Facial Expression Realization of Humanoid Robot Head and Strain-Based Anthropomorphic Evaluation of Robot Facial Expressions
Abstract
:1. Introduction
2. Mechanical Design and Facial Expression Realization of the Humanoid Robot Head
2.1. Design and Manufacturing Process for a Humanoid Robot Head
2.2. The Facial Expression Realization of the Humanoid Robot Head
3. Experiments
3.1. Facial Expression Recognition Experiments and Results
3.2. Experimental Design of Strain Measurement
3.3. Strain Measurement Results
4. Discussion
5. Conclusions
- (1)
- The rigid linkage drive design improves the response speed and load carrying capacity, and it solves the problem of low motion accuracy and drive efficiency caused by the silicone skin relaxation phenomenon. The snap button connection between the silicone skin and the drive link increases the lifespan of the silicone skin.
- (2)
- The consistency between the results of the evaluation of the robot’s facial expressions, using the strain difference rate and facial expression recognition rate, validates the feasibility of the proposed method. The anthropomorphism ranking for the six basic facial expressions of humanoid robot head is as follows: sad > smile > disgust > surprise > fear > anger. This was based on the value of each part, which provided a data reference for its mechanism and motion optimisation.
- (3)
- As the number of control points required to replicate facial expressions increases and the movement displacement of these control points decreases, reproducing these facial expressions becomes more challenging.
- (4)
- The energy consumption of each part is reflected by its impulse value, providing data to support the selection of drive components for other researchers. It has been established that the humanoid robot head consumes more energy in the eyelids and corners of the mouth when completing facial expressions. Therefore, a servo with a larger torque should be selected to meet the energy demand of these two moving parts.
- (5)
- When the facial expression recognition rate exceeds 80%, the ranking for the energy consumption of the humanoid robot head when completing the six basic facial expressions is: sad > disgust > surprise > fear > smile > anger.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Motor Area | The Displacement of the X-Axis | The Displacement of the Y-Axis | The Displacement of the Z-Axis | |
---|---|---|---|---|
Smile | Corners of the mouth (16, 17) | 0~0.2 | 0~0.4 | 0~−0.02 |
Upper lip (14, 15, 31) | 0~0.04 | −0.1~0.28 | 0~0.01 | |
Lower lip (30) | -- | 0~−0.32 | -- | |
Jaw (5, 6) | -- | 0~−0.5 | −0.05~0 | |
Anger | Eyebrow center (3, 4) | 0~−0.01 | 0~−0.30 | -- |
eyebrow (1, 2) | 0~0.07 | 0~−0.35 | -- | |
Lower lip (30) | 0~−0.25 | 0~−0.15 | 0~0.2 | |
eyelid (8, 9, 10, 11) | 0~0.01 | 0~0.05 | -- | |
Upper lip (14, 15, 31) | 0~0.01 | 0~0.31 | -- | |
Jaw (5, 6) | -- | 0~0.05 | -- | |
Sad | eyebrow (1, 2) | 0~−0.06 | 0–0.95 | -- |
Corners of the mouth (16, 17) | 0~0.2 | 0~−0.6 | -- | |
Upper lip (31) | -- | -- | 0~0.2 | |
Lower lip (30) | -- | 0~0.02 | 0~0.2 | |
eyelid (8, 9) | 0~0.15 | -- | -- | |
Surprise | Eyebrow center (3, 4) | -- | 0~0.50 | -- |
eyebrow (1, 2) | -- | 0~0.27 | -- | |
Jaw (5, 6) | -- | 0~−1.05 | 0~−0.3 | |
eyelid (8, 9, 10, 11) | -- | 0~−0.20 | -- | |
Disgust | Upper lip (15) | 0~0.16 | 0~0.65 | 0~0.04 |
Lower lip (5, 6) | -- | 0~0.4 | -- | |
Corners of the mouth (16, 17) | 0~0.3 | 0~−0.21 | -- | |
eyelid (8, 9, 10, 11) | -- | 0~0.03 | -- | |
Fear | eyebrow (1, 2) | 0~−0.10 | 0~0.12 | -- |
Eyebrow center (3, 4) | 0~0.3 | 0~−0.69 | 0~0.09 | |
Upper lip (14, 15, 31) | -- | 0~0.40 | -- | |
Jaw (5, 6) | 0~0.03 | 0~−0.75 | -- | |
eyelid (8, 9, 10, 11) | -- | 0~0.32 | -- |
NO. | Sensor 1 (S1) | Sensor 2 (S2) | Sensor 3 (S3) | Sensor 4 (S4) |
calibration results | y1 = 3.176 × 10−10x1 | y2 =1.073 × 10−9x2 | y3 = 3.695 × 10−10x3 | y4 = 4.151 × 10−10x4 |
NO. | Sensor 5 (S5) | Sensor 6 (S6) | Sensor 7 (S7) | Sensor 8 (S8) |
calibration results | y5 = 3.559 × 10−11x5 | y6 = 3.946 × 10−11x6 | y7 = 8.405 × 10−11x7 | y8 = 8.454 × 10−11x8 |
NO. | Sensor 9 (S9) | Sensor 10 (S10) | Sensor 11 (S11) | Sensor 12 (S12) |
calibration results | y9 = 2.59 × 10−10x9 | y10 = 7.655 × 10−11x10 | y11 = 6.32 × 10−9x11 | y12 = 6.169 × 10−11x12 |
NO. | Sensor 13 (S13) | Sensor 14 (S14) | Sensor 15 (S15) | Sensor 16 (S16) |
calibration results | y13 = 3.45 × 10−10x13 | y14 = 1.142 × 10−9x14 | y15 = 2.2 × 10−11x15 | y16 = 9.511 × 10−11x16 |
References
- Mehrabian, A. Communication without words. In Communication Theory; Routledge: New York, NY, USA, 2017; pp. 193–200. [Google Scholar]
- Wei, J.; Hu, G.; Yang, X.; Luu, A.T.; Dong, Y. Learning facial expression and body gesture visual information for video emotion recognition. Expert Syst. Appl. 2024, 237, 121419. [Google Scholar] [CrossRef]
- Russo, S.; Lorusso, L.; Onofrio, G.D.; Ciccone, F.; Tritto, M.; Nocco, S.; Cardone, D.; Perpetuini, D.; Lombardo, M.; Lombardo, D. Assessing Feasibility of Cognitive Impairment Testing Using Social Robotic Technology Augmented with Affective Computing and Emotional State Detection Systems. Biomimetics 2023, 8, 475. [Google Scholar] [CrossRef]
- Lombardi, M.; Roselli, C.; Kompatsiari, K.; Rospo, F.; Natale, L.; Wykowska, A. The impact of facial expression and eye contact of a humanoid robot on individual Sense of Agency. Sci. Rep. 2023, 13, 10113. [Google Scholar] [CrossRef]
- Doewes, R.I.; Purnama, S.K.; Nuryadin, I.; Kurdhi, N.A. Human AI: Social robot decision-making using emotional AI and neuroscience. In Emotional AI and Human-AI Interactions in Social Networking; Elsevier: Amsterdam, The Netherlands, 2024; pp. 255–286. [Google Scholar]
- Miwa, H.; Okuchi, T.; Takanobu, H.; Takanishi, A. Development of a New Human-Like Head Robot WE-4; IEEE: Piscataway, NJ, USA, 2002; pp. 2443–2448. [Google Scholar]
- Miwa, H.; Itoh, K.; Matsumoto, M.; Zecca, M.; Takanobu, H.; Roccella, S.; CHIARA Carrozza, M.; Dario, P.; Takanishi, A. Effective Emotional Expressions with Emotion Expression Humanoid Robot WE-4RII: Integration of Humanoid Robot Hand RCH-1; IEEE: Piscataway, NJ, USA, 2004. [Google Scholar]
- Kishi, T.; Otani, T.; Endo, N.; Kryczka, P.; Hashimoto, K.; Nakata, K.; Takanishi, A. Development of Expressive Robotic Head for Bipedal Humanoid Robot; IEEE: Piscataway, NJ, USA, 2012; pp. 4584–4589. [Google Scholar]
- Yang, Y.; Ke, X.; Xin, J.; Lu, K. Development and experiment of facial robot SHFR-III. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1944–1949. [Google Scholar]
- Ke, X.; Yang, Y.; Xin, J. Facial Expression on Robot SHFR-III Based on Head-Neck Coordination; IEEE: Piscataway, NJ, USA, 2015; pp. 1622–1627. [Google Scholar]
- Breazeal, C.L. Sociable Machines: Expressive Social Exchange between Humans and Robots. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2000. [Google Scholar]
- Allman, T. The Nexi Robot; Norwood House Press: Chicago, IL, USA, 2009. [Google Scholar]
- Pan, M.K.; Choi, S.; Kennedy, J.; McIntosh, K.; Zamora, D.C.; Niemeyer, G.; Kim, J.; Wieland, A.; Christensen, D. Realistic and interactive robot gaze. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 11072–11078. [Google Scholar]
- Kobayashi, H.; Hara, F.; Uchida, G.; Ohno, M. Study on Face Robot for Active Human Interface: Mechanisms of Face Robot and Facial Expressions of 6 Basic Emotions. J. Robot. Soc. Jpn. 1994, 12, 155–163. [Google Scholar] [CrossRef]
- Hashimoto, T.; Hitramatsu, S.; Tsuji, T.; Kobayashi, H. Development of the Face Robot SAYA for Rich Facial Expressions; IEEE: Piscataway, NJ, USA, 2006; pp. 5423–5428. [Google Scholar]
- Hashimoto, T.; Hiramatsu, S.; Kobayashi, H. Development of Face Robot for Emotional Communication between Human and Robot. In Proceedings of the 2006 International Conference on Mechatronics and Automation, Luoyang, China, 25–28 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 25–30. [Google Scholar]
- Mazzei, D.; Lazzeri, N.; Hanson, D.; De Rossi, D. HEFES: An Hybrid Engine for Facial Expressions Synthesis to control human-like androids and avatars. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 195–200. [Google Scholar]
- Weiguo, W.; Qingmei, M.; Yu, W. Development of the humanoid head portrait robot system with flexible face and expression. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 22–26 August 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 757–762. [Google Scholar]
- Yu, H.; Liu, J.; Liu, L.; Ju, Z.; Liu, Y.; Zhou, D. Mechanical Design and Kinematic Control of a Humanoid Robot Face. In Intelligent Robotics and Applications, Proceedings of the 12th International Conference, ICIRA 2019, Shenyang, China, 8–11 August 2019, Proceedings, Part I 12; Springer International Publishing AG: Cham, Switzerland, 2019; Volume 11740, pp. 25–38. [Google Scholar]
- Yan, J.; Wang, Z.; Yan, Y.; Payandeh, S. Humanoid Robot Head Design Based on Uncanny Valley and FACS. J. Robot 2014, 2014, 208924. [Google Scholar] [CrossRef]
- Hu, X.; Xie, L.; Liu, X.; Wang, Z.; Bhatnagar, V. Emotion Expression of Robot with Personality. Math. Probl. Eng. 2013, 2013, 132735. [Google Scholar] [CrossRef]
- Tadesse, Y.; Priya, S. Humanoid face utilizing rotary actuator and piezoelectric sensors. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; pp. 573–581. [Google Scholar]
- Tadesse, Y.; Subbarao, K.; Priya, S. Realizing a Humanoid Neck with Serial Chain Four-bar Mechanism. J. Intel. Mat. Syst. Str. 2010, 21, 1169–1191. [Google Scholar] [CrossRef]
- Faraj, Z.; Selamet, M.; Morales, C.; Torres, P.; Hossain, M.; Chen, B.; Lipson, H. Facially expressive humanoid robotic face. Hardwarex 2021, 9, e00117. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Hu, Y.; Li, L.; Cummings, S.; Lipson, H. Smile Like You Mean It: Driving Animatronic Robotic Face with Learned Models. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; Cornell University Library, arXiv.org: Ithaca, Greece, 2021; pp. 2739–2746. [Google Scholar]
- Asheber, W.T.; Lin, C.; Yen, S.H. Humanoid Head Face Mechanism with Expandable Facial Expressions. Int. J. Adv. Robot. Syst. 2016, 13, 29. [Google Scholar] [CrossRef]
- Lin, C.; Huang, C.; Cheng, L. A small number actuator mechanism design for anthropomorphic face robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 633–638. [Google Scholar]
- Lin, C.; Huang, C.; Cheng, L. An expressional simplified mechanism in anthropomorphic face robot design. Robotica 2016, 34, 652–670. [Google Scholar] [CrossRef]
- Song, Y.; Luximon, A.; Luximon, Y. Facial Anthropomorphic Trustworthiness Scale for Social Robots: A Hybrid Approach. Biomimetics 2023, 8, 335. [Google Scholar] [CrossRef]
- Ke, X.X.; Shang, Y.; Lu, K.B. Simulation of humanoid robot facial expression based on HyperWorks. Manuf. Autom. 2015, 37, 118–121. [Google Scholar]
- Misu, T.; Ishihara, H.; Nagashima, S.; Doi, Y.; Nakatani, A. Visualization and analysis of skin strain distribution in various human facial actions. Mech. Eng. J. 2023, 10, 23–189. [Google Scholar] [CrossRef]
- Gasser, R.F. The development of the facial muscles in man. Am. J. Anat. 1967, 120, 357–375. [Google Scholar] [CrossRef]
- Craig, S.D.; D’Mello, S.; Witherspoon, A.; Graesser, A. Emote aloud during learning with AutoTutor: Applying the Facial Action Coding System to cognitive-affective states during learning. Cogn. Emot. 2008, 22, 777–788. [Google Scholar] [CrossRef]
- Marur, T.; Tuna, Y.; Demirci, S. Facial anatomy. Clin. Dermatol. 2014, 32, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, H.; Iwanaga, S.; Asada, M. Comparison between the facial flow lines of androids and humans. Front. Robot. AI 2021, 8, 540193. [Google Scholar] [CrossRef] [PubMed]
- Com, A. Women Face MB|Maya—3D Model as a Free Download—Love To. Available online: https://www.aigei.com/item/nv_ren_tou_xian_6.html (accessed on 8 February 2024).
- Jamil, B.; Oh, N.; Lee, J.; Lee, H.; Rodrigue, H. A review and comparison of linear pneumatic artificial muscles. Int. J. Precis. Eng. Manuf. -Green Technol. 2023, 11, 277–289. [Google Scholar] [CrossRef]
- Tadesse, Y.; Priya, S. Graphical facial expression analysis and design method: An approach to determine humanoid skin deformation. J. Mech. Robot. 2012, 4, 021010. [Google Scholar] [CrossRef]
- Hirth, J.; Berns, K. Concept for behavior generation for the humanoid robot head ROMAN based on habits of interaction. In Proceedings of the 2007 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, 29 November–1 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 360–365. [Google Scholar]
- Becker-Asano, C.; Ishiguro, H. Evaluating facial displays of emotion for the android robot Geminoid F. In Proceedings of the 2011 IEEE Workshop on Affective Computational Intelligence (WACI), Paris, France, 11–15 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–8. [Google Scholar]
- Danev, L.; Hamann, M.; Fricke, N.; Hollarek, T.; Paillacho, D. Development of animated facial expressions to express emotions in a robot: RobotIcon. In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Almayman, K.; Yoneyama, S. Three Dimensional Shape and Surface Strain Distribution Measurements of the Human Face Using a Multi-View Imaging System. J. Jpn. Soc. Exp. Mech. 2015, 15, 51–57. [Google Scholar]
- Hsu, V.M.; Wes, A.M.; Tahiri, Y.; Cornman-Homonoff, J.; Percec, I. Quantified facial soft-tissue strain in animation measured by real-time dynamic 3-dimensional imaging. Plast. Reconstr. Surg. Glob. Open 2014, 2, e211. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Ju, D.Y. Living Lab-Based Service Interaction Design for a Companion Robot for Seniors in South Korea. Biomimetics 2023, 8, 609. [Google Scholar] [CrossRef] [PubMed]
Options | Recognition Rate | |||||||
---|---|---|---|---|---|---|---|---|
Smile | Anger | Sad | Surprise | Disgust | Fear | |||
images | Smile | 200 | 3 | 1 | 3 | 1 | 2 | 95.24% |
Anger | 3 | 169 | 8 | 6 | 6 | 18 | 80.48% | |
Sad | 0 | 1 | 204 | 0 | 2 | 3 | 97.14% | |
Surprise | 3 | 6 | 2 | 182 | 1 | 16 | 86.67% | |
Disgust | 0 | 5 | 4 | 2 | 190 | 9 | 90.48% | |
Fear | 0 | 7 | 1 | 23 | 3 | 176 | 83.81% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Song, Y.; Zhou, R.; Wang, L.; Wang, Z.; Dai, Z. Facial Expression Realization of Humanoid Robot Head and Strain-Based Anthropomorphic Evaluation of Robot Facial Expressions. Biomimetics 2024, 9, 122. https://doi.org/10.3390/biomimetics9030122
Yan Z, Song Y, Zhou R, Wang L, Wang Z, Dai Z. Facial Expression Realization of Humanoid Robot Head and Strain-Based Anthropomorphic Evaluation of Robot Facial Expressions. Biomimetics. 2024; 9(3):122. https://doi.org/10.3390/biomimetics9030122
Chicago/Turabian StyleYan, Zhibin, Yi Song, Rui Zhou, Liuwei Wang, Zhiliang Wang, and Zhendong Dai. 2024. "Facial Expression Realization of Humanoid Robot Head and Strain-Based Anthropomorphic Evaluation of Robot Facial Expressions" Biomimetics 9, no. 3: 122. https://doi.org/10.3390/biomimetics9030122
APA StyleYan, Z., Song, Y., Zhou, R., Wang, L., Wang, Z., & Dai, Z. (2024). Facial Expression Realization of Humanoid Robot Head and Strain-Based Anthropomorphic Evaluation of Robot Facial Expressions. Biomimetics, 9(3), 122. https://doi.org/10.3390/biomimetics9030122