | −16.6264 | −12.2013 | −18.6742 | −12.2245 | −12.5764 | −11.6609 | −13.1159 | −11.3805 | −12.5594 | −11.5289 | −11.207 | |
std | 0.512709 | 0.876051 | 0.289133 | 0.307505 | 0.431975 | 3.257029 | 0.502411 | 4.650939 | 0.829736 | 0.095696 | 0.674467 | 0.049723 | 0.067749 | |
median | −21.669 | −13.8221 | −17.1095 | −12.3978 | −19.083 | −13.4929 | −12.9569 | −13.2468 | −14.5765 | −11.4944 | −13.4429 | −11.5888 | −11.3155 | |
rank | 1 | 7 | 3 | 10 | 2 | 5 | 9 | 4 | 6 | 12 | 8 | 11 | 13 | |
C11-F11 | mean | 571,712.3 | 5,699,003 | 982,575 | 8,695,685 | 1,637,333 | 5,838,576 | 1,202,495 | 1,293,544 | 3,768,573 | 5,118,129 | 1,394,379 | 5,128,987 | 6,013,014 |
best | 260,837.9 | 5,433,021 | 762,118.9 | 8,399,152 | 1,523,824 | 4,860,529 | 1,092,833 | 614,398.3 | 3,577,942 | 5,083,410 | 1,249,502 | 5,105,127 | 5,964,397 | |
worst | 828,560.9 | 6,062,259 | 1,164,658 | 8,886,901 | 1,774,658 | 7,058,743 | 1,366,333 | 2,688,299 | 4,113,168 | 5,146,813 | 1,569,798 | 5,154,249 | 6,081,889 | |
std | 268,296.7 | 317,615.3 | 189,801.9 | 225,029.1 | 132,340.1 | 981,647.8 | 127,052.8 | 1,018,233 | 255,889.5 | 29,963.32 | 142,773.7 | 27,163.81 | 54,586.44 | |
median | 598,725.2 | 5,650,367 | 1,001,762 | 8,748,344 | 1,625,424 | 5,717,516 | 1,175,408 | 935,740.1 | 3,691,590 | 5,121,145 | 1,379,107 | 5,128,286 | 6,002,886 | |
rank | 1 | 10 | 2 | 13 | 6 | 11 | 3 | 4 | 7 | 8 | 5 | 9 | 12 | |
C11-F12 | mean | 1,199,805 | 8,247,720 | 3332149 | 12996285 | 1273063 | 4953266 | 5722934 | 1324897 | 1419579 | 14067521 | 5,698,270 | 2,291,644 | 14,225,236 |
best | 1,155,937 | 7,907,266 | 3,230,675 | 12,072,526 | 1,198,236 | 4,690,112 | 5,313,383 | 1,176,929 | 1,258,103 | 13,243,726 | 5,415,337 | 2,125,889 | 14,099,206 | |
worst | 1,249,353 | 8,550,516 | 3,399,703 | 13,809,129 | 1,351,682 | 5,093,366 | 5,926,822 | 1,465,198 | 1,556,340 | 14,706,404 | 5,901,330 | 2,495,183 | 14,354,468 | |
std | 48,490.42 | 288,426.6 | 79,806.35 | 769,838.2 | 72,755.16 | 202,184.7 | 305,498.4 | 127,369.5 | 133,721.5 | 663,071.6 | 226,167.1 | 164,645.1 | 112,791.6 | |
median | 1,196,965 | 8,266,549 | 3,349,110 | 13,051,743 | 1,271,167 | 5,014,794 | 5,825,766 | 1,328,729 | 1,431,937 | 14,159,977 | 5,738,206 | 2,272,753 | 14,223,634 | |
rank | 1 | 10 | 6 | 11 | 2 | 7 | 9 | 3 | 4 | 12 | 8 | 5 | 13 | |
C11-F13 | mean | 15,444.2 | 15,849.66 | 15,447.92 | 16,293.63 | 15,462.8 | 15,489.3 | 15,533.71 | 15,506.67 | 15,500.01 | 15,923.76 | 126,162.5 | 15,489.93 | 29,722.15 |
best | 15,444.19 | 15,667.75 | 15,446.94 | 15,885.5 | 15,460.54 | 15,479.58 | 15,490.86 | 15,486.82 | 15,493.22 | 15,623.98 | 91,287.79 | 15,473.04 | 15,460.14 | |
worst | 15,444.21 | 16,290.4 | 15,449.01 | 17,307.6 | 15,466.72 | 15,501.67 | 15,591.47 | 15,544.43 | 15,511.76 | 16,476.01 | 173,464.7 | 15,525.75 | 72,163.25 | |
std | 0.009348 | 320.6504 | 0.938979 | 736.6177 | 2.959633 | 11.80676 | 50.59361 | 28.86293 | 8.881369 | 416.8059 | 39,987.59 | 26.08554 | 30,580.59 | |
median | 15,444.2 | 15,720.26 | 15,447.87 | 15,990.71 | 15,461.98 | 15,487.98 | 15,526.25 | 15,497.71 | 15,497.53 | 15,797.52 | 119,948.7 | 15,480.47 | 15,632.6 | |
rank | 1 | 9 | 2 | 11 | 3 | 4 | 8 | 7 | 6 | 10 | 13 | 5 | 12 | |
C11-F14 | mean | 18,295.35 | 110,685.3 | 18,515.1 | 225,080.2 | 18,601.83 | 19,507.73 | 19,207.97 | 19,397.93 | 19,214.78 | 305,234.2 | 19,077.49 | 19,109.43 | 19,096.92 |
best | 18,241.58 | 84,287.1 | 18,400.49 | 165,852.5 | 18,517.66 | 19,256.18 | 19,055.73 | 19,297.38 | 19,069.82 | 30,025.79 | 18,794.25 | 18,949.03 | 18,818.17 | |
worst | 18,388.08 | 154,677.8 | 18,613.52 | 324,221.2 | 18,678.45 | 20,044.58 | 19,324.43 | 19,476.34 | 19,395.21 | 588,832.6 | 19,282.27 | 19,254.99 | 19,389.24 | |
std | 73.62303 | 34,029.61 | 108.1547 | 76,671.27 | 74.21487 | 390.7942 | 134.2957 | 82.00688 | 155.2719 | 289,952.1 | 228.9053 | 135.3985 | 252.3024 | |
median | 18,275.87 | 101,888 | 18,523.19 | 205,123.5 | 18,605.6 | 19,365.08 | 19,225.86 | 19,409 | 19,197.05 | 301,039.2 | 19,116.72 | 19,116.85 | 19,090.13 | |
rank | 1 | 11 | 2 | 12 | 3 | 10 | 7 | 9 | 8 | 13 | 4 | 6 | 5 | |
C11-F15 | mean | 32,883.58 | 891,992.1 | 106,461.7 | 1,880,192 | 32,947.15 | 54,153.9 | 215,191.7 | 33,096.01 | 33,074.28 | 15,137,368 | 294,860.9 | 33,280.57 | 7,790,850 |
best | 32,782.17 | 368,009.3 | 42,983.25 | 786,645 | 32,868.23 | 33,046.02 | 33,005.18 | 33,011.17 | 33,040.28 | 3,172,284 | 261,029.5 | 33,272.8 | 3,546,456 | |
worst | 32,956.46 | 2,242,044 | 177,487.4 | 4,907,029 | 33,017.52 | 117,203.6 | 307,751.1 | 33,154.09 | 33,139.62 | 22,572,975 | 318,021.3 | 33,293.28 | 13,351,586 | |
std | 79.12175 | 976,285.5 | 78,132.6 | 2,184,347 | 66.11049 | 45,429.94 | 134,057.9 | 67.98468 | 50.6283 | 9,534,343 | 28,655.01 | 9.676778 | 4,859,075 | |
median | 32,897.86 | 478,957.5 | 102,688 | 913,547.5 | 32,951.42 | 33,182.97 | 260,005.3 | 33,109.38 | 33,058.6 | 17,402,107 | 300,196.3 | 33,278.1 | 7,132,679 | |
rank | 1 | 10 | 7 | 11 | 2 | 6 | 8 | 4 | 3 | 13 | 9 | 5 | 12 | |
C11-F16 | mean | 133,550 | 930,219.4 | 135,146.9 | 1,915,857 | 137,581.4 | 144,911.9 | 142,003.9 | 141,654.9 | 145,644.1 | 87,266,512 | 18,380,211 | 78,107,911 | 74,996,694 |
best | 131,374.2 | 286,073.5 | 133,610 | 467,490 | 135,495.9 | 142,214 | 136,296.5 | 133,236.5 | 143,189 | 85,038,927 | 9,336,639 | 64,610,606 | 60,613,719 | |
worst | 136,310.8 | 2,194,266 | 135,733 | 4,757,764 | 141,249.3 | 146,800.8 | 147,282.8 | 150,243.3 | 151,126.3 | 89,779,020 | 33,251,973 | 93,336,289 | 95,925,797 | |
std | 2459.812 | 927,612 | 1111.105 | 2,085,461 | 2774.227 | 2428.678 | 4954.729 | 7708.969 | 3994.098 | 2,147,100 | 11,176,659 | 13,382,204 | 16,212,147 | |
median | 133,257.5 | 620,269 | 135,622.3 | 1,219,088 | 136,790.1 | 145,316.4 | 142,218.1 | 141,570 | 144,130.5 | 87,124,050 | 15,466,115 | 77,242,375 | 71,723,630 | |
rank | 1 | 8 | 2 | 9 | 3 | 6 | 5 | 4 | 7 | 13 | 10 | 12 | 11 | |
C11-F17 | mean | 1,926,615 | 8.8 × 109 | 2.27 × 109 | 1.52 × 1010 | 2,284,236 | 1.26 × 109 | 9.52 × 109 | 3,090,266 | 2,999,477 | 2.19 × 1010 | 1.1 × 1010 | 2.04 × 1010 | 2.15 × 1010 |
best | 1,916,953 | 7.5 × 109 | 2.06 × 109 | 1.09 × 1010 | 1,956,608 | 1.04 × 109 | 6.79 × 109 | 2,290,263 | 2,035,918 | 2.11 × 1010 | 9.69 × 109 | 1.8 × 1010 | 2.01 × 1010 | |
worst | 1,942,685 | 9.75 × 109 | 2.49 × 109 | 1.86 × 1010 | 2,888,986 | 1.44 × 109 | 1.27 × 1010 | 3,709,332 | 4,826,319 | 2.29 × 1010 | 1.17 × 1010 | 2.36 × 1010 | 2.42 × 1010 | |
std | 12,342.79 | 1.08 × 109 | 2.01 × 108 | 3.56 × 109 | 451,894.6 | 2.23 × 108 | 2.67 × 109 | 707,895.2 | 1,358,575 | 7.99 × 108 | 9.7 × 108 | 2.73 × 109 | 2.05 × 109 | |
median | 1,923,412 | 8.97 × 109 | 2.27 × 109 | 1.57 × 1010 | 2,145,674 | 1.28 × 109 | 9.31 × 109 | 3,180,735 | 2,567,834 | 2.18 × 1010 | 1.13 × 1010 | 2.01 × 1010 | 2.08 × 1010 | |
rank | 1 | 7 | 6 | 10 | 2 | 5 | 8 | 4 | 3 | 13 | 9 | 11 | 12 | |
C11-F18 | mean | 942,057.5 | 53,992,864 | 6,452,285 | 1.16 × 108 | 971,200.5 | 2,029,797 | 9,420,999 | 987,267 | 1029,486 | 30,449,642 | 10,940,996 | 1.32 × 108 | 1.12 × 108 |
best | 938,416.2 | 37,139,709 | 3,886,612 | 80,284,910 | 949,566.1 | 1,777,412 | 4,062,802 | 963,557.9 | 966,544.1 | 24,137,837 | 8,169,164 | 1.11 × 108 | 1.08 × 108 | |
worst | 944,706.9 | 61,413,964 | 11,054,310 | 1.33 × 108 | 1,028,421 | 2,366,184 | 16,526,008 | 998,198.6 | 1,195,849 | 32,937,033 | 13,797,505 | 1.47 × 108 | 1.17 × 108 | |
std | 2852.546 | 12,286,170 | 3,607,658 | 26,529,357 | 41,362.17 | 306,787.1 | 5,687,958 | 17,303.95 | 120,120.5 | 4,566,634 | 2,717,842 | 17344620 | 3652762 | |
median | 942,553.5 | 58,708,890 | 5,434,109 | 1.26 × 108 | 953,407.4 | 1,987,796 | 8,547,593 | 993,655.7 | 977,776.1 | 32,361,850 | 10,898,658 | 1.36 × 108 | 1.12 × 108 | |
rank | 1 | 10 | 6 | 12 | 2 | 5 | 7 | 3 | 4 | 9 | 8 | 13 | 11 | |
C11-F19 | mean | 1,025,341 | 53,148,463 | 6,553,177 | 1.14 × 108 | 1,135,759 | 2,437,008 | 10,049,581 | 1,468,377 | 1,356,595 | 34,957,413 | 6,171,131 | 1.7 × 108 | 1.13 × 108 |
best | 967,927.7 | 45,352,373 | 5,986,725 | 98,336,201 | 1,066,369 | 2,201,050 | 2,039,611 | 1,125,232 | 1,227,679 | 24,485,310 | 2,364,740 | 1.54 × 108 | 1.1 × 108 | |
worst | 1,167,142 | 67,568,653 | 7,933,742 | 1.43 × 108 | 1,290,586 | 2,872,382 | 18,188,632 | 1,941,594 | 1,537,473 | 43,599,463 | 8,096,958 | 1.96 × 108 | 1.16 × 108 | |
std | 102,492.2 | 10,833,756 | 1,001,413 | 22,546,262 | 112,531.9 | 322,100.6 | 8,216,956 | 369,271.1 | 140,621.9 | 8,948,137 | 2,812,157 | 19,783,157 | 2,737,120 | |
median | 983,146.6 | 49,836,412 | 6,146,121 | 1.07 × 108 | 1,093,040 | 2,337,301 | 9,985,041 | 1,403,340 | 1,330,614 | 35,872,439 | 7,111,412 | 1.64 × 108 | 1.13 × 108 | |
rank | 1 | 10 | 7 | 12 | 2 | 5 | 8 | 4 | 3 | 9 | 6 | 13 | 11 | |
C11-F20 | mean | 941,250.4 | 56,509,020 | 5,801,655 | 1.23 × 108 | 959,996 | 1,810,298 | 7,164,791 | 972,234.1 | 997,487.3 | 33,954,979 | 14,026,422 | 1.56 × 108 | 1.13 × 108 |
best | 936,143.2 | 49,719,897 | 5,117,171 | 1.08 × 108 | 956,898.3 | 1,629,827 | 6,751,421 | 962,492.3 | 976,961.7 | 33,210,844 | 9,322,495 | 1.43 × 108 | 1.08 × 108 | |
worst | 946,866.6 | 66,914,630 | 6,533,334 | 1.46 × 108 | 961,914.3 | 2,110,594 | 7,716,489 | 983,286 | 1,013,457 | 34,759,801 | 21,703,055 | 1.7 × 108 | 1.17 × 108 | |
std | 5155.253 | 7,919,081 | 635,291 | 17,773,474 | 2340.981 | 246,729.1 | 445,895.7 | 9846.595 | 16,998.67 | 696,370.4 | 5,847,652 | 16,191,798 | 4,388,670 | |
median | 940,995.9 | 54,700,777 | 5778,058 | 1.19 × 108 | 960,585.7 | 1,750,387 | 7,095,627 | 971,579.1 | 999,765.5 | 33,924,636 | 12,540,070 | 1.56 × 108 | 1.14 × 108 | |
rank | 1 | 10 | 6 | 12 | 2 | 5 | 7 | 3 | 4 | 9 | 8 | 13 | 11 | |
C11-F21 | mean | 12.71443 | 49.5692 | 21.48233 | 75.31365 | 15.87735 | 29.51655 | 38.32132 | 27.27063 | 22.20321 | 99.10431 | 40.19808 | 104.0484 | 100.9755 |
best | 9.974206 | 40.87478 | 20.10833 | 56.13583 | 13.68984 | 26.19513 | 35.12125 | 24.26861 | 20.4207 | 47.72372 | 35.44736 | 89.98702 | 57.96669 | |
worst | 14.97499 | 58.87718 | 23.31862 | 94.46155 | 18.16644 | 30.99758 | 42.3 | 30.29163 | 24.54933 | 145.8555 | 43.09654 | 115.6756 | 123.1913 | |
std | 2.480858 | 8.382327 | 1.480962 | 18.29105 | 2.24619 | 2.4322 | 3.426502 | 3.672225 | 1.98522 | 43.45024 | 3.685619 | 13.69468 | 32.80485 | |
median | 12.95425 | 49.26243 | 21.25119 | 75.32861 | 15.82657 | 30.43674 | 37.932 | 27.26113 | 21.92141 | 101.419 | 41.12421 | 105.2655 | 111.372 | |
rank | 1 | 9 | 3 | 10 | 2 | 6 | 7 | 5 | 4 | 11 | 8 | 13 | 12 | |
C11-F22 | mean | 16.12513 | 46.26618 | 27.24332 | 62.63881 | 19.02841 | 31.85176 | 45.79438 | 32.0051 | 24.83497 | 101.0649 | 46.14521 | 105.026 | 91.21431 |
best | 11.50133 | 40.28398 | 21.98339 | 45.5216 | 16.10377 | 27.78821 | 39.51137 | 24.57618 | 23.84349 | 65.45846 | 38.64725 | 88.0089 | 90.18309 | |
worst | 19.55286 | 51.79321 | 32.49921 | 72.15042 | 21.23028 | 34.41746 | 50.53472 | 37.07604 | 25.60263 | 119.7263 | 54.87466 | 116.0237 | 92.84607 | |
std | 4.316441 | 5.332108 | 5.373903 | 12.72094 | 2.646729 | 3.089736 | 5.385079 | 5.98562 | 0.850828 | 26.35509 | 7.226255 | 13.61933 | 1.242127 | |
median | 16.72317 | 46.49376 | 27.24535 | 66.44161 | 19.3898 | 32.6007 | 46.56572 | 33.18408 | 24.94688 | 109.5374 | 45.52947 | 108.0357 | 90.91404 | |
rank | 1 | 9 | 4 | 10 | 2 | 5 | 7 | 6 | 3 | 12 | 8 | 13 | 11 | |
Sum rank | 22 | 191 | 109 | 231 | 55 | 146 | 145 | 118 | 97 | 222 | 157 | 198 | 224 | |
Mean rank | 1.00 | 8.68 | 4.95 | 10.5 | 2.50 | 6.64 | 6.59 | 5.36 | 4.41 | 10.1 | 7.14 | 9.00 | 10.2 | |
Total rank | 1 | 2 | 12 | 4 | 13 | 3 | 11 | 9 | 6 | 7 | 10 | 5 | 8 | |
Wilcoxon: p-value | 1.71 × 10−15 | 9.77 × 10−15 | 1.71 × 10−15 | 7.10 × 10−15 | 3.66 × 10−15 | 1.71 × 10−15 | 3.99 × 10−12 | 7.10 × 10−15 | 5.36 × 10−15 | 8.52 × 10−15 | 2.54 × 10−15 | 5.36 × 10−15 |
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
Ts | Th | R | L | ||
KOA | 0.7780271 | 0.3845792 | 40.312284 | 200 | 5882.8955 |
WSO | 0.7780271 | 0.3845792 | 40.312284 | 200 | 5882.9013 |
AVOA | 0.7780314 | 0.3845813 | 40.312509 | 199.99686 | 5882.9088 |
RSA | 1.2659852 | 0.683916 | 63.993566 | 22.16777 | 8079.2663 |
MPA | 0.7780271 | 0.3845792 | 40.312284 | 200 | 5882.9013 |
TSA | 0.77975 | 0.38603 | 40.399151 | 200 | 5913.8806 |
WOA | 0.9342363 | 0.4623891 | 47.238081 | 122.5792 | 6336.8911 |
MVO | 0.8440256 | 0.4218218 | 43.712275 | 157.7639 | 6024.4345 |
GWO | 0.7785336 | 0.3860227 | 40.322047 | 199.95837 | 5891.4545 |
TLBO | 1.6957318 | 0.4977642 | 48.952657 | 111.82372 | 11,645.486 |
GSA | 1.189919 | 1.2892052 | 44.756424 | 189.21969 | 13,022.865 |
PSO | 1.6814562 | 0.6637242 | 67.02456 | 24.219082 | 10,699.118 |
GA | 1.5133659 | 0.8511325 | 61.306853 | 52.513848 | 11,777.624 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
KOA | 5882.8955 | 5882.8955 | 5882.8955 | 1.87 × 10−12 | 5882.8955 | 1 |
WSO | 5892.6429 | 5882.9013 | 5979.0155 | 26.000485 | 5882.9017 | 3 |
AVOA | 6276.8326 | 5882.9088 | 7244.3289 | 412.32817 | 6075.7427 | 5 |
RSA | 13,520.395 | 8079.2663 | 22,393.029 | 3659.2762 | 12,342.889 | 9 |
MPA | 5882.9013 | 5882.9013 | 5882.9013 | 4.31 × 10−6 | 5882.9013 | 2 |
TSA | 6337.2069 | 5913.8806 | 7129.7183 | 389.86033 | 6187.9875 | 6 |
WOA | 8358.7251 | 6336.8911 | 13,983.562 | 1968.1481 | 7868.4088 | 8 |
MVO | 6626.21 | 6024.4345 | 7249.1095 | 374.8357 | 6689.5036 | 7 |
GWO | 6034.402 | 5891.4545 | 6805.1241 | 280.12773 | 5901.2126 | 4 |
TLBO | 32,084.076 | 11,645.486 | 69,575.146 | 16,143.602 | 28,224.957 | 12 |
GSA | 23,155.786 | 13,022.865 | 36,568.394 | 7853.9605 | 22,204.189 | 10 |
PSO | 33,739.014 | 10,699.118 | 58,342.053 | 15,113.442 | 37,275.068 | 13 |
GA | 28,754.207 | 11,777.624 | 52,278.822 | 12,671.826 | 25,388.128 | 11 |
Algorithm | Optimum Variables | Optimum Cost | ||||||
---|---|---|---|---|---|---|---|---|
b | M | p | l1 | l2 | d1 | d2 | ||
KOA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
WSO | 3.5000005 | 0.7 | 17 | 7.3000102 | 7.8000004 | 3.3502148 | 5.2866833 | 2996.3483 |
AVOA | 3.5 | 0.7 | 17 | 7.3000008 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
RSA | 3.5950209 | 0.7 | 17 | 8.2502092 | 8.2751046 | 3.3558321 | 5.4893788 | 3188.6002 |
MPA | 3.5 | 0.7 | 17 | 7.3 | 7.8 | 3.3502147 | 5.2866832 | 2996.3482 |
TSA | 3.5132973 | 0.7 | 17 | 7.3 | 8.2751046 | 3.3505506 | 5.2903255 | 3014.418 |
WOA | 3.5901774 | 0.7 | 17 | 7.3 | 8.0158051 | 3.361964 | 5.286758 | 3039.5462 |
MVO | 3.5023215 | 0.7 | 17 | 7.3 | 8.0773644 | 3.3701939 | 5.2868879 | 3008.6019 |
GWO | 3.5006611 | 0.7 | 17 | 7.3053023 | 7.8 | 3.3643722 | 5.2888758 | 3001.6737 |
TLBO | 3.5578323 | 0.704121 | 26.612082 | 8.1261628 | 8.1558799 | 3.6731217 | 5.3409871 | 5340.6121 |
GSA | 3.5236186 | 0.7028384 | 17.380563 | 7.8366336 | 7.8923823 | 3.4105869 | 5.389006 | 3175.0876 |
PSO | 3.5084369 | 0.7000742 | 18.129553 | 7.4021022 | 7.870135 | 3.603038 | 5.3457978 | 3312.0108 |
GA | 3.5804277 | 0.7057375 | 17.839 | 7.7562744 | 7.8575718 | 3.7124313 | 5.3481792 | 3360 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
KOA | 2996.3482 | 2996.3482 | 2996.3482 | 9.33 × 10−13 | 2996.3482 | 1 |
WSO | 2996.6405 | 2996.3483 | 2998.8751 | 0.6029466 | 2996.3649 | 3 |
AVOA | 3000.9954 | 2996.3482 | 3011.5309 | 4.0907833 | 3000.8928 | 4 |
RSA | 3285.4608 | 3188.6002 | 3345.574 | 59.295486 | 3300.799 | 9 |
MPA | 2996.3482 | 2996.3482 | 2996.3482 | 3.28 × 10−6 | 2996.3482 | 2 |
TSA | 3033.2399 | 3014.418 | 3047.3957 | 10.453483 | 3035.0831 | 7 |
WOA | 3154.8097 | 3039.5462 | 3458.9999 | 109.58738 | 3120.44 | 8 |
