A Worm-like Soft Robot Based on Adhesion-Controlled Electrohydraulic Actuators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Inspiration
2.2. Design of the Worm-like Soft Robot
2.3. Analysis of Mathematical Models
2.4. Fabrication of the Worm-like Soft Robot
3. Results
3.1. Performance of Actuation and Anchoring Module
3.2. Bioinspired Adhesive Surface Experiments
3.3. Locomotion Mechanism and Control System
- (1)
- In the 0~T/2 phase, the tail adhesive actuators are activated, generating axial elongation that presses the adhesive surface against the ground for anchoring. The motion actuators and head adhesive actuators remain inactive.
- (2)
- In the T/2~T phase, the tail and head adhesive actuators maintain their states, while the motion actuators are activated to extend or bend the robot’s head module forward.
- (3)
- In the T~3T/2 phase, the working states of the tail and head adhesive actuators are switched, anchoring the head module to the ground.
- (4)
- In the 3T/2~T phase, the tail and head adhesive actuators maintain their states, and the motion actuator’s charge is released, allowing it to return to its initial position under the restoring force of the elastic element, thereby pulling the robot’s tail module forward to elongate it.
3.4. Worm-like Robot Crawling Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oya, T.; Okada, T. Development of a steerable, wheel-type, in-pipe robot and its path planning. Adv. Robot. 2005, 19, 635–650. [Google Scholar] [CrossRef]
- Xu, Z.L.; Lu, S.; Yang, J.; Feng, Y.H.; Shen, C.T. A wheel-type in-pipe robot for grinding weld beads. Adv. Manuf. 2017, 5, 182–190. [Google Scholar] [CrossRef]
- Roh, S.G.; Choi, H.R. Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans. Robot. 2005, 21, 1–17. [Google Scholar]
- Yu, X.; Chen, Y.H.; Chen, M.Z.Q.; Lam, J. Development of a Novel In-Pipe Walking Robot. In Proceedings of the IEEE International Conference on Information and Automation 2015, Lijiang, China, 8–10 August 2015; pp. 364–368. [Google Scholar]
- Borenstein, J.; Borrell, A. The OmniTread OTA serpentine robot. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1766–1767. [Google Scholar]
- Zhang, H.; Wang, W.; Deng, Z.; Zong, G.; Zhang, J. A Novel Reconfigurable Robot for Urban Search and Rescue. Int. J. Adv. Robot. Syst. 2006, 3, 48. [Google Scholar] [CrossRef]
- Luo, M.; Yan, R.; Wan, Z.; Qin, Y.; Santoso, J.; Skorina, E.H.; Onal, C.D. OriSnake: Design, Fabrication, and Experimental Analysis of a 3-D Origami Snake Robot. IEEE Robot. Autom. Lett. 2018, 3, 1993–1999. [Google Scholar] [CrossRef]
- Qi, X.D.; Shi, H.Y.; Pinto, T.; Tan, X.B. A Novel Pneumatic Soft Snake Robot Using Traveling-Wave Locomotion in Constrained Environments. IEEE Robot. Autom. Lett. 2020, 5, 1610–1617. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Rogóz, M.; Zeng, H.; Xuan, C.; Wiersma, D.S.; Wasylczyk, P. Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale. Adv. Opt. Mater. 2016, 4, 1689–1694. [Google Scholar] [CrossRef]
- Wang, K.; Yan, G.; Ma, G.; Ye, D. An Earthworm-Like Robotic Endoscope System for Human Intestine: Design, Analysis, and Experiment. Ann. Biomed. Eng. 2009, 37, 210–221. [Google Scholar] [CrossRef]
- Tolley, M.T.; Shepherd, R.F.; Mosadegh, B.; Galloway, K.C.; Wehner, M.; Karpelson, M.; Wood, R.J.; Whitesides, G.M. A Resilient, Untethered Soft Robot. Soft Robot. 2014, 1, 213–223. [Google Scholar] [CrossRef]
- Wang, W.; Lee, J.-Y.; Rodrigue, H.; Song, S.-H.; Chu, W.-S.; Ahn, S.-H. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspiration Biomim. 2014, 9, 46006. [Google Scholar] [CrossRef] [PubMed]
- Boxerbaum, A.S.; Shaw, K.M.; Chiel, H.J.; Quinn, R.D. Continuous wave peristaltic motion in a robot. Int. J. Robot. Res. 2012, 31, 302–318. [Google Scholar] [CrossRef]
- Dowling, K.J. Limbless Locomotion: Learning to Crawl with a Snake Robot; Carnegie Mellon University: Pittsburgh, PA, USA, 1997. [Google Scholar]
- Gans, C. Tetrapod Limblessness—Evolution And Functional Corollaries. Am. Zool. 1975, 15, 455–467. [Google Scholar] [CrossRef]
- Simon, M.A.; Woods, W.A.; Serebrenik, Y.V.; Simon, S.M.; van Griethuijsen, L.I.; Socha, J.J.; Lee, W.K.; Trimmer, B.A. Visceral-Locomotory Pistoning in Crawling Caterpillars. Curr. Biol. 2010, 20, 1458–1463. [Google Scholar] [CrossRef]
- Gutmann, W.F. Relationships Between Invertebrate Phyla Based on Functional-Mechanical Analysis of the Hydrostatic Skeleton. Am. Zool. 1981, 21, 63–81. [Google Scholar] [CrossRef]
- Tzetlin, A.B.; Filippova, A.V. Muscular system in polychaetes (Annelida). Hydrobiologia 2005, 535, 113–126. [Google Scholar]
- Ge, J.Z.; Calderón, A.A.; Chang, L.; Pérez-Arancibia, N.O. An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion. Bioinspiration Biomim. 2019, 14, 36004. [Google Scholar] [CrossRef]
- Liu, X.; Song, M.; Fang, Y.; Zhao, Y.; Cao, C. Worm-Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection. Adv. Intell. Syst. 2021, 4, 2100128. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Q.; Lin, G.; Yin, J. Switchable Adhesion Actuator for Amphibious Climbing Soft Robot. Soft Robot. 2018, 5, 592–600. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, Y.; Yang, P.; Cao, T.; Liao, H. Worm-Like Soft Robot for Complicated Tubular Environments. Soft Robot. 2019, 6, 399–413. [Google Scholar] [CrossRef]
- Seok, S.; Onal, C.D.; Wood, R.; Rus, D.; Kim, S. Peristaltic locomotion with antagonistic actuators in soft robotics. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–8 May 2010; IEEE: Anchorage, AK, USA, 2010; pp. 1228–1233. [Google Scholar]
- Kim, B.; Lee, M.G.; Lee, Y.P.; Kim, Y.I.; Lee, G.H. An earthworm-like micro robot using shape memory alloy actuator. Sens. Actuators A-Phys. 2006, 125, 429–437. [Google Scholar] [CrossRef]
- Lu, X.; Wang, K.; Hu, T. Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators. Bioinspiration Biomim. 2020, 15, 46012. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, H.-Q.; Zou, J.; Dong, W.-T.; Gu, G.-Y.; Zhu, L.-M.; Zhu, X.-Y. Bio-inspired annelid robot: A dielectric elastomer actuated soft robot. Bioinspiration Biomim. 2017, 12, 25003. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.K.; Luo, Y.D.; Shen, Y.T.; Kim, K.J. Enabling Earthworm-like Soft Robot Development Using Bioinspired IPMC-Scissor Lift Actuation Structures: Design, Locomotion Simulation and Experimental Validation. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; IEEE: Zhuhai, China, 2015; pp. 499–504. [Google Scholar]
- Yang, D.; Mosadegh, B.; Ainla, A.; Lee, B.; Khashai, F.; Suo, Z.; Bertoldi, K.; Whitesides, G.M. Buckling of Elastomeric Beams Enables Actuation of Soft Machines. Adv. Mater. 2015, 27, 6323–6327. [Google Scholar] [CrossRef]
- Yang, D.; Verma, M.S.; So, J.-H.; Mosadegh, B.; Keplinger, C.; Lee, B.; Khashai, F.; Lossner, E.; Suo, Z.; Whitesides, G.M. Buckling Pneumatic Linear Actuators Inspired by Muscle. Adv. Mater. Technol. 2016, 1, 1600055. [Google Scholar] [CrossRef]
- Autumn, K.; Dittmore, A.; Santos, D.; Spenko, M.; Cutkosky, M. Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 2006, 209, 3569–3579. [Google Scholar] [CrossRef]
- Tian, Y.; Pesika, N.; Zeng, H.; Rosenberg, K.; Zhao, B.; McGuiggan, P.; Autumn, K.; Israelachvili, J. Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 2006, 103, 19320–19325. [Google Scholar] [CrossRef]
- Li, X.; Bai, P.; Li, X.; Li, L.; Li, Y.; Lu, H.; Ma, L.; Meng, Y.; Tian, Y. Robust scalable reversible strong adhesion by gecko-inspired composite design. Friction 2022, 10, 1192–1207. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Wang, B.; Yuan, Q.; Weng, Z.; Dai, Z. Reversible Adhesive Bio-Toe with Hierarchical Structure Inspired by Gecko. Biomimetics 2023, 8, 40. [Google Scholar] [CrossRef]
- Yu, Z.; Fu, J.; Ji, Y.; Zhao, B.; Ji, A. Design of a Variable Stiffness Gecko-Inspired Foot and Adhesion Performance Test on Flexible Surface. Biomimetics 2022, 7, 125. [Google Scholar] [CrossRef]
- Qu, L.; Dai, L. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv. Mater. 2007, 19, 3844–3849. [Google Scholar] [CrossRef]
