BGOA-TVG: Binary Grasshopper Optimization Algorithm with Time-Varying Gaussian Transfer Functions for Feature Selection
Abstract
:1. Introduction
- A time-varying Gaussian transfer function is introduced.
- A new binary grasshopper optimization algorithm based on time-varying Gaussian transfer functions (BGOA-TVG) is proposed.
- The BGOA-TVG achieves a balance between its exploration and exploitation capabilities and improves the convergence speed of the algorithm.
- The BGOA-TVG can effectively deal with high-dimensional feature selection problems.
- Compared with proposed binary metaheuristic optimization algorithms in recent years, the excellent performance of the BGOA-TVG is verified.
2. Feature Selection Problem
3. Grasshopper Optimization Algorithm (GOA)
4. Our Proposed BGOA-TVG Method
Algorithm 1: Pseudocode of the BGOA-TVG algorithm. |
Initialize , , and Max_Iterations |
Initialize a population of solutions (i = 1, 2, …, n) |
Evaluate each solution in the population |
Set T as the best solution |
While (t < Max_Iterations) |
Update c using Equation (9) |
For each search agent |
Normalize the distances between grasshoppers in [1, 4] |
Update the step vector ΔX of the current solution using Equation (10) |
For i = 1: dim |
Use Equation (8) to obtain the current position |
Use Equations (10)–(13) to obtain the binary position |
Use Equations (14)–(17) to obtain the final position |
Calculate based on Equations (13), (15), and (16) |
End Reevaluate the fitness of each individual in the population If there is a better solution, replace T with it Update T |
End |
End |
Return T |
Computational Complexity
5. Experimental Results and Discussion
5.1. Experimental Simulation Platform
5.2. UCI Datasets
5.3. Parameter Settings
5.4. Evaluation Criteria
- (1)
- Average fitness function
- (2)
- Average classification accuracy
- (3)
- Average feature selection size
5.5. Different Transfer Functions
6. Electroencephalogram (EEG) Dataset Analysis
6.1. EEG Dataset
6.1.1. DEAP Dataset
- To open and close their left or right fist;
- To imagine opening and closing their left or right fist;
- To open and close both their fists or both their feet;
- To imagine opening and closing both their fists or both their feet.
6.1.2. Dataset of EEG Recordings of Pediatric Patients with Epilepsy
6.2. Compared Methods
6.3. Classification Indices
6.4. Analysis of Results
6.4.1. Selection of Classifier
6.4.2. Selection of Features and Parameters
6.4.3. Analysis of Results
6.4.4. Analysis of Results for Epilepsy EEG
7. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meenachi, L.; Ramakrishnan, S. Metaheuristic Search Based Feature Selection Methods for Classification of Cancer. Pattern Recognit. 2021, 119, 108079. [Google Scholar] [CrossRef]
- Şahin, C.B.; Abualigah, L. A novel deep learning-based feature selection model for improving the static analysis of vulnerability detection. Neural Comput. Appl. 2021, 33, 14049–14067. [Google Scholar] [CrossRef]
- Maleki, N.; Zeinali, Y.; Niaki, S.T.A. A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection. Expert Syst. Appl. 2021, 164, 113981. [Google Scholar] [CrossRef]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Sharma, P.; Raju, S. Metaheuristic optimization algorithms: A comprehensive overview and classification of benchmark test functions. Soft Comput. 2024, 28, 3123–3186. [Google Scholar] [CrossRef]
- Beheshti, Z.; Shamsuddin, S.M.; Sulaiman, S. Fusion Global-Local-Topology Particle Swarm Optimization for Global Optimization Problems. Math. Probl. Eng. 2014, 2014, 107–136. [Google Scholar] [CrossRef]
- Zhao, F.; Bao, H.; Wang, L.; Cao, J.; Tang, J. A multipopulation cooperative coevolutionary whale optimization algorithm with a two-stage orthogonal learning mechanism. Knowl. Based Syst. 2022, 246, 108664. [Google Scholar] [CrossRef]
- Pan, J.-S.; Zhang, L.-G.; Wang, R.-B.; Snášel, V.; Chu, S.-C. Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [Google Scholar] [CrossRef]
- Lu, K.-D.; Wu, Z.-G. Constrained-Differential-Evolution-Based Stealthy Sparse Cyber-Attack and Countermeasure in an AC Smart Grid. IEEE Trans. Ind. Inform. 2022, 18, 5275–5285. [Google Scholar] [CrossRef]
- Dokeroglu, T.; Deniz, A.; Kiziloz, H.E. A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing 2022, 494, 269–296. [Google Scholar] [CrossRef]
- Kılıç, F.; Kaya, Y.; Yildirim, S. A novel multi population based particle swarm optimization for feature selection. Knowl. Based Syst. 2021, 219, 106894. [Google Scholar] [CrossRef]
- Beheshti, Z. BMNABC: Binary Multi-Neighborhood Artificial Bee Colony for High-Dimensional Discrete Optimization Problems. Cybern. Syst. 2018, 49, 452–474. [Google Scholar] [CrossRef]
- Bostani, H.; Sheikhan, M. Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems. Soft Comput. 2015, 21, 2307–2324. [Google Scholar] [CrossRef]
- Rajalaxmi, R.R.; Mirjalili, S.; Gothai, E.; Natesan, P. Binary grey wolf optimization with mutation and adaptive k-nearest neighbor for feature selection in Parkinson’s disease diagnosis. Knowl. Based Syst. 2022, 246, 108701. [Google Scholar]
- Faris, H.; Mafarja, M.M.; Heidari, A.A.; Aljarah, I.; Al-Zoubi, A.M.; Mirjalili, S.; Fujita, H. An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems. Knowl. Based Syst. 2018, 154, 43–67. [Google Scholar] [CrossRef]
- Nakamura, R.Y.M.; Pereira, L.A.M.; Rodrigues, D.; Costa, K.A.P.; Papa, J.P. 9—Binary bat algorithm for feature selection. Swarm Intell. Bio-Inspired Comput. 2013, 225–237. [Google Scholar]
- Zhou, R.; Zhang, Y.; He, K. A novel hybrid binary whale optimization algorithm with chameleon hunting mechanism for wrapper feature selection in QSAR classification model: A drug-induced liver injury case study. Expert Syst. Appl. 2023, 234, 121015. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, A. Binary spotted hyena optimizer and its application to feature selection. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 2625–2645. [Google Scholar] [CrossRef]
- Dhiman, G.; Oliva, D.; Kaur, A.; Singh, K.K.; Vimal, S.; Sharma, A.; Cengiz, K. BEPO: A novel binary emperor penguin optimizer for automatic feature selection. Knowl. Based Syst. 2021, 211, 106560. [Google Scholar] [CrossRef]
- Hussain, K.; Neggaz, N.; Zhu, W.; Houssein, E.H. An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Expert Syst. Appl. 2021, 176, 114778. [Google Scholar] [CrossRef]
- Rahab, H.; Haouassi, H.; Laouid, A. Rule-Based Arabic Sentiment Analysis using Binary Equilibrium Optimization Algorithm. Arab. J. Sci. Eng. 2023, 48, 2359–2374. [Google Scholar] [CrossRef]
- Too, J.; Abdullah, A.R. Binary atom search optimisation approaches for feature selection. Connect. Sci. 2020, 32, 406–430. [Google Scholar] [CrossRef]
- Too, J.; Mirjalili, S. A Hyper Learning Binary Dragonfly Algorithm for Feature Selection: A COVID-19 Case Study. Knowl. Based Syst. 2021, 212, 106553. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Sahu, T.P. A hybrid feature selection method based on Binary Jaya algorithm for micro-array data classification. Comput. Electr. Eng. 2021, 90, 106963. [Google Scholar] [CrossRef]
- Alweshah, M.; Alkhalaileh, S.; Al-Betar, M.A.; Abu Bakar, A. Coronavirus herd immunity optimizer with greedy crossover for feature selection in medical diagnosis. Knowl. Based Syst. 2022, 235, 107629. [Google Scholar] [CrossRef]
- Sadeghian, Z.; Akbari, E.; Nematzadeh, H. A hybrid feature selection method based on information theory and binary butterfly optimization algorithm. Eng. Appl. Artif. Intell. 2021, 97, 104079. [Google Scholar] [CrossRef]
- Al-Saedi, A.; Mawlood-Yunis, A.R. Binary Black Widow Optimization Algorithm for Feature Selection Problems. Learn. Intell. Optim. 2022, 13621, 93–107. [Google Scholar]
- Hu, J.; Gui, W.; Heidari, A.A.; Cai, Z.; Liang, G.; Chen, H.; Pan, Z. Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection. Knowl. Based Syst. 2022, 237, 107761. [Google Scholar] [CrossRef]
- Eluri, R.K.; Devarakonda, N. Binary Golden Eagle Optimizer with Time-Varying Flight Length for feature selection. Knowl. Based Syst. 2022, 247, 108771. [Google Scholar] [CrossRef]
- Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019, 52, 2191–2233. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Ren, X.; Zhou, H.; Diao, X. A Classification Method Based on Feature Selection for Imbalanced Data. IEEE Access 2019, 7, 81794–81807. [Google Scholar] [CrossRef]
- Khorashadizade, M.; Hosseini, S. An intelligent feature selection method using binary teaching-learning based optimization algorithm and ANN. Chemom. Intell. Lab. Syst. 2023, 240, 104880. [Google Scholar] [CrossRef]
- Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S. Improved salp swarm algorithm for feature selection. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 335–344. [Google Scholar] [CrossRef]
- Zaimoğlu, E.A.; Yurtay, N.; Demirci, H.; Yurtay, Y. A binary chaotic horse herd optimization algorithm for feature selection. Eng. Sci. Technol. Int. J. 2023, 44, 101453. [Google Scholar] [CrossRef]
- Khodadadi, N.; Khodadadii, E.; Al-Tashi, Q.; El-Kenawy, E.S.M.; Abualigah, L.; Abdulkadir, S.J.; Alqushaibi, A.; Mirjalili, S. BAOA: Binary Arithmetic Optimization Algorithm with K-Nearest Neighbor Classifier for Feature Selection. IEEE Access 2023, 11, 94094–94115. [Google Scholar] [CrossRef]
- Ghazali, S.M.; Alizadeh, M.; Mazloum, J.; Baleghi, Y. Modified binary salp swarm algorithm in EEG signal classification for epilepsy seizure detection. Biomed. Signal Process. Control. 2022, 78, 72–93. [Google Scholar]
- Chantar, H.; Tubishat, M.; Essgaer, M.; Mirjalili, S. Hybrid binary dragonfly algorithm with simulated annealing for feature selection. SN Comput. Sci. 2021, 2, 295. [Google Scholar] [CrossRef]
- Beheshti, Z. BMPA-TVSinV: A Binary Marine Predators Algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selection. Knowl. Based Syst. 2022, 252, 109446. [Google Scholar] [CrossRef]
- Got, A.; Moussaoui, A.; Zouache, D. Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach. Expert Syst. Appl. 2021, 183, 115312. [Google Scholar] [CrossRef]
- Rostami, M.; Forouzandeh, S.; Berahmand, K.; Soltani, M. Integration of multi-objective PSO based feature selection and node centrality for medical datasets. Genomics 2020, 112, 4370–4384. [Google Scholar] [CrossRef]
- Del Sagrado, J.; Del Águila, I.M.; Orellana, F.J. Multi-objective ant colony optimization for requirements selection. Empir. Softw. Eng. 2015, 20, 577–610. [Google Scholar] [CrossRef]
- Aljarah, I.; Habib, M.; Faris, H.; Al-Madi, N. A dynamic locality multi-objective salp swarm algorithm for feature selection. Comput. Ind. Eng. 2020, 147, 106628. [Google Scholar] [CrossRef]
- Ahmed, S.; Ghosh, K.K.; Mirjalili, S.; Sarkar, R. AIEOU: Automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection. Knowl. Based Syst. 2021, 228, 107283. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization. Swarm Evol. Comput. 2013, 9, 1–14. [Google Scholar] [CrossRef]
- Yedukondalu, J.; Sharma, L.D. Cognitive load detection using circulant singular spectrum analysis and Binary Harris Hawks Optimization based feature selection. Biomed. Signal Process. Control. 2023, 79, 104006. [Google Scholar] [CrossRef]
- Gunia, A.; Moraresku, S.; Janča, R.; Ježdík, P.; Kalina, A.; Hammer, J.; Marusič, P.; Vlček, K. The brain dynamics of visuospatial perspective-taking captured by intracranial EEG. NeuroImage 2024, 285, 120487. [Google Scholar] [CrossRef] [PubMed]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary ant lion approaches for feature selection. Neurocomputing 2016, 213, 54–65. [Google Scholar] [CrossRef]
- Faris, H.; Hassonah, M.A.; Ala, M.A.-Z.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2018, 30, 2355–2369. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016, 172, 371–381. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl. Based Syst. 2018, 161, 185–204. [Google Scholar] [CrossRef]
- Rao, H.; Shi, X.; Rodrigue, A.K.; Feng, J.; Xia, Y.; Elhoseny, M.; Yuan, X.; Gu, L. Feature selection based on artificial bee colony and gradient boosting decision tree. Appl. Soft Comput. 2019, 74, 634–642. [Google Scholar] [CrossRef]
- Sayed, G.I.; Hassanien, A.E.; Azar, A.T. Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 2019, 31, 171–188. [Google Scholar] [CrossRef]
- Hancer, E.; Xue, B.; Zhang, M.; Karaboga, D.; Akay, B. Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 2018, 422, 462–479. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491–502. [Google Scholar]
- Baig, M.Z.; Aslam, N.; Shum, H.P.H. Filtering techniques for channel selection in motor imagery EEG applications: A survey. Artif. Intell. Rev. 2020, 53, 1207–1232. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Hu, S.-Y.; Song, H. Channel Selection Method for EEG Emotion Recognition Using Normalized Mutual Information. IEEE Access 2019, 7, 143303–143311. [Google Scholar] [CrossRef]
- Boonyakitanont, P.; Lek-Uthai, A.; Chomtho, K.; Songsiri, J. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG. Biomed. Signal Process. Control 2020, 57, 101702. [Google Scholar] [CrossRef]
- Li, X.; Hu, B.; Sun, S.; Cai, H. EEG-based mild depressive detection using feature selection methods and classifiers. Comput. Methods Programs Biomed. 2016, 136, 151–161. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Xiao, W.; Cui, J. Binary dynamic stochastic search algorithm with support vector regression for feature selection in low-velocity impact localization problem. Eng. Appl. Artif. Intell. 2023, 124, 106554. [Google Scholar] [CrossRef]
- Zhuang, Z.; Pan, J.-S.; Li, J.; Chu, S.-C. Parallel binary arithmetic optimization algorithm and its application for feature selection. Knowl. Based Syst. 2023, 275, 110640. [Google Scholar] [CrossRef]
- Chen, S.-M.; Chiou, C.-H. Multiattribute Decision Making Based on Interval-Valued Intuitionistic Fuzzy Sets, PSO Techniques, and Evidential Reasoning Methodology. IEEE Trans. Fuzzy Syst. 2014, 23, 1905–1916. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Moradi, P.; Gholampour, M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl. Soft Comput. 2016, 43, 117–130. [Google Scholar] [CrossRef]
- Beheshti, Z. UTF: Upgrade transfer function for binary meta-heuristic algorithms. Appl. Soft Comput. 2021, 106, 107346. [Google Scholar] [CrossRef]
- Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.; Al-Zoubi, A.; Mirjalili, S. Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst. Appl. 2019, 117, 267–286. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Wei, Y.; Zhou, Y. An efficient binary Gradient-based optimizer for feature selection. Math. Biosci. Eng. 2021, 4, 3813–3854. [Google Scholar] [CrossRef]
- Wang, H.; He, C.; Li, Z. A new ensemble feature selection approach based on genetic algorithm. Soft Comput 2020, 24, 15811–15820. [Google Scholar] [CrossRef]
- Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2019, 116, 147–160. [Google Scholar] [CrossRef]
No. | Dataset | Features | Instances |
---|---|---|---|
1 | Cancer | 9 | 683 |
2 | Breast | 9 | 277 |
3 | Wine | 13 | 178 |
4 | Ionosphere | 34 | 351 |
5 | Leukemia | 7129 | 72 |
6 | cloud | 10 | 1024 |
7 | Vote | 18 | 846 |
8 | Wall following robot navigation data | 24 | 5456 |
9 | sonar | 60 | 208 |
10 | Zoo | 16 | 101 |
Algorithms | Parameter Values |
---|---|
BDA [23] | ; |
BHHO [20] | |
BPSO [11] | ; ; ; ; |
BGWO [14] | |
BWOA [17] | |
BGBO [66] | Pr = 0.5 |
BGOA [65] | |
BGA [67] | px = 0.7, G = 0.95, pm = 0.01 |
BBOA [68] | C = 0.5, α = 0.1, p = 0.7 |
BGOA-TVG |
Algorithm | Measure | ||||
---|---|---|---|---|---|
Dataset | Average Fitness | Average Accuracy | Average Size | Rank | |
BDA [23] | Cancer | 0.0106 | 0.9918 | 7.4000 | 2 |
BHHO [20] | 0.0047 | 1.0000 | 14.0000 | 1 | |
BPSO [11] | 0.0324 | 0.9737 | 6.0000 | 6 | |
BGWO [14] | 0.0290 | 0.9743 | 10.6667 | 5 | |
BGBO [66] | 0.0017 | 1.0000 | 4.1667 | 1 | |
BGA [67] | 0.0131 | 1.0000 | 8.7667 | 1 | |
BWOA [17] | 0.0225 | 0.9820 | 14.1500 | 4 | |
BGOA [65] | 0.0025 | 0.9901 | 16.9000 | 3 | |
BGOA-TVG | 0.0016 | 1.0000 | 5.2000 | 1 | |
BDA [23] | Breast | 0.7580 | 0.2388 | 2.5000 | 4 |
BHHO [20] | 0.6779 | 0.2381 | 8.0640 | 5 | |
BPSO [11] | 0.8230 | 0.1736 | 5.2000 | 6 | |
BGWO [14] | 0.6779 | 0.3211 | 7.0640 | 3 | |
BGBO [66] | 0.5047 | 0.4904 | 2.5000 | 2 | |
BGA [67] | 0.8710 | 0.1245 | 3.1619 | 7 | |
BWOA [17] | 0.8481 | 0.1498 | 7.5964 | 8 | |
BGOA [65] | 0.8366 | 0.1611 | 5.2265 | 9 | |
BGOA-TVG | 0.8996 | 0.5698 | 2.5000 | 1 | |
BDA [23] | Wine | 0.0056 | 0.9986 | 5.4500 | 2 |
BHHO [20] | 0.0032 | 1.0000 | 4.1250 | 1 | |
BPSO [11] | 0.0687 | 0.9898 | 2.6667 | 3 | |
BGWO [14] | 0.0043 | 1.0000 | 5.6500 | 1 | |
BGBO [66] | 0.0015 | 1.0000 | 2.0667 | 1 | |
BGA [67] | 0.0034 | 1.0000 | 4.4000 | 1 | |
BWOA [17] | 0.0026 | 0.9764 | 5.1000 | 4 | |
BGOA [65] | 0.0039 | 1.0000 | 5.4000 | 1 | |
BGOA-TVG | 0.0015 | 1.0000 | 1.9000 | 1 | |
BDA [23] | Ionosphere | 0.0729 | 0.9291 | 9.0333 | 5 |
BHHO [20] | 0.0719 | 0.9314 | 13.5000 | 4 | |
BPSO [11] | 0.0642 | 0.9391 | 12.9667 | 3 | |
BGWO [14] | 0.1172 | 0.8862 | 15.4333 | 8 | |
BGBO [66] | 0.0326 | 0.9681 | 3.3667 | 1 | |
BGA [67] | 0.0683 | 0.9314 | 7.8000 | 4 | |
BWOA [17] | 0.0890 | 0.9136 | 11.5500 | 6 | |
BGOA [65] | 0.0910 | 0.9119 | 12.9000 | 7 | |
BGOA-TVG | 0.4112 | 0.9441 | 4.2560 | 2 | |
BDA [23] | Leukemia | 0.0036 | 1.0000 | 2560.7667 | 1 |
BHHO [20] | 0.1419 | 0.8595 | 1997.3000 | 2 | |
BPSO [11] | 0.1463 | 0.8571 | 3452.6333 | 3 | |
BGWO [14] | 0.0049 | 1.0000 | 3524.7667 | 1 | |
BGBO [66] | 0.0000 | 1.0000 | 18.0333 | 1 | |
BGA [67] | 0.0044 | 1.0000 | 3170.1000 | 1 | |
BWOA [17] | 0.0756 | 0.8119 | 3498.6333 | 4 | |
BGOA [65] | 0.1915 | 0.8119 | 3787.0667 | 4 | |
BGOA-TVG | 0.0000 | 1.0000 | 21.0565 | 1 | |
BDA [23] | Cloud | 0.4278 | 0.8076 | 467.9000 | 8 |
BHHO [20] | 0.4937 | 0.8302 | 469.6667 | 5 | |
BPSO [11] | 0.6348 | 0.8377 | 466.1667 | 3 | |
BGWO [14] | 0.3956 | 0.8170 | 650.0333 | 7 | |
BGBO [66] | 0.1461 | 0.8393 | 53.4667 | 4 | |
BGA [67] | 0.4545 | 0.7843 | 429.6667 | 9 | |
BWOA [17] | 0.4973 | 0.9145 | 438.1000 | 2 | |
BGOA [65] | 0.4947 | 0.8226 | 502.3667 | 6 | |
BGOA-TVG | 0.1065 | 0.9200 | 49.5760 | 1 | |
BDA [23] | Vote | 0.0022 | 1.0000 | 3.5500 | 1 |
BHHO [20] | 0.0176 | 0.9850 | 4.3500 | 5 | |
BPSO [11] | 0.0590 | 0.9667 | 1.9000 | 7 | |
BGWO [14] | 0.0034 | 0.9994 | 4.6333 | 2 | |
BGBO [66] | 0.0013 | 1.0000 | 2.0000 | 1 | |
BGA [67] | 0.0576 | 0.9456 | 5.9667 | 8 | |
BWOA [17] | 0.0109 | 0.9925 | 5.5500 | 3 | |
BGOA [65] | 0.0220 | 0.9822 | 7.1000 | 3 | |
BGOA-TVG | 0.0056 | 0.9906 | 2.2336 | 4 | |
BDA [23] | Wall-Following Robot Navigation Data | 0.0231 | 0.8076 | 8.2500 | 8 |
BHHO [20] | 0.0183 | 0.8302 | 9.5000 s | 5 | |
BPSO [11] | 0.1548 | 0.8377 | 5.1333 | 4 | |
BGWO [14] | 0.0485 | 0.8170 | 10.3667 | 7 | |
BGBO [66] | 0.0059 | 0.8393 | 5.0000 | 3 | |
BGA [67] | 0.1358 | 0.7843 | 7.9000 | 9 | |
BWOA [17] | 0.0206 | 0.9145 | 23.6842 | 2 | |
BGOA [65] | 0.0231 | 0.8226 | 12.1667 | 3 | |
BGOA-TVG | 0.0055 | 0.9177 | 2.0000 | 1 | |
BDA [23] | Sonar | 0.0582 | 0.9452 | 24.0667 | 5 |
BHHO [20] | 0.0801 | 0.9235 | 26.0000 | 7 | |
BPSO [11] | 0.1547 | 0.9333 | 21.6000 | 6 | |
BGWO [14] | 0.0571 | 0.9460 | 22.0000 | 4 | |
BGBO [66] | 0.0543 | 0.9476 | 10.2222 | 3 | |
BGA [67] | 0.0523 | 0.9508 | 21.3667 | 2 | |
BWOA [17] | 0.1206 | 0.8833 | 30.7500 | 9 | |
BGOA [65] | 0.1182 | 0.8865 | 34.8333 | 8 | |
BGOA-TVG | 0.0500 | 1.0000 | 9.5210 | 1 | |
BDA [23] | Zoo | 0.0032 | 1.0000 | 5.1000 | 1 |
BHHO [20] | 0.0034 | 1.0000 | 5.4000 | 1 | |
BPSO [11] | 0.1251 | 0.9400 | 4.4333 | 4 | |
BGWO [14] | 0.0029 | 1.0000 | 4.6667 | 1 | |
BGBO [66] | 0.0020 | 1.0000 | 3.1053 | 1 | |
BGA [67] | 0.0022 | 1.0000 | 3.5000 | 1 | |
BWOA [17] | 0.0035 | 0.9481 | 25.3000 | 3 | |
BGOA [65] | 0.0089 | 0.9967 | 9.0000 | 2 | |
BGOA-TVG | 0.0009 | 1.0000 | 4.0000 | 1 |
Name (S-Shaped Family) | Transfer Function |
---|---|
S1 | |
S2 | |
S3 | |
S4 | |
Name (V-shaped family) | Transfer function |
V1 | |
V2 | |
V3 | |
V4 |
Scheme | Optimization Algorithm | Individual Expression | Objective Function | Extracted Features | Classifier |
---|---|---|---|---|---|
Allfeat | No | - | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BPSO | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BGA | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BHHO | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BWOA | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BACO | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BGWO | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
BGOA-TVG | Yes | Binary | TPR, PPV, TNR, NPV, ACC | Optimized | Optimized |
Subject No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Allfeat [53] | RF | RF | RF | DT | RF | Bayes | Bayes | RF | RF | RF |
BPSO [53] | DT | DT | RF | DT | DT | DT | DT | RF | DT | DT |
BFA [53] | DT | DT | RF | DT | DT | Bayes | RF | RF | DT | DT |
BGA | RF | DT | KNN | Adaboost | DT | Adaboost | SVM | Bayes | SVM | KNN |
BHHO | Bayes | KNN | Bayes | KNN | DT | Bayes | KNN | Bayes | SVM | SVM |
BWOA | DT | Bayes | SVM | KNN | SVM | KNN | SVM | Bayes | RF | Bayes |
BACO | DT | SVM | DT | Adaboost | KNN | Bayes | Adaboost | SVM | Bayes | Bayes |
BGWO | RF | Adaboost | Bayes | DT | RF | KNN | SVM | Bayes | SVM | Adaboost |
BGOA-TVG | DT | DT | DT | Adaboost | KNN | Bayes | RF | RF | Adaboost | Adaboost |
Algorithm | TPR | PPV | TNR | NPV | ACC | Feature Number |
---|---|---|---|---|---|---|
Allfeat [53] | 0.6848 | 0.6209 | 0.7157 | 0.7786 | 0.7580 | 2224 |
BPSO [53] | 0.8491 | 0.7814 | 0.7940 | 0.8647 | 0.8400 | 1087 |
BFA [53] | 0.8760 | 0.9355 | 0.8577 | 0.8185 | 0.92 | 1088 |
BGA | 0.7114 | 0.7862 | 0.7953 | 0.7116 | 0.6998 | 1065 |
BHHO | 0.8569 | 0.7962 | 0.5685 | 0.623 | 0.86 | 1152 |
BWOA | 0.8966 | 0.79 | 0.8410 | 0.869 | 0.93 | 752 |
BACO | 0.7952 | 0.6559 | 0.6974 | 0.7665 | 0.745 | 1526 |
BGWO | 0.8966 | 0.8663 | 0.8 | 0.8142 | 0.896 | 711 |
BGOA−TVG | 0.9116 | 0.9112 | 0.8465 | 0.852 | 0.942 | 698 |
Algorithm | Measure (Error Rate) | ||||
---|---|---|---|---|---|
Dataset | Average Error | Minimum Error | Runtimes | Rank | |
BGA | Sub-001 | 0.2522 | 0.0006 | 30 | 2 |
BHHO [17] | 0.1387 | 0.0064 | 30 | 5 | |
BPSO [50] | 0.0983 | 0.0114 | 30 | 6 | |
BGWO | 0.2435 | 0.0045 | 30 | 4 | |
BBOA | 0.0783 | 0.0121 | 30 | 7 | |
BACO | 0.1681 | 0.0007 | 30 | 3 | |
BWOA [46] | 0.1333 | 0.0165 | 30 | 8 | |
BGOA−TVG | 0.0435 | 0 | 30 | 1 | |
BGA | Sub-002 | 0.5263 | 0.0039 | 30 | 8 |
BHHO [17] | 0.4465 | 0.014 | 30 | 6 | |
BPSO [50] | 0.3947 | 0.0051 | 30 | 5 | |
BGWO | 0.5263 | 0.001 | 30 | 3 | |
BBOA | 0.4211 | 0.0185 | 30 | 7 | |
BACO | 0.4211 | 0.0026 | 30 | 4 | |
BWOA [46] | 0.4474 | 0.0007 | 30 | 2 | |
BGOA−TVG | 0.2737 | 0.0006 | 30 | 1 | |
BGA | Sub-003 | 0.2845 | 0.0083 | 30 | 7 |
BHHO [17] | 0.2982 | 0.0006 | 30 | 4 | |
BPSO [50] | 0.3017 | 0.0074 | 30 | 6 | |
BGWO | 0.3103 | 0.0094 | 30 | 8 | |
BBOA | 0.2845 | 0.0001 | 30 | 3 | |
BACO | 0.2759 | 0.007 | 30 | 5 | |
BWOA [46] | 0.2672 | 0 | 30 | 1 | |
BGOA−TVG | 0.2759 | 0 | 30 | 1 | |
BGA | Sub-004 | 0.0714 | 0.0022 | 30 | 4 |
BHHO [17] | 0.0333 | 0.0183 | 30 | 7 | |
BPSO [50] | 0.0429 | 0.0198 | 30 | 8 | |
BGWO | 0.0429 | 0.0002 | 30 | 2 | |
BBOA | 0.0286 | 0.0027 | 30 | 5 | |
BACO | 0.0429 | 0.0031 | 30 | 6 | |
BWOA [46] | 0.0571 | 0 | 30 | 1 | |
BGOA−TVG | 0.0071 | 0.0011 | 30 | 3 | |
BGA | Sub-005 | 0.4118 | 0.0197 | 30 | 8 |
BHHO [17] | 0.4004 | 0.0074 | 30 | 5 | |
BPSO [50] | 0.3821 | 0.0171 | 30 | 7 | |
BGWO | 0.3824 | 0.0157 | 30 | 6 | |
BBOA | 0.3971 | 0.0033 | 30 | 3 | |
BACO | 0.3824 | 0.0024 | 30 | 2 | |
BWOA [46] | 0.4265 | 0.0061 | 30 | 4 | |
BGOA−TVG | 0.3821 | 0.0010 | 30 | 1 | |
BGA | Sub-006 | 0.3194 | 0.0074 | 30 | 5 |
BHHO [17] | 0.3206 | 0.0114 | 30 | 6 | |
BPSO [50] | 0.2917 | 0.0261 | 30 | 8 | |
BGWO | 0.3056 | 0.0003 | 30 | 2 | |
BBOA | 0.3333 | 0.0038 | 30 | 3 | |
BACO | 0.3056 | 0.0043 | 30 | 4 | |
BWOA [46] | 0.3333 | 0.0177 | 30 | 7 | |
BGOA−TVG | 0.3056 | 0 | 30 | 1 | |
BGA | Sub-007 | 0.0381 | 0.0053 | 30 | 4 |
BHHO [17] | 0.0529 | 0.0258 | 30 | 8 | |
BPSO [50] | 0.2381 | 0.0113 | 30 | 7 | |
BGWO | 0.1952 | 0.0052 | 30 | 6 | |
BBOA | 0.0476 | 0 | 30 | 1 | |
BACO | 0.0338 | 0.0043 | 30 | 5 | |
BWOA [46] | 0.0238 | 0.0006 | 30 | 3 | |
BGOA−TVG | 0.0176 | 0.0005 | 30 | 2 | |
BGA | Sub-008 | 0.8571 | 0.0119 | 30 | 6 |
BHHO [17] | 0.2592 | 0.0026 | 30 | 3 | |
BPSO [50] | 0.0286 | 0.0083 | 30 | 5 | |
BGWO | 0.0571 | 0.0160 | 30 | 8 | |
BBOA | 0.1714 | 0.0122 | 30 | 7 | |
BACO | 0.0857 | 0.0028 | 30 | 4 | |
BWOA [46] | 0.1719 | 0.0013 | 30 | 2 | |
BGOA−TVG | 0.0143 | 0.0006 | 30 | 1 | |
BGA | Sub-009 | 0.1000 | 0.0256 | 30 | 8 |
BHHO [17] | 0.2018 | 0.0146 | 30 | 7 | |
BPSO [50] | 0.2000 | 0.0048 | 30 | 3 | |
BGWO | 0.1500 | 0.0142 | 30 | 6 | |
BBOA | 0.2500 | 0.0057 | 30 | 4 | |
BACO | 0.1000 | 0.0018 | 30 | 1 | |
BWOA [46] | 0.2000 | 0.0099 | 30 | 5 | |
BGOA−TVG | 0.1500 | 0.0019 | 30 | 2 | |
BGA | Sub-010 | 0.2343 | 0.0008 | 30 | 4 |
BHHO [17] | 0.1418 | 0.0061 | 30 | 7 | |
BPSO [50] | 0.1635 | 0.0132 | 30 | 8 | |
BGWO | 0.0661 | 0.0005 | 30 | 3 | |
BBOA | 0.0710 | 0.0047 | 30 | 6 | |
BACO | 0.1572 | 0.0008 | 30 | 4 | |
BWOA [46] | 0.0583 | 0.0004 | 30 | 2 | |
BGOA−TVG | 0.0054 | 0 | 30 | 1 | |
BGA | Sub-011 | 0.0355 | 0.0011 | 30 | 3 |
BHHO [17] | 0.0277 | 0.0043 | 30 | 6 | |
BPSO [50] | 0.0355 | 0.0114 | 30 | 8 | |
BGWO | 0.0796 | 0.0067 | 30 | 7 | |
BBOA | 0.1519 | 0.0014 | 30 | 4 | |
BACO | 0.1623 | 0.0027 | 30 | 5 | |
BWOA [46] | 0.0066 | 0.0004 | 30 | 1 | |
BGOA−TVG | 0.0084 | 0.0006 | 30 | 2 | |
BGA | Sub-012 | 0.0679 | 0.0569 | 30 | 4 |
BHHO [17] | 0.0760 | 0.0698 | 30 | 5 | |
BPSO [50] | 0.0120 | 0.0069 | 30 | 3 | |
BGWO | 0.0025 | 0.0005 | 30 | 2 | |
BBOA | 0.0844 | 0.0775 | 30 | 6 | |
BACO | 0.1903 | 0.0960 | 30 | 7 | |
BWOA [46] | 0.0088 | 0.1336 | 30 | 8 | |
BGOA−TVG | 0.0083 | 0 | 30 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Luo, Q.; Zhou, Y. BGOA-TVG: Binary Grasshopper Optimization Algorithm with Time-Varying Gaussian Transfer Functions for Feature Selection. Biomimetics 2024, 9, 187. https://doi.org/10.3390/biomimetics9030187
Li M, Luo Q, Zhou Y. BGOA-TVG: Binary Grasshopper Optimization Algorithm with Time-Varying Gaussian Transfer Functions for Feature Selection. Biomimetics. 2024; 9(3):187. https://doi.org/10.3390/biomimetics9030187
Chicago/Turabian StyleLi, Mengjun, Qifang Luo, and Yongquan Zhou. 2024. "BGOA-TVG: Binary Grasshopper Optimization Algorithm with Time-Varying Gaussian Transfer Functions for Feature Selection" Biomimetics 9, no. 3: 187. https://doi.org/10.3390/biomimetics9030187
APA StyleLi, M., Luo, Q., & Zhou, Y. (2024). BGOA-TVG: Binary Grasshopper Optimization Algorithm with Time-Varying Gaussian Transfer Functions for Feature Selection. Biomimetics, 9(3), 187. https://doi.org/10.3390/biomimetics9030187