MVO | 3030.8587 | 3008.6019 | 3072.4627 | 13.667672 | 3031.3121 | 6 |
GWO | 3004.8775 | 3001.6737 | 3011.027 | 2.5848683 | 3004.3436 | 5 |
TLBO | 7.171 × 1013 | 5340.6121 | 5.19 × 1014 | 1.193 × 1014 | 2.808 × 1013 | 12 |
GSA | 3468.8298 | 3175.0876 | 4109.0755 | 270.3186 | 3335.169 | 10 |
PSO | 1.058 × 1014 | 3312.0108 | 5.361 × 1014 | 1.278 × 1014 | 7.569 × 1013 | 13 |
GA | 5.095 × 1013 | 3357.7007 | 3.289 × 1014 | 8.026 × 1013 | 2.041 × 1013 | 11 |
Algorithm | Optimum Variables | Optimum Cost | |||
---|---|---|---|---|---|
h | l | t | b | ||
KOA | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7246798 |
WSO | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7248523 |
AVOA | 0.2049413 | 3.4875839 | 9.036514 | 0.2057347 | 1.7259523 |
RSA | 0.1964182 | 3.5366405 | 9.9520327 | 0.2181668 | 1.9831072 |
MPA | 0.2057296 | 3.4704887 | 9.0366239 | 0.2057296 | 1.7248523 |
TSA | 0.2041488 | 3.4961387 | 9.0650317 | 0.2061694 | 1.7341191 |
WOA | 0.2139726 | 3.3254365 | 8.9719001 | 0.2214638 | 1.8242648 |
MVO | 0.2060012 | 3.4646369 | 9.0449319 | 0.2060655 | 1.7284719 |
GWO | 0.2055878 | 3.4737417 | 9.0362284 | 0.2058009 | 1.7255441 |
TLBO | 0.3185927 | 4.4505676 | 6.729429 | 0.4317775 | 3.0631667 |
GSA | 0.2965218 | 2.6988989 | 7.3719858 | 0.3110575 | 2.0954226 |
PSO | 0.3776166 | 3.4232855 | 7.2930935 | 0.5851578 | 4.0927486 |
GA | 0.2248746 | 7.0193634 | 7.724663 | 0.3073695 | 2.7924716 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
KOA | 1.7246798 | 1.7246798 | 1.7246798 | 2.28 × 10−16 | 1.7246798 | 1 |
WSO | 1.7248527 | 1.7248523 | 1.724858 | 1.289 × 10−6 | 1.7248523 | 3 |
AVOA | 1.7623182 | 1.7259523 | 1.8462594 | 0.0375758 | 1.7480047 | 7 |
RSA | 2.1954892 | 1.9831072 | 2.5536739 | 0.1485183 | 2.1696915 | 8 |
MPA | 1.7248523 | 1.7248523 | 1.7248523 | 3.46 × 10−9 | 1.7248523 | 2 |
TSA | 1.7437046 | 1.7341191 | 1.7531762 | 0.0057759 | 1.7438038 | 6 |
WOA | 2.3285011 | 1.8242648 | 4.1166131 | 0.6611968 | 2.0967293 | 9 |
MVO | 1.7417197 | 1.7284719 | 1.7765724 | 0.0141747 | 1.7375259 | 5 |
GWO | 1.7273254 | 1.7255441 | 1.7314921 | 0.0014042 | 1.7270728 | 4 |
TLBO | 3.427 × 1013 | 3.0631667 | 3.307 × 1014 | 8.359 × 1013 | 5.8118858 | 12 |
GSA | 2.4655242 | 2.0954226 | 2.7834667 | 0.1973298 | 2.4959644 | 10 |
PSO | 4.726 × 1013 | 4.0927486 | 2.861 × 1014 | 9.026 × 1013 | 6.881908 | 13 |
GA | 1.16 × 1013 | 2.7924716 | 1.255 × 1014 | 3.561 × 1013 | 5.7774686 | 11 |
Algorithm | Optimum Variables | Optimum Cost | ||
---|---|---|---|---|
d | D | P | ||
KOA | 0.0516891 | 0.3567177 | 11.288966 | 0.0126019 |
