Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve
Abstract
:1. Introduction
1.1. Cooling in Electric Mobility
1.2. Biological Model: Bordered Pit
2. Materials and Methods
2.1. Design Space
2.2. Finite Element Modeling
2.3. System Verification
3. Results
3.1. From the Biological Model to a Technical Concept
3.2. Mechanical Behavior
3.3. Material Selection
3.4. Verification
4. Discussion
4.1. Parameterization
4.2. Chimney Effect
4.3. Features and Industrial Application
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraftfahr-Bundesamt: Neuzulassungen von Personenkraftwagen (Pkw) im Jahresverlauf 2022 nach Marken und Alternativen Antrieben. Pressemitteilung Nr. 03/2023. 2023. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/MonatlicheNeuzulassungen/monatl_neuzulassungen_node.html;jsessionid=12A15E60C5B8E13A90BA17EBCFFBB40E.live11312 (accessed on 20 February 2024).
- Conway, G.; Joshi, A.; Leach, F.; García, A.; Senecal, P. A review of current and future powertrain technologies and trends in 2020. Transp. Eng. 2021, 5, 100080. [Google Scholar] [CrossRef]
- Bernard, M.; Hall, D.; Lutsey, N. Update on Electric Vehicle Uptake in European Cities; International Council on Clean Transportation: Budapest, Hungary, 2021. [Google Scholar] [CrossRef]
- Ou, S.; Yu, R.; Lin, Z.; He, X.; Bouchard, J.; Przesmitzki, S. Evaluating China’s Passenger Vehicle Market under the Vehicle Policies of 2021–2023. World Electr. Veh. J. 2021, 12, 72. [Google Scholar] [CrossRef]
- Przydatek, G.; Ryniewicz, A.; Irimia, O.; Tomozei, C.; Mosnegutu, E.; Bodziony, M. Analysis of Noise Levels in Typical Passenger Cars. Sustainability 2023, 15, 7910. [Google Scholar] [CrossRef]
- Hua, X.; Thomas, A.; Shultis, K. Recent progress in battery electric vehicle noise, vibration, and harshness. Sci. Prog. 2021, 104, 368504211005224. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef]
- Dan, D.; Zhao, Y.; Wei, M.; Wang, X. Review of Thermal Management Technology for Electric Vehicles. Energies 2023, 16, 4693. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Gerada, D.; Huang, K.; Stone, I.; Worrall, S.; Yan, Y. A critical review on thermal management technologies for motors in electric cars. Appl. Therm. Eng. 2021, 201, 117758. [Google Scholar] [CrossRef]
- Schrank, P. Modellierung und Energetische Betrachtung zweier Kühlsystemvarianten für ein Parallel-Plug-In-Hybrid-Fahrzeug Mittels 1D-Simulation; Institut für Verbrennungskraftmaschinen und Thermodynamik der Technischen Universität Graz: Graz, Austria, 2013. [Google Scholar]
- Mousavi, S.; Azzopardi, B. Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies 2023, 16, 5256. [Google Scholar] [CrossRef]
- Ooeda, H.; Terashima, I.; Taneda, H. Structures of Bordered Pits Potentially Contributing to Isolation of a Refilled Vessel from Negative Xylem Pressure in Stems of Morus australis Poir. Testing of the Pit Membrane Osmosis and Pit Valve Hypotheses. Plant Cell Physiol. 2017, 58, 354–364. [Google Scholar] [CrossRef]
- Choat, B.; Pittermann, J. New insights into bordered pit structure and cavitation resistance in angiosperms and conifers. New Phytol. 2009, 182, 557–560. [Google Scholar] [CrossRef]
- Hacke, U.G.; Sperry, J.S.; Pittermann, J. Analysis of circular bordered pit function II. Gymnosperm tracheids with torus–margo pit membranes. Am. J. Bot. 2004, 91, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Wanner, G. Mikroskopisch-Botanisches Praktikum: 800 Einzeldarstellungen; Georg Thieme Verlag: New York, NY, USA, 2010; Volume 2. [Google Scholar] [CrossRef]
- Bauch, J.; Liese, W.; Schultze, R. The morphological variability of the bordered pit membranes in gymnosperms. Wood Sci. Technol. 1972, 6, 165–184. [Google Scholar] [CrossRef]
- Dute, R. Development, Structure, and Function of Torus–Margo Pits in Conifers, Ginkgo and Dicots. In Functional and Ecological Xylem Anatomy; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Chapman, D.C.; Rand, R.H.; Cooks, J.R. A hydrodynamical model of bordered pits in conifer tracheids. J. Theor. Biol. 1977, 67, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Richtlinie VDI 6221 Blatt 1: Bionik—Grundlagen, Konzeption und Strategie; VDI-Gesellschaft Technologies of Life Sciences: Düsseldorf, Germany, 2021.
- Fengel, D. Zur Variation der Hoftüpfelgestalt bei verschiedenen Nadelhölzern. Holz Roh Werkst. 1968, 8, 296–304. [Google Scholar] [CrossRef]
- DIN EN ISO 527-2; Kunststoffe—Bestimmung der Zugeigenschaften—Teil 2: Prüfbedingungen für Form- und Extrusionsmassen. Deutsches Institut für Normung e.V: Berlin, Germany, 2012.
- Amoedo, S.; Thebaud, E.; Gschwendtner, M.; White, D. Novel parameter-based flexure bearing design method. Cryogenics 2016, 76, 1–9. [Google Scholar] [CrossRef]
- Wong, T.E.; Pan, R.B.; Johnson, A.L. Novel Linear Flexure Bearing. Cryocoolers 1992, 7, 675–698. [Google Scholar]
- Yu, J.-Y.; Song, K.-D.; Cho, D.-W. Resolving Stack Effect Problems in a High-Rise Office Building by Mechanical Pressurization. Sustainability 2017, 9, 1731. [Google Scholar] [CrossRef]
- Bennemann, M.; Fischer, M.; Seidl, T.; Thuilot, T.; Wullweber, M.-G. Ventilanordnung und Verfahren zum Kühlen eines Wärmetauschers eines Fahrzeugