Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries
Abstract
:1. Introduction
- An intelligent AOAFS-HDLCP method including AOAFS, CNN-AE classification, and TEO-based hyperparameter tuning is introduced for churn prediction. The AOAFS-HDLCP method does not exist in the literature to the best of the authors’ knowledge.
- The AOAFS method is designed to detect the essential attributes from the telecom industry’s complex datasets, thus enhancing the efficiency and effectiveness of the churn prediction process.
- The CNN-AE model is employed for the churn prediction process, which represents a significant contribution to the research community. It can capture intricate patterns and relationships in the data, thus potentially improving the accuracy of churn prediction compared with the rest of the traditional approaches.
- A TEO technique has been developed to fine-tune the model parameters of the CNN-AE model in an effective manner so as to optimize the performance in terms of predicting customer churn.
2. Related Works
3. The Proposed Model
3.1. Stage I: Feature Selection Using AOA
3.2. Stage II: Churn Prediction Using CNN-AE Model
3.3. Stage III: Parameter Tuning Using the TEO Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Saha, L.; Tripathy, H.K.; Gaber, T.; El-Gohary, H.; El-Kenawy, E.-S.M. Deep Churn Prediction Method for Telecommunication Industry. Sustainability 2023, 15, 4543. [Google Scholar] [CrossRef]
- Amin, A.; Adnan, A.; Anwar, S. An adaptive learning approach for customer churn prediction in the telecommunication industry using evolutionary computation and Naïve Bayes. Appl. Soft Comput. 2023, 137, 110103. [Google Scholar] [CrossRef]
- Abdulsalam, S.O.; Arowolo, M.O.; Saheed, Y.K.; Afolayan, J.O. Customer Churn Prediction in Telecommunication Industry Using Classification and Regression Trees and Artificial Neural Network Algorithms. Indones. J. Electr. Eng. Inform. (IJEEI) 2022, 10, 431–440. [Google Scholar] [CrossRef]
- Singh, K.D.; Singh, P.D.; Bansal, A.; Kaur, G.; Khullar, V.; Tripathi, V. Exploratory Data Analysis and Customer Churn Prediction for the Telecommunication Industry. In Proceedings of the 3rd International Conference on Advances in Computing, Communication, Embedded and Secure Systems, Kochi, India, 18 May 2023; IEEE: Piscataway, NJ, USA; pp. 197–201. [Google Scholar]
- Teoh, J.S.; Samad, B.S.A. Developing Machine Learning and Deep Learning Models for Customer Churn Prediction in the Telecommunication Industry. In 人工生命とロボットに関する国際会議予稿集 株式会社; ALife Robotics: Oita, Japan, 2022; Volume 27, pp. 533–539. [Google Scholar]
- Gupta, V.; Jatain, A. Artificial Intelligence-Based Predictive Analysis of Customer Churn. Formosa J. Comput. Inf. Sci. 2023, 2, 95–110. [Google Scholar]
- Ramesh, P.; Emilyn, J.J.; Vijayakumar, V. Hybrid Artificial Neural Networks Using Customer Churn Prediction. Wirel. Pers. Commun. 2022, 124, 1695–1709. [Google Scholar] [CrossRef]
- Samuel, A.I.; David, M.; Salihu, B.A.; Usman, A.U.; Abdullahi, I.M. Pastoralist Optimization Algorithm Approach for Improved Customer Churn Prediction in the Telecom Industry; Schools of Engineering Technology, Federal University of Technology Minna: Minna, Nigeria, 2023. [Google Scholar]
- Patil, K.; Patil, S.; Danve, R.; Patil, R. Machine Learning and Neural Network Models for Customer Churn Prediction in Banking and Telecom Sectors. In Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems, ICACECS 2021; Springer Nature: Singapore, 2022; pp. 241–253. [Google Scholar]
- Eltamaly, A.M.; Rabie, A.H. A Novel Musical Chairs Optimization Algorithm. Arab. J. Sci. Eng. 2023, 48, 10371–10403. [Google Scholar] [CrossRef]
- Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput. 2018, 10, 151–164. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Butcher, J.C. On the implementation of implicit Runge-Kutta methods. BIT Numer. Math. 1976, 16, 237–240. [Google Scholar] [CrossRef]
- Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Asghar Heidari, A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm based on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 195, 116516. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Abdullaev, I.; Prodanova, N.; Ahmed, M.A.; Lydia, E.L.; Shrestha, B.; Joshi, G.P.; Cho, W. Leveraging metaheuristics with artificial intelligence for customer churn prediction in telecom industries. Electron. Res. Arch. 2023, 31, 4443–4458. [Google Scholar] [CrossRef]
- Kozak, J.; Kania, K.; Juszczuk, P.; Mitręga, M. Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management. Int. J. Inf. Manag. 2021, 60, 102357. [Google Scholar] [CrossRef]
- Pustokhina, I.V.; Pustokhin, D.A.; Rh, A.; Jayasankar, T.; Jeyalakshmi, C.; Díaz, V.G.; Shankar, K. Dynamic customer churn prediction strategy for business intelligence using text analytics with evolutionary optimization algorithms. Inf. Process. Manag. 2021, 58, 102706. [Google Scholar] [CrossRef]
- Banu, J.F.; Neelakandan, S.; Geetha, B.; Selvalakshmi, V.; Umadevi, A.; Martinson, E.O. Artificial Intelligence Based Customer Churn Prediction Model for Business Markets. Comput. Intell. Neurosci. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Jajam, N.; Challa, N.P.; Prasanna, K.S.L.; Deepthi, C.H.V.S. Arithmetic Optimization with Ensemble Deep Learning SBLSTM-RNN-IGSA Model for Customer Churn Prediction. IEEE Access 2023, 11, 93111–93128. [Google Scholar] [CrossRef]
- Pandithurai, O.; Ahmed, H.H.; Sriman, B.; Seetha, R. Telecom Customer Churn Prediction Using Supervised Machine Learning Techniques. In Proceedings of the International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 25–26 May 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar]
- Alshamari, M.A. Evaluating User Satisfaction Using Deep-Learning-Based Sentiment Analysis for Social Media Data in Saudi Arabia’s Telecommunication Sector. Computers 2023, 12, 170. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Houssein, E.H.; Helmy, B.E.-D.; Rezk, H.; Nassef, A.M. An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification. Eng. Appl. Artif. Intell. 2021, 103, 104309. [Google Scholar] [CrossRef]
- Desuky, A.S.; Hussain, S.; Kausar, S.; Islam, A.; El Bakrawy, L.M. EAOA: An Enhanced Archimedes Optimization Algorithm for Feature Selection in Classification. IEEE Access 2021, 9, 120795–120814. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Niu, X.; Liu, Z. Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection. Appl. Energy 2021, 301, 117449. [Google Scholar] [CrossRef]
- Saponara, S.; Elhanashi, A.; Zheng, Q. Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture. IEEE Access 2021, 9, 147888–147899. [Google Scholar] [CrossRef]
- Bedi, P.; Gole, P. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network. Artif. Intell. Agric. 2021, 5, 90–101. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, Z. Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals. IEEE Access 2018, 6, 25399–25410. [Google Scholar] [CrossRef]
- Khan, S. Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application. Sustainability 2023, 15, 12311. [Google Scholar] [CrossRef]
- Yue, G.; Hong, S.; Liu, S.-H. Process hazard assessment of energetic ionic liquid with kinetic evaluation and thermal equilibrium. J. Loss Prev. Process. Ind. 2023, 81, 104972. [Google Scholar] [CrossRef]
- Liu, S.; Ahmadi-Senichault, A.; Levet, C.; Lachaud, J. Experimental investigation on the validity of the local thermal equilibrium assumption in ablative-material response models. Aerosp. Sci. Technol. 2023, 141, 108516. [Google Scholar] [CrossRef]
- Available online: https://www.kaggle.com/code/mnassrib/customer-churn-prediction-telecom-churn-dataset/notebook (accessed on 12 June 2023).
- Lalwani, P.; Mishra, M.K.; Chadha, J.S.; Sethi, P. Customer churn prediction system: A machine learning approach. Computing 2021, 104, 271–294. [Google Scholar] [CrossRef]
- Pustokhina, I.V.; Pustokhin, D.A.; Nguyen, P.T.; Elhoseny, M.; Shankar, K. Multi-objective rain optimization algorithm with WELM model for customer churn prediction in telecommunication sector. Complex Intell. Syst. 2021, 9, 3473–3485. [Google Scholar] [CrossRef]
- Dalli, A. Impact of Hyperparameters on Deep Learning Model for Customer Churn Prediction in Telecommunication Sector. Math. Probl. Eng. 2022, 2022, 1–11. [Google Scholar] [CrossRef]
Class | No. of Samples |
---|---|
Churn | 483 |
Non-Churn | 2850 |
Total Samples | 3333 |
Class | |||||
---|---|---|---|---|---|
Training Phase (90%) | |||||
Churn | 87.90 | 95.30 | 87.90 | 91.45 | 93.58 |
Non-Churn | 99.26 | 97.96 | 99.26 | 98.60 | 93.58 |
Average | 93.58 | 96.63 | 93.58 | 95.03 | 93.58 |
Testing Phase (10%) | |||||
Churn | 82.22 | 92.50 | 82.22 | 87.06 | 90.59 |
Non-Churn | 98.96 | 97.28 | 98.96 | 98.11 | 90.59 |
Average | 90.59 | 94.89 | 90.59 | 92.59 | 90.59 |
Training Phase (80%) | |||||
Churn | 82.69 | 90.65 | 82.69 | 86.49 | 90.62 |
Non-Churn | 98.55 | 97.10 | 98.55 | 97.82 | 90.62 |
Average | 90.62 | 93.88 | 90.62 | 92.15 | 90.62 |
Testing Phase (20%) | |||||
Churn | 85.42 | 91.11 | 85.42 | 88.17 | 92.01 |
Non-Churn | 98.60 | 97.57 | 98.60 | 98.08 | 92.01 |
Average | 92.01 | 94.34 | 92.01 | 93.13 | 92.01 |
Class | |||||
---|---|---|---|---|---|
Training Phase (60%) | |||||
Churn | 74.65 | 97.70 | 74.65 | 84.63 | 87.18 |
Non-Churn | 99.71 | 95.96 | 99.71 | 97.80 | 87.18 |
Average | 87.18 | 96.83 | 87.18 | 91.21 | 87.18 |
Testing Phase (40%) | |||||
Churn | 83.42 | 98.22 | 83.42 | 90.22 | 91.58 |
Non-Churn | 99.74 | 97.17 | 99.74 | 98.43 | 91.58 |
Average | 91.58 | 97.70 | 91.58 | 94.33 | 91.58 |
Training Phase (70%) | |||||
Churn | 86.88 | 95.51 | 86.88 | 90.99 | 93.09 |
Non-Churn | 99.30 | 97.77 | 99.30 | 98.53 | 93.09 |
Average | 93.09 | 96.64 | 93.09 | 94.76 | 93.09 |
Testing Phase (30%) | |||||
Churn | 90.00 | 95.45 | 90.00 | 92.65 | 94.65 |
Non-Churn | 99.30 | 98.39 | 99.30 | 98.84 | 94.65 |
Average | 94.65 | 96.92 | 94.65 | 95.74 | 94.65 |
Methods | |||||
---|---|---|---|---|---|
AOAFS-HDLCP | 94.65 | 96.92 | 94.65 | 95.74 | 94.65 |
AIJOA-CPDE | 91.28 | 95.52 | 91.29 | 94.08 | 91.29 |
Logistic Regression | 80.53 | 79.31 | 80.44 | 79.05 | 82.18 |
Decision Tree | 76.67 | 56.78 | 75.68 | 64.97 | 78.25 |
ISMOTE-OWELM | 90.48 | 91.65 | 89.39 | 89.64 | 89.85 |
SVM Model | 84.29 | 84.54 | 83.99 | 85.59 | 83.98 |
SGD Model | 84.41 | 86.10 | 85.81 | 84.32 | 84.80 |
RMSProp Model | 87.35 | 85.18 | 85.19 | 85.07 | 86.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mengash, H.A.; Alruwais, N.; Kouki, F.; Singla, C.; Abd Elhameed, E.S.; Mahmud, A. Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries. Biomimetics 2024, 9, 1. https://doi.org/10.3390/biomimetics9010001
Mengash HA, Alruwais N, Kouki F, Singla C, Abd Elhameed ES, Mahmud A. Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries. Biomimetics. 2024; 9(1):1. https://doi.org/10.3390/biomimetics9010001
Chicago/Turabian StyleMengash, Hanan Abdullah, Nuha Alruwais, Fadoua Kouki, Chinu Singla, Elmouez Samir Abd Elhameed, and Ahmed Mahmud. 2024. "Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries" Biomimetics 9, no. 1: 1. https://doi.org/10.3390/biomimetics9010001
APA StyleMengash, H. A., Alruwais, N., Kouki, F., Singla, C., Abd Elhameed, E. S., & Mahmud, A. (2024). Archimedes Optimization Algorithm-Based Feature Selection with Hybrid Deep-Learning-Based Churn Prediction in Telecom Industries. Biomimetics, 9(1), 1. https://doi.org/10.3390/biomimetics9010001