WSO | 0.051687 | 0.3566687 | 11.291844 | 0.0126652 |
AVOA | 0.0511766 | 0.3445208 | 12.043632 | 0.0126703 |
RSA | 0.0500841 | 0.3128747 | 14.815225 | 0.0131729 |
MPA | 0.0516908 | 0.3567595 | 11.286517 | 0.0126652 |
TSA | 0.0509675 | 0.3395949 | 12.379923 | 0.0126825 |
WOA | 0.0511504 | 0.3439031 | 12.084068 | 0.0126709 |
MVO | 0.0500841 | 0.3188461 | 13.963843 | 0.0127523 |
GWO | 0.0519643 | 0.363356 | 10.914486 | 0.0126708 |
TLBO | 0.0682172 | 0.9079231 | 2.462505 | 0.0176238 |
GSA | 0.0552141 | 0.4436774 | 7.7157776 | 0.0130859 |
PSO | 0.0681323 | 0.9047167 | 2.462505 | 0.0175188 |
GA | 0.0686985 | 0.9159566 | 2.462505 | 0.0180295 |
Algorithm | Mean | Best | Worst | Std | Median | Rank |
---|---|---|---|---|---|---|
KOA | 0.0126019 | 0.0126019 | 0.0126019 | 6.88 × 10−18 | 0.0126019 | 1 |
WSO | 0.0126766 | 0.0126652 | 0.0128288 | 3.645 × 10−5 | 0.0126657 | 3 |
AVOA | 0.0133542 | 0.0126703 | 0.0141777 | 0.0005668 | 0.0132848 | 8 |
RSA | 0.013256 | 0.0131729 | 0.0134024 | 7.054 × 10−5 | 0.0132346 | 6 |
MPA | 0.0126652 | 0.0126652 | 0.0126652 | 2.90 × 10−9 | 0.0126652 | 2 |
TSA | 0.0129674 | 0.0126825 | 0.0135406 | 0.0002456 | 0.0128926 | 5 |
WOA | 0.0132825 | 0.0126709 | 0.0145297 | 0.0006143 | 0.013081 | 7 |
MVO | 0.0165382 | 0.0127523 | 0.0179998 | 0.0016747 | 0.0174694 | 9 |
GWO | 0.0127239 | 0.0126708 | 0.012951 | 5.622 × 10−5 | 0.0127214 | 4 |
TLBO | 0.0181642 | 0.0176238 | 0.0187814 | 0.000364 | 0.0181192 | 10 |
GSA | 0.0195368 | 0.0130859 | 0.0323907 | 0.0043308 | 0.0191036 | 11 |
PSO | 2.127 × 1013 | 0.0175188 | 3.774 × 1014 | 8.445 × 1013 | 0.0175188 | 13 |
GA | 1.661 × 1012 | 0.0180295 | 1.719 × 1013 | 4.961 × 1012 | 0.0257708 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghani, M.; Montazeri, Z.; Bektemyssova, G.; Malik, O.P.; Dhiman, G.; Ahmed, A.E.M. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 470. https://doi.org/10.3390/biomimetics8060470
Dehghani M, Montazeri Z, Bektemyssova G, Malik OP, Dhiman G, Ahmed AEM. Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics. 2023; 8(6):470. https://doi.org/10.3390/biomimetics8060470
Chicago/Turabian StyleDehghani, Mohammad, Zeinab Montazeri, Gulnara Bektemyssova, Om Parkash Malik, Gaurav Dhiman, and Ayman E. M. Ahmed. 2023. "Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems" Biomimetics 8, no. 6: 470. https://doi.org/10.3390/biomimetics8060470
APA StyleDehghani, M., Montazeri, Z., Bektemyssova, G., Malik, O. P., Dhiman, G., & Ahmed, A. E. M. (2023). Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics, 8(6), 470. https://doi.org/10.3390/biomimetics8060470