Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection
Abstract
:1. Introduction
- An enhanced PO algorithm is proposed by introducing the CC mechanism and enhanced strategy selection mechanism.
- The performance of the ECPO algorithm is verified in detail, through comparison experiments with 10 other conventional optimization algorithms on the CEC2017 benchmark functions.
- A binary version of the ECPO for solving FS problems and validated on ten real datasets that the ECPO can effectively solve the FS problems.
2. The Original PO
3. Proposed ECPO
3.1. Crisscross Strategy
3.1.1. Horizontal Crossover Search
Algorithm 1 HCS |
RandIndex = randperm () For = RandIndex () = RandIndex () For Generate four random number , (0,1), , (−1,1) Generate and by Equations (6) and (7) End End For IF () < () End End End |
3.1.2. Vertical Crossover Search
Algorithm 2 VCS |
RandIndex = randperm () Generate a random number (0,1) For IF < = RandIndex () = RandIndex () For Generate a random number (0,1) Generate by Equation (6) End End End For IF () < () End End End |
3.2. Enhanced Strategy Management
3.3. The Proposed ECPO
Algorithm 3 Pseudo-code of the ECPO |
Set parameters: The maximum iteration number , the problem dimension , and the population size Initialize population = 1 For Evaluate the fitness value of Find the global min End While ( IF /* Behavior 1 */ Update by Equation (1) ELSE IF /* Behavior 2 */ Update by Equation (2) ELSE IF /* Behavior 3 */ Update by Equation (3) ELSE IF /* Behavior 4 */ Update by Equation (4) END /* Enhanced Strategy Management */ Update IF END IF For /*CC*/ Perform Horizontal crossover search to update Perform Vertical crossover search to update Update End ; End While Return End |
4. Results and Analysis of Global Optimization Experiments
4.1. Benchmark Function
4.2. Comparison of Performance with Other Algorithms
5. Application to Feature Selection
5.1. Datasets Used in Experiments
5.2. Analysis and Discussion of Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature Selection: A Data Perspective. ACM Comput. Surv. 2018, 50, 94. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, M.; Paul, A.; Din, S.; Rathore, M.M.; Jeon, G.; Choi, G.S. Toward Modeling and Optimization of Features Selection in Big Data Based Social Internet of Things. Future Gener. Comput. Syst. 2018, 82, 715–726. [Google Scholar] [CrossRef]
- Mahapatra, D.; Poellinger, A.; Shao, L.; Reyes, M. Interpretability-Driven Sample Selection Using Self Supervised Learning for Disease Classification and Segmentation. IEEE Trans. Med. Imag. 2021, 40, 2548–2562. [Google Scholar] [CrossRef] [PubMed]
- Htun, H.H.; Biehl, M.; Petkov, N. Survey of Feature Selection and Extraction Techniques for Stock Market Prediction. Financ. Innov. 2023, 9, 26. [Google Scholar] [CrossRef]
- Li, J.P.; Haq, A.U.; Din, S.U.; Khan, J.; Khan, A.; Saboor, A. Heart Disease Identification Method Using Machine Learning Classification in E-Healthcare. IEEE Access 2020, 8, 107562–107582. [Google Scholar] [CrossRef]
- Dhal, P.; Azad, C. A Comprehensive Survey on Feature Selection in the Various Fields of Machine Learning. Appl. Intell. 2022, 52, 4543–4581. [Google Scholar] [CrossRef]
- Maldonado, J.; Riff, M.C.; Neveu, B. A Review of Recent Approaches on Wrapper Feature Selection for Intrusion Detection. Expert Syst. Appl. 2022, 198, 116822. [Google Scholar] [CrossRef]
- Jeon, H.; Oh, S. Hybrid-Recursive Feature Elimination for Efficient Feature Selection. Appl. Sci. 2020, 10, 3211. [Google Scholar] [CrossRef]
- Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic Algorithms on Feature Selection: A Survey of One Decade of Research (2009–2019). IEEE Access 2021, 9, 26766–26791. [Google Scholar] [CrossRef]
- Bommert, A.; Sun, X.; Bischl, B.; Rahnenführer, J.; Lang, M. Benchmark for Filter Methods for Feature Selection in High-Dimensional Classification Data. Comput. Stat. Data Anal. 2020, 143, 106839. [Google Scholar] [CrossRef]
- Alshaer, H.N.; Otair, M.A.; Abualigah, L.; Alshinwan, M.; Khasawneh, A.M. Feature Selection Method Using Improved CHI Square on Arabic Text Classifiers: Analysis and Application. Multimed. Tools Appl. 2021, 80, 10373–10390. [Google Scholar] [CrossRef]
- Omuya, E.O.; Okeyo, G.O.; Kimwele, M.W. Feature Selection for Classification Using Principal Component Analysis and Information Gain. Expert Syst. Appl. 2021, 174, 114765. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Hsieh, C.-W. Feature Selection via Correlation Coefficient Clustering. J. Softw. 2010, 5, 1371–1377. [Google Scholar] [CrossRef]
- Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A.W.; O’Sullivan, J.M. A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction. Front. Bioinform. 2022, 2, 927312. [Google Scholar] [CrossRef]
- Dokeroglu, T.; Deniz, A.; Kiziloz, H.E. A Comprehensive Survey on Recent Metaheuristics for Feature Selection. Neurocomputing 2022, 494, 269–296. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle Swarm Optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Rezaei Miandoab, A.; Bagherzadeh, S.A.; Meghdadi Isfahani, A.H. Numerical Study of the Effects of Twisted-Tape Inserts on Heat Transfer Parameters and Pressure Drop Across a Tube Carrying Graphene Oxide Nanofluid: An Optimization by Implementation of Artificial Neural Network and Genetic Algorithm. Eng. Anal. Bound. Elem. 2022, 140, 1–11. [Google Scholar] [CrossRef]
- Shan, W.; Hu, H.; Cai, Z.; Chen, H.; Liu, H.; Wang, M.; Teng, Y. Multi-Strategies Boosted Mutative Crow Search Algorithm for Global Tasks: Cases of Continuous and Discrete Optimization. J. Bionic Eng. 2022, 19, 1830–1849. [Google Scholar] [CrossRef]
- Tubishat, M.; Alswaitti, M.; Mirjalili, S.; Al-Garadi, M.A.; Rana, T.A. Dynamic Butterfly Optimization Algorithm for Feature Selection. IEEE Access 2020, 8, 194303–194314. [Google Scholar] [CrossRef]
- Kwakye, B.D.; Li, Y.; Mohamed, H.H.; Baidoo, E.; Asenso, T.Q. Particle Guided Metaheuristic Algorithm for Global Optimization and Feature Selection Problems. Expert Syst. Appl. 2024, 248, 123362. [Google Scholar] [CrossRef]
- Abdelrazek, M.; Abd Elaziz, M.; El-Baz, A.H. CDMO: Chaotic Dwarf Mongoose Optimization Algorithm for Feature Selection. Sci. Rep. 2024, 14, 701. [Google Scholar] [CrossRef]
- Ali, M.Z.; Abdullah, A.; Zaki, A.M.; Rizk, F.H.; Eid, M.M.; El-Kenway, E.M. Advances and Challenges in Feature Selection Methods: A Comprehensive Review. J. Artif. Intell. Metaheuristics 2024, 7, 67–77. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G.; Ma, L.; Zhu, T.; Wu, X.; Heidari, A.A.; Chen, Y.; Chen, H. Parrot Optimizer: Algorithm and Applications to Medical Problems. Comput. Biol. Med. 2024, 172, 108064. [Google Scholar] [CrossRef]