- Duan, W.; Yu, Z.; Cui, W.; Zhang, Z.; Zhang, W.; Tian, Y. Bio-inspired switchable soft adhesion for the boost of adhesive surfaces and robotics applications: A brief review. Adv. Colloid. Interface Sci. 2023, 313, 102862. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Li, S.; Zhang, F.; Wang, S. Understanding surface adhesion in nature: A peeling model. Adv. Sci. 2016, 3, 1500327. [Google Scholar] [CrossRef] [PubMed]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 2018, 359, 61–65. [Google Scholar] [CrossRef]
- Kellaris, N.; Gopaluni Venkata, V.; Smith, G.M.; Mitchell, S.K.; Keplinger, C. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 2018, 3, eaar3276. [Google Scholar] [CrossRef]
- Mitchell, S.K.; Wang, X.; Acome, E.; Martin, T.; Ly, K.; Kellaris, N.; Venkata, V.G.; Keplinger, C. An Easy-to-Implement Toolkit to Create Versatile and High-Performance HASEL Actuators for Untethered Soft Robots. Adv. Sci. 2019, 6, 1900178. [Google Scholar] [CrossRef]
- Kim, S.; Cha, Y. A soft crawling robot with a modular design based on electrohydraulic actuator. Iscience 2023, 26, 106726. [Google Scholar] [CrossRef]
- Quillin, K.J. Ontogenetic scaling of hydrostatic skeletons: Geometric, static stress and dynamic stress scaling of the earthworm Lumbricus terrestris. J. Exp. Biol. 1998, 201, 1871–1883. [Google Scholar] [CrossRef]
- Rothemund, P.; Kellaris, N.; Mitchell, S.K.; Acome, E.; Keplinger, C. HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities. Adv. Mater. 2020, 33, 2003375. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, F.; Tan, D.; Shi, Z.; Zhu, B.; Xiao, K.; Xue, L. Gradient Micropillar Array Inspired by Tree Frog for Robust Adhesion on Dry and Wet Surfaces. Biomimetics 2022, 7, 209. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, J.; Niu, Q.; Yu, L.; Wu, X.; Wang, W.; Yan, S.; Yu, Z. Development of wet adhesion of honeybee arolium incorporated polygonal structure with three-phase composite interfaces. Friction 2024, 12, 215–230. [Google Scholar] [CrossRef]
- Kellaris, N.; Venkata, V.G.; Rothemund, P.; Keplinger, C. An analytical model for the design of Peano-HASEL actuators with drastically improved performance. Extrem. Mech. Lett. 2019, 29, 100449. [Google Scholar] [CrossRef]
- Fang, D.; Jia, G.; Wu, J.; Niu, X.; Li, P.; Wang, R.; Zhang, Y.; Zhang, J. A Novel Worm-like In-Pipe Robot with the Rigid and Soft Structure. J. Bionic Eng. 2023, 20, 2559–2569. [Google Scholar] [CrossRef]
- Mitchell, S.K.; Martin, T.; Keplinger, C. A Pocket-Sized Ten-Channel High Voltage Power Supply for Soft Electrostatic Actuators. Adv. Mater. Technol. 2022, 7, 2101469. [Google Scholar] [CrossRef]
Parameter | This Work | Lu et al. [26] | Jung et al. [48] | Mitchell et al. [49] |
---|---|---|---|---|
Actuator type | Electro- hydraulic | DEA | Pneumatic | Electro- hydraulic |
Length (mm) | 100 | 150 | 171 | 140 |
Width (mm) | 35 | 40 | 20 | 50 |
Mass (g) | 46 | 8 | — | 240 |
Linear velocity (mm s−1) | 10.36 | 11.50 | 12.7 | 14.75 |
Velocity/length ratio (min−1) | 6.22 | 4.60 | 4.46 | 4.60 |
Velocity/mass ratio (mm (min−1 g−1)) | 13.51 | 86.25 | — | 3.69 |
Bidirectional locomotion | Yes | Yes | Yes | Yes |
Direction adjustment | Yes | No | No | No |
Variable friction | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Sun, Z.; Xiang, Y.; Zhao, J. A Worm-like Soft Robot Based on Adhesion-Controlled Electrohydraulic Actuators. Biomimetics 2024, 9, 776. https://doi.org/10.3390/biomimetics9120776
Wu Y, Sun Z, Xiang Y, Zhao J. A Worm-like Soft Robot Based on Adhesion-Controlled Electrohydraulic Actuators. Biomimetics. 2024; 9(12):776. https://doi.org/10.3390/biomimetics9120776
Chicago/Turabian StyleWu, Yangzhuo, Zhe Sun, Yu Xiang, and Jieliang Zhao. 2024. "A Worm-like Soft Robot Based on Adhesion-Controlled Electrohydraulic Actuators" Biomimetics 9, no. 12: 776. https://doi.org/10.3390/biomimetics9120776
APA StyleWu, Y., Sun, Z., Xiang, Y., & Zhao, J. (2024). A Worm-like Soft Robot Based on Adhesion-Controlled Electrohydraulic Actuators. Biomimetics, 9(12), 776. https://doi.org/10.3390/biomimetics9120776