- Meng, A.; Chen, Y.; Yin, H.; Chen, S. Crisscross Optimization Algorithm and Its Application. Knowl. Based Syst. 2014, 67, 218–229. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Tang, Y.; Heidari, A.A.; Chen, H.; Liu, H.; Wang, M.; Escorcia-Gutierrez, J.; Mansour, R.F.; Chen, J. Horizontal and Vertical Crossover of Sine Cosine Algorithm with Quick Moves for Optimization and Feature Selection. J. Comput. Des. Eng. 2022, 9, 2524–2555. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Chantar, H.; Mafarja, M.; Alsawalqah, H.; Heidari, A.A.; Aljarah, I.; Faris, H. Feature Selection Using Binary Grey Wolf Optimizer with Elite-Based Crossover for Arabic Text Classification. Neural Comput. Appl. 2020, 32, 12201–12220. [Google Scholar] [CrossRef]
- Taradeh, M.; Mafarja, M.; Heidari, A.A.; Faris, H.; Aljarah, I.; Mirjalili, S.; Fujita, H. An Evolutionary Gravitational Search-Based Feature Selection. Inform. Sci. 2019, 497, 219–239. [Google Scholar] [CrossRef]
- Dara, S.; Banka, H. A Binary PSO Feature Selection Algorithm for Gene Expression Data. In Proceedings of the 2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014), Mumbai, India, 10–11 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Mafarja, M.; Heidari, A.A.; Habib, M.; Faris, H.; Thaher, T.; Aljarah, I. Augmented Whale Feature Selection for IoT Attacks: Structure, Analysis and Applications. Future Gener. Comp. Syst. 2020, 112, 18–40. [Google Scholar] [CrossRef]
- Shekhawat, S.S.; Sharma, H.; Kumar, S.; Nayyar, A.; Qureshi, B. bSSA: Binary Salp Swarm Algorithm with Hybrid Data Transformation for Feature Selection. IEEE Access 2021, 9, 14867–14882. [Google Scholar] [CrossRef]
Function | Function Name | Class | Optimum |
---|---|---|---|
F1 | Shifted and Rotated Bent Cigar Function | Unimodal | 100 |
F2 | Shifted and Rotated Zakharov Function | Unimodal | 300 |
F3 | Shifted and Rotated Rosenbrock’s Function | Multimodal | 400 |
F4 | Shifted and Rotated Rastrigin’s Function | Multimodal | 500 |
F5 | Shifted and Rotated Expanded Schaffer’s F6 Function | Multimodal | 600 |
F6 | Shifted and Rotated Lunacek Bi-Rastrigin Function | Multimodal | 700 |
F7 | Shifted and Rotated Non-Continuous Rastrigin’s Function | Multimodal | 800 |
F8 | Shifted and Rotated Lévy Function | Multimodal | 900 |
F9 | Shifted and Rotated Schwefel’s Function | Multimodal | 1000 |
F10 | Hybrid Function 1 (N = 3) | Hybrid | 1100 |
F11 | Hybrid Function 2 (N = 3) | Hybrid | 1200 |
F12 | Hybrid Function 3 (N = 3) | Hybrid | 1300 |
F13 | Hybrid Function 4 (N = 4) | Hybrid | 1400 |
F14 | Hybrid Function 5 (N = 4) | Hybrid | 1500 |
F15 | Hybrid Function 6 (N = 4) | Hybrid | 1600 |
F16 | Hybrid Function 6 (N = 5) | Hybrid | 1700 |
F17 | Hybrid Function 6 (N = 5) | Hybrid | 1800 |
F18 | Hybrid Function 6 (N = 5) | Hybrid | 1900 |
F19 | Hybrid Function 6 (N = 6) | Hybrid | 2000 |
F20 | Composition Function 1 (N = 3) | Composition | 2100 |
F21 | Composition Function 2 (N = 3) | Composition | 2200 |
F22 | Composition Function 3 (N = 4) | Composition | 2300 |
F23 | Composition Function 4 (N = 4) | Composition | 2400 |
F24 | Composition Function 5 (N = 5) | Composition | 2500 |
F25 | Composition Function 6 (N = 5) | Composition | 2600 |
F26 | Composition Function 7 (N = 6) | Composition | 2700 |
F27 | Composition Function 8 (N = 6) | Composition | 2800 |
F28 | Composition Function 9 (N = 3) | Composition | 2900 |
F29 | Composition Function 10 (N = 3) | Composition | 3000 |
Name | Parameters |
---|---|
ECPO | = 0.3; = 0.7 |
PO | = 0.3; = 0.7 |
SMA | / |
WOA | = [2, 0]; = [−1, −2]; = 1 |
MFO | b = 1; t = [−1, 1]; a = [−1, −2] |
BA | / |
SCA | / |
PSO | = 6; = 0.9, = 0.2; = 2; = 2 |
DE | = [2, 0] |
F1 | F2 | F3 | ||||
---|---|---|---|---|---|---|
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 2.5533 × 103 | 3.3868 × 103 | 6.0183 × 103 | 1.7925 × 103 | 5.9406 × 102 | 2.1013 × 101 |
PO | 5.7678 × 107 | 8.8266 × 107 | 5.1121 × 103 | 2.6765 × 103 | 7.1852 × 102 | 4.8687 × 101 |
SMA | 2.8682 × 109 | 1.2223 × 109 | 3.4641 × 104 | 6.1441 × 103 | 7.1538 × 102 | 2.7779 × 101 |
WOA | 3.8858 × 106 | 3.0510 × 106 | 1.6617 × 105 | 5.8485 × 104 | 7.9399 × 102 | 5.6422 × 101 |
MFO | 1.1190 × 1010 | 8.5527 × 109 | 9.8579 × 104 | 7.2925 × 104 | 7.0977 × 102 | 4.3436 × 101 |
BA | 5.3477 × 105 | 3.4745 × 105 | 3.0010 × 102 | 9.9425 × 10−2 | 8.3536 × 102 | 7.2939 × 101 |
SCA | 1.2294 × 1010 | 3.1232 × 109 | 3.8025 × 104 | 7.6942 × 103 | 7.7882 × 102 | 1.9855 × 101 |
PSO | 3.3674 × 103 | 4.4518 × 103 | 3.0001 × 102 | 9.7402 × 10−3 | 6.9581 × 102 | 3.2590 × 101 |
DE | 1.6720 × 103 | 2.6872 × 103 | 2.0113 × 104 | 4.4064 × 103 | 6.0597 × 102 | 9.7270 × 100 |
F4 | F5 | F6 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 5.9108 × 102 | 1.9276 × 101 | 6.0000 × 102 | 9.0390 × 10−7 | 8.4685 × 102 | 2.9649 × 101 |
PO | 7.1669 × 102 | 3.4384 × 101 | 6.5577 × 102 | 9.1330 × 100 | 1.1843 × 103 | 7.6114 × 101 |
SMA | 7.0915 × 102 | 3.6763 × 101 | 6.4378 × 102 | 1.0139 × 101 | 1.0658 × 103 | 6.3361 × 101 |
WOA | 7.7040 × 102 | 4.4565 × 101 | 6.6792 × 102 | 8.4931 × 100 | 1.2419 × 103 | 9.0990 × 101 |
MFO | 7.1352 × 102 | 3.8297 × 101 | 6.4130 × 102 | 1.0526 × 101 | 1.1420 × 103 | 1.8908 × 102 |
BA | 8.3843 × 102 | 6.8433 × 101 | 6.7011 × 102 | 9.2768 × 100 | 1.5929 × 103 | 2.0371 × 102 |
SCA | 7.7418 × 102 | 1.5843 × 101 | 6.5148 × 102 | 6.4379 × 100 | 1.1344 × 103 | 4.4865 × 101 |
PSO | 6.9478 × 102 | 3.5034 × 101 | 6.4689 × 102 | 8.2484 × 100 | 1.0325 × 103 | 8.5500 × 101 |
DE | 6.1027 × 102 | 1.0950 × 101 | 6.0000 × 102 | 2.1111 × 10−14 | 8.4277 × 102 | 1.0209 × 101 |
F7 | F8 | F9 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 8.8811 × 102 | 2.1385 × 101 | 1.0710 × 103 | 2.8770 × 102 | 3.6511 × 103 | 3.7742 × 102 |
PO | 9.6243 × 102 | 2.6318 × 101 | 5.2394 × 103 | 7.8276 × 102 | 5.9115 × 103 | 8.8067 × 102 |
SMA | 9.6665 × 102 | 1.8766 × 101 | 5.5914 × 103 | 1.0315 × 103 | 5.7496 × 103 | 6.1702 × 102 |
WOA | 1.0067 × 103 | 3.6604 × 101 | 7.9806 × 103 | 1.9843 × 103 | 6.1472 × 103 | 7.7219 × 102 |
MFO | 1.0103 × 103 | 4.8478 × 101 | 7.1955 × 103 | 2.0629 × 103 | 5.4253 × 103 | 8.1241 × 102 |
BA | 1.0634 × 103 | 5.3963 × 101 | 1.3610 × 104 | 4.9676 × 103 | 5.6359 × 103 | 6.5778 × 102 |
SCA | 1.0517 × 103 | 1.8991 × 101 | 5.2171 × 103 | 1.3222 × 103 | 8.1202 × 103 | 2.1751 × 102 |
PSO | 9.5196 × 102 | 3.4527 × 101 | 4.3162 × 103 | 9.8906 × 102 | 5.2490 × 103 | 4.9744 × 102 |
DE | 9.0921 × 102 | 9.2515 × 100 | 9.0000 × 102 | 1.0125 × 10−13 | 5.8029 × 103 | 2.6995 × 102 |
F10 | F11 | F12 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 1.1725 × 103 | 3.3533 × 101 | 3.6206 × 105 | 2.1631 × 105 | 1.7551 × 104 | 1.9244 × 104 |
PO | 1.3148 × 103 | 7.4800 × 101 | 2.3973 × 107 | 1.8828 × 107 | 1.1801 × 105 | 8.5025 × 104 |
SMA | 1.5223 × 103 | 1.0297 × 102 | 1.0611 × 108 | 5.8804 × 107 | 2.7739 × 106 | 4.2840 × 106 |
WOA | 1.5213 × 103 | 1.3839 × 102 | 3.2133 × 107 | 2.5845 × 107 | 1.4900 × 105 | 8.0362 × 104 |
MFO | 6.4286 × 103 | 6.0657 × 103 | 3.9567 × 108 | 5.6595 × 108 | 2.6205 × 108 | 7.2166 × 108 |
BA | 1.3098 × 103 | 5.8084 × 101 | 1.6301 × 106 | 1.1887 × 106 | 2.9733 × 105 | 1.3313 × 105 |
SCA | 2.1802 × 103 | 6.1972 × 102 | 1.1914 × 109 | 2.9546 × 108 | 4.5240 × 108 | 3.4561 × 108 |
PSO | 1.2127 × 103 | 3.7415 × 101 | 4.6061 × 104 | 2.6228 × 104 | 1.5307 × 104 | 1.3263 × 104 |
DE | 1.1605 × 103 | 2.3085 × 101 | 1.6235 × 106 | 1.0534 × 106 | 3.4063 × 104 | 1.8594 × 104 |
F13 | F14 | F15 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 6.5336 × 104 | 7.4352 × 104 | 8.7271 × 103 | 9.4149 × 103 | 2.2824 × 103 | 2.4337 × 102 |
PO | 3.9427 × 104 | 2.5394 × 104 | 6.3004 × 104 | 7.0528 × 104 | 3.0432 × 103 | 4.0381 × 102 |
SMA | 1.7908 × 105 | 8.5321 × 104 | 1.7915 × 104 | 9.2843 × 103 | 2.8746 × 103 | 3.6782 × 102 |
WOA | 7.3860 × 105 | 7.4934 × 105 | 7.8654 × 104 | 5.8614 × 104 | 3.6492 × 103 | 5.8224 × 102 |
MFO | 1.5150 × 105 | 3.2789 × 105 | 3.0150 × 107 | 1.6484 × 108 | 3.1766 × 103 | 4.0829 × 102 |
BA | 7.4300 × 103 | 5.0607 × 103 | 1.0372 × 105 | 5.6221 × 104 | 3.3258 × 103 | 4.0253 × 102 |
SCA | 1.3310 × 105 | 8.2141 × 104 | 1.2124 × 107 | 1.0113 × 107 | 3.6278 × 103 | 2.1015 × 102 |
PSO | 5.8906 × 103 | 2.7806 × 103 | 6.2839 × 103 | 5.5652 × 103 | 2.8517 × 103 | 2.5253 × 102 |
DE | 4.4570 × 104 | 2.5716 × 104 | 7.5459 × 103 | 4.6732 × 103 | 2.0702 × 103 | 1.9291 × 102 |
F16 | F17 | F18 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 1.9136 × 103 | 1.2822 × 102 | 3.7244 × 105 | 3.4390 × 105 | 7.0782 × 103 | 8.3821 × 103 |
PO | 2.3801 × 103 | 1.9388 × 102 | 5.8504 × 105 | 4.4892 × 105 | 5.8349 × 105 | 4.2013 × 105 |
SMA | 2.2758 × 103 | 1.6430 × 102 | 5.3866 × 105 | 7.5932 × 105 | 2.8899 × 105 | 4.1376 × 105 |
WOA | 2.5498 × 103 | 2.6048 × 102 | 1.8399 × 106 | 2.1360 × 106 | 2.5475 × 106 | 2.1432 × 106 |
MFO | 2.5970 × 103 | 2.3042 × 102 | 5.5814 × 106 | 1.5538 × 107 | 8.3761 × 106 | 3.2804 × 107 |
BA | 2.7586 × 103 | 2.6623 × 102 | 1.5614 × 105 | 1.2508 × 105 | 6.8822 × 105 | 2.2271 × 105 |
SCA | 2.4064 × 103 | 1.3907 × 102 | 3.0596 × 106 | 1.5234 × 106 | 2.2375 × 107 | 1.0658 × 107 |
PSO | 2.4592 × 103 | 2.9620 × 102 | 1.8900 × 105 | 1.5659 × 105 | 6.6243 × 103 | 5.6651 × 103 |
DE | 1.8402 × 103 | 5.3057 × 101 | 2.9290 × 105 | 1.5946 × 105 | 7.9477 × 103 | 4.8951 × 103 |
F19 | F20 | F21 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 2.2751 × 103 | 1.2262 × 102 | 2.3819 × 103 | 1.5295 × 101 | 2.3992 × 103 | 5.4327 × 102 |
PO | 2.5437 × 103 | 1.2347 × 102 | 2.4876 × 103 | 6.8086 × 101 | 3.5938 × 103 | 2.0824 × 103 |
SMA | 2.4542 × 103 | 1.2723 × 102 | 2.4753 × 103 | 2.6051 × 101 | 4.0557 × 103 | 2.1240 × 103 |
WOA | 2.6637 × 103 | 2.2014 × 102 | 2.5756 × 103 | 6.2939 × 101 | 7.4764 × 103 | 1.6306 × 103 |
MFO | 2.6983 × 103 | 2.4920 × 102 | 2.5084 × 103 | 3.9069 × 101 | 6.5151 × 103 | 1.4708 × 103 |
BA | 2.9531 × 103 | 2.2637 × 102 | 2.5920 × 103 | 6.6446 × 101 | 7.1956 × 103 | 1.3313 × 103 |
SCA | 2.5736 × 103 | 1.0855 × 102 | 2.5513 × 103 | 1.7852 × 101 | 7.8573 × 103 | 2.5756 × 103 |
PSO | 2.6252 × 103 | 2.2683 × 102 | 2.4644 × 103 | 4.4789 × 101 | 4.9218 × 103 | 2.1152 × 103 |
DE | 2.1201 × 103 | 6.5962 × 101 | 2.4092 × 103 | 8.7803 × 100 | 4.3067 × 103 | 2.0968 × 103 |
F22 | F23 | F24 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 2.7283 × 103 | 1.8692 × 101 | 2.9069 × 103 | 2.4259 × 101 | 2.8953 × 103 | 1.8401 × 101 |
PO | 2.9626 × 103 | 6.5892 × 101 | 3.0979 × 103 | 6.7596 × 101 | 2.9305 × 103 | 2.4406 × 101 |
SMA | 2.8616 × 103 | 2.8845 × 101 | 3.0110 × 103 | 2.6314 × 101 | 3.0129 × 103 | 4.4877 × 101 |
WOA | 3.0630 × 103 | 1.0752 × 102 | 3.1687 × 103 | 7.7939 × 101 | 2.9545 × 103 | 3.7077 × 101 |
MFO | 2.8320 × 103 | 3.2325 × 101 | 2.9960 × 103 | 3.1654 × 101 | 3.4894 × 103 | 6.4121 × 102 |
BA | 3.3552 × 103 | 1.2481 × 102 | 3.3999 × 103 | 1.3564 × 102 | 2.9048 × 103 | 2.3391 × 101 |
SCA | 2.9882 × 103 | 2.4771 × 101 | 3.1570 × 103 | 2.2646 × 101 | 3.1938 × 103 | 7.2395 × 101 |
PSO | 3.2553 × 103 | 1.4516 × 102 | 3.3690 × 103 | 1.0292 × 102 | 2.8797 × 103 | 4.1309 × 100 |
DE | 2.7578 × 103 | 9.6283 × 100 | 2.9551 × 103 | 1.5861 × 101 | 2.8874 × 103 | 3.6306 × 10−1 |
F25 | F26 | F27 | ||||
Avg | Std | Avg | Std | Avg | Std | |
ECPO | 4.1785 × 103 | 7.8488 × 102 | 3.2169 × 103 | 1.1041 × 101 | 3.1625 × 103 | 4.9575 × 101 |
PO | 6.4763 × 103 | 1.6166 × 103 | 3.3401 × 103 | 6.0505 × 101 | 3.3120 × 103 | 4.1035 × 101 |
SMA | 5.1692 × 103 | 7.5012 × 102 | 3.2677 × 103 | 4.4365 × 101 | 3.4222 × 103 | 5.4394 × 101 |
WOA | 7.7623 × 103 | 1.0328 × 103 | 3.3540 × 103 | 6.1127 × 101 | 3.3084 × 103 | 5.2989 × 101 |
MFO | 5.9229 × 103 | 3.8663 × 102 | 3.2597 × 103 | 2.9353 × 101 | 4.3155 × 103 | 9.3149 × 102 |
BA | 9.0215 × 103 | 2.3002 × 103 | 3.4622 × 103 | 1.3974 × 102 | 3.1250 × 103 | 5.2099 × 101 |
SCA | 6.9036 × 103 | 3.2348 × 102 | 3.3982 × 103 | 3.9296 × 101 | 3.8181 × 103 | 1.4307 × 102 |
PSO | 6.8379 × 103 | 2.3430 × 103 | 3.3153 × 103 | 3.2316 × 102 | 3.1413 × 103 | 5.2797 × 101 |
DE | 4.6352 × 103 | 7.6760 × 101 | 3.2051 × 103 | 3.4090 × 100 | 3.1925 × 103 | 5.2602 × 101 |
F28 | F29 | |||||
Avg | Std | Avg | Std | |||
ECPO | 3.6216 × 103 | 1.6586 × 102 | 9.5921 × 103 | 4.2939 × 103 | ||
PO | 4.5766 × 103 | 3.6111 × 102 | 5.6228 × 106 | 3.4315 × 106 | ||
SMA | 4.0411 × 103 | 1.9995 × 102 | 4.7570 × 106 | 2.3763 × 106 | ||
WOA | 4.8224 × 103 | 4.7130 × 102 | 1.0089 × 107 | 6.4263 × 106 | ||
MFO | 4.1861 × 103 | 3.5153 × 102 | 1.2444 × 106 | 2.8259 × 106 | ||
BA | 5.0852 × 103 | 4.7170 × 102 | 1.2750 × 106 | 7.5539 × 105 | ||
SCA | 4.6824 × 103 | 2.5762 × 102 | 7.7851 × 107 | 3.2081 × 107 | ||
PSO | 3.9629 × 103 | 3.1779 × 102 | 6.5335 × 103 | 3.3407 × 103 | ||
DE | 3.5197 × 103 | 6.4547 × 101 | 1.2726 × 104 | 4.0079 × 103 | ||
Overall Rank | ||||||
RANK | +/=/− | AVG | Computational Time(s) | |||
ECPO | 1 | ~ | 2.0345 | 183.16 | ||
PO | 5 | 26/3/0 | 5.1379 | 118.33 | ||
SMA | 4 | 28/1/0 | 4.9655 | 176.48 | ||
WOA | 8 | 29/0/0 | 7.1724 | 98.34 | ||
MFO | 6 | 28/1/0 | 6.3103 | 114.83 | ||
BA | 7 | 25/0/4 | 6.5517 | 116.22 | ||
SCA | 9 | 29/0/0 | 7.3448 | 106.56 | ||
PSO | 3 | 17/6/6 | 3.2069 | 91.75 | ||
DE | 2 | 14/8/7 | 2.2759 | 143.73 |
PO | SMA | WOA | MFO | |
---|---|---|---|---|
F1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F2 | 1.53 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 6.98 × 10−6 |
F3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F4 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F7 | 2.35 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F8 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F9 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.13 × 10−6 |
F10 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F11 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F12 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F13 | 1.71 × 10−1 | 2.22 × 10−4 | 3.52 × 10−6 | 5.04 × 10−1 |
F14 | 6.34 × 10−6 | 7.71 × 10−4 | 2.13 × 10−6 | 2.35 × 10−6 |
F15 | 3.52 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.88 × 10−6 |
F16 | 1.73 × 10−6 | 2.60 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F17 | 8.22 × 10−2 | 5.44 × 10−1 | 9.71 × 10−5 | 6.84 × 10−3 |
F18 | 1.73 × 10−6 | 3.52 × 10−6 | 1.73 × 10−6 | 2.35 × 10−6 |
F19 | 7.69 × 10−6 | 3.72 × 10−5 | 3.52 × 10−6 | 6.98 × 10−6 |
F20 | 1.36 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F21 | 1.64 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F22 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F23 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F24 | 5.31 × 10−5 | 1.92 × 10−6 | 3.52 × 10−6 | 3.88 × 10−6 |
F25 | 1.49 × 10−5 | 3.06 × 10−4 | 1.92 × 10−6 | 1.73 × 10−6 |
F26 | 1.73 × 10−6 | 3.18 × 10−6 | 1.73 × 10−6 | 4.73 × 10−6 |
F27 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F28 | 1.73 × 10−6 | 3.52 × 10−6 | 1.73 × 10−6 | 5.22 × 10−6 |
F29 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
BA | SCA | PSO | DE | |
F1 | 1.73 × 10−6 | 1.73 × 10−6 | 5.04 × 10−1 | 1.99 × 10−1 |
F2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.25 × 10−2 |
F4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 5.29 × 10−4 |
F5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 7.81 × 10−3 |
F6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 7.66 × 10−1 |
F7 | 1.73 × 10−6 | 1.73 × 10−6 | 3.52 × 10−6 | 2.22 × 10−4 |
F8 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 8.21 × 10−6 |
F9 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F10 | 1.73 × 10−6 | 1.73 × 10−6 | 4.20 × 10−4 | 1.36 × 10−1 |
F11 | 2.35 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 | 1.92 × 10−6 |
F12 | 1.73 × 10−6 | 1.73 × 10−6 | 7.81 × 10−1 | 6.64 × 10−4 |
F13 | 9.32 × 10−6 | 1.59 × 10−3 | 3.18 × 10−6 | 5.72 × 10−1 |
F14 | 1.73 × 10−6 | 1.73 × 10−6 | 2.99 × 10−1 | 7.66 × 10−1 |
F15 | 1.73 × 10−6 | 1.73 × 10−6 | 3.18 × 10−6 | 4.53 × 10−4 |
F16 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.70 × 10−2 |
F17 | 3.38 × 10−3 | 1.73 × 10−6 | 1.32 × 10−2 | 7.19 × 10−1 |
F18 | 1.73 × 10−6 | 1.73 × 10−6 | 6.00 × 10−1 | 5.19 × 10−2 |
F19 | 1.73 × 10−6 | 1.73 × 10−6 | 2.60 × 10−6 | 1.49 × 10−5 |
F20 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 | 3.18 × 10−6 |
F21 | 1.73 × 10−6 | 1.73 × 10−6 | 5.22 × 10−5 | 1.36 × 10−5 |
F22 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 8.47 × 10−6 |
F23 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.60 × 10−6 |
F24 | 4.07 × 10−2 | 1.73 × 10−6 | 1.49 × 10−5 | 1.25 × 10−1 |
F25 | 2.88 × 10−6 | 1.73 × 10−6 | 4.58 × 10−5 | 8.73 × 10−3 |
F26 | 1.73 × 10−6 | 1.73 × 10−6 | 5.71 × 10−2 | 5.79 × 10−5 |
F27 | 1.32 × 10−2 | 1.73 × 10−6 | 4.17 × 10−1 | 1.25 × 10−2 |
F28 | 1.73 × 10−6 | 1.73 × 10−6 | 5.31 × 10−5 | 4.11 × 10−3 |
F29 | 1.73 × 10−6 | 1.73 × 10−6 | 5.32 × 10−3 | 8.73 × 10−3 |
Datasets | Samples | Features | Classes |
---|---|---|---|
Australian | 690 | 14 | 2 |
cmc | 1473 | 9 | 3 |
heartandlung | 139 | 23 | 2 |
hepatitisfulldata | 155 | 19 | 2 |
glass | 214 | 9 | 6 |
heart | 303 | 13 | 5 |
thyroid_2class | 187 | 8 | 2 |
Leukemia | 72 | 7130 | 2 |
Leukemia1 | 72 | 5327 | 3 |
M-of-n | 1000 | 13 | 2 |
Function | ECPO | BGWO | BGSA | BPSO | BBA | BSSA |
---|---|---|---|---|---|---|
Australian | 7.32 × 10−2 | 8.00 × 10−2 | 8.37 × 10−2 | 7.97 × 10−2 | 2.36 × 10−1 | 7.82 × 10−2 |
(2.46 × 10−2) | (2.38 × 10−2) | (2.16 × 10−2) | (1.97 × 10−2) | (8.46 × 10−2) | (3.72 × 10−2) | |
cmc | 4.54 × 10−1 | 4.82 × 10−1 | 4.82 × 10−1 | 4.75 × 10−1 | 5.65 × 10−1 | 4.78 × 10−1 |
(3.16 × 10−2) | (1.82 × 10−2) | (1.83 × 10−2) | (2.98 × 10−2) | (5.23 × 10−2) | (2.31 × 10−2) | |
heartandlung | 7.14 × 10−3 | 1.44 × 10−2 | 1.49 × 10−2 | 1.43 × 10−2 | 1.59 × 10−1 | 1.67 × 10−2 |
(2.29 × 10−2) | (3.13 × 10−2) | (3.02 × 10−2) | (2.36 × 10−2) | (1.21 × 10−1) | (3.02 × 10−2) | |
hepatitisfulldata | 5.36 × 10−3 | 1.95 × 10−2 | 2.59 × 10−2 | 8.32 × 10−3 | 2.06 × 10−1 | 1.65 × 10−2 |
(1.65 × 10−3) | (3.15 × 10−2) | (6.86 × 10−3) | (1.97 × 10−3) | (8.32 × 10−2) | (2.76 × 10−3) | |
glass | 9.86 × 10−2 | 1.17 × 10−1 | 1.07 × 10−1 | 1.21 × 10−1 | 2.92 × 10−1 | 1.06 × 10−1 |
(6.49 × 10−2) | (4.25 × 10−2) | (4.99 × 10−2) | (5.44 × 10−2) | (1.08 × 10−1) | (4.93 × 10−2) | |
heart | 4.72 × 10−2 | 7.03 × 10−2 | 5.55 × 10−2 | 7.07 × 10−2 | 2.59 × 10−1 | 6.26 × 10−2 |
(1.38 × 10−2) | (4.43 × 10−2) | (5.31 × 10−2) | (3.23 × 10−2) | (9.71 × 10−2) | (4.25 × 10−2) | |
thyroid_2class | 2.02 × 10−1 | 2.01 × 10−1 | 2.14 × 10−1 | 2.08 × 10−1 | 3.21 × 10−1 | 2.17 × 10−1 |
(6.72 × 10−2) | (6.49 × 10−2) | (6.85 × 10−2) | (7.31 × 10−2) | (8.81 × 10−2) | (7.59 × 10−2) | |
Leukemia | 0.00 × 100 | 0.00 × 100 | 1.02 × 10−1 | 0.00 × 100 | 1.67 × 10−2 | 0.00 × 100 |
(0.00 × 100) | (0.00 × 100) | (4.17 × 10−2) | (0.00 × 100) | (5.21 × 10−2) | (0.00 × 100) | |
Leukemia1 | 0.00 × 100 | 0.00 × 100 | 6.31 × 10−2 | 0.00 × 100 | 5.19 × 10−2 | 0.00 × 100 |
(0.00 × 100) | (0.00 × 100) | (6.07 × 10−2) | (0.00 × 100) | (6.05 × 10−2 | (0.00 × 100) | |
M-of-n | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 0.00 × 100 | 1.70 × 10−1 | 0.00 × 100 |
(0.00 × 100) | (0.000 × 100) | (0.00 × 100) | (0.00 × 100) | (9.05 × 10−2) | (0.00 × 100) |
Function | ECPO | BGWO | BGSA | BPSO | BBA | BSSA |
---|---|---|---|---|---|---|
Australian | 6.3 | 5.3 | 6.1 | 5.1 | 5.8 | 6.9 |
(1.24) | (1.94) | (2.23) | (1.37) | (1.54) | (0.99) | |
cmc | 5.3 | 4.6 | 6.3 | 5.1 | 5.7 | 5.3 |
(0.823) | (1.08) | (0.99) | (0.87) | (1.31) | (0.94) | |
heartandlung | 13.6 | 4.6 | 2.8 | 2.6 | 7.3 | 4.3 |
(2.95) | (0.96) | (1.17) | (1.13) | (3.41) | (2.05) | |
hepatitisfulldata | 10.2 | 4.3 | 3.8 | 6.1 | 7 | 5.4 |
(2.52) | (1.15) | (1.70) | (2.02) | (2.82) | (2.59) | |
glass | 5.4 | 3.8 | 4.6 | 3.9 | 3.7 | 4.2 |
(0.96) | (0.63) | (1.42) | (0.73) | (1.56) | (0.78) | |
heart | 8.1 | 5.9 | 6.5 | 5.6 | 5.5 | 6.4 |
(1.10) | (1.19) | (1.26) | (1.64) | (1.50) | (1.71) | |
thyroid_2class | 6.9 | 6.5 | 4.3 | 4 | 3.7 | 3.8 |
(0.73) | (1.17) | (0.67) | (1.24) | (1.33) | (1.39) | |
Leukemia | 2657.6 | 5356.5 | 531.7 | 2875 | 3240.3 | 2795.8 |
(24.51) | (56.65) | (24.45) | (42.43) | (34.15) | (394.05) | |
Leukemia1 | 3425.4 | 4177.6 | 377.1 | 2092.7 | 2389.2 | 2215 |
(50.57) | 4(3.03) | (20.82) | (45.44) | (25.96) | (165.48) | |
M-of-n | 8.2 | 6 | 6 | 6 | 7.9 | 6.1 |
(0.84) | (0) | (0) | (0) | (1.72) | (0.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Yi, Y. Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection. Biomimetics 2024, 9, 662. https://doi.org/10.3390/biomimetics9110662
Chen T, Yi Y. Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection. Biomimetics. 2024; 9(11):662. https://doi.org/10.3390/biomimetics9110662
Chicago/Turabian StyleChen, Tian, and Yuanyuan Yi. 2024. "Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection" Biomimetics 9, no. 11: 662. https://doi.org/10.3390/biomimetics9110662
APA StyleChen, T., & Yi, Y. (2024). Multi-Strategy Enhanced Parrot Optimizer: Global Optimization and Feature Selection. Biomimetics, 9(11), 662. https://doi.org/10.3390/biomimetics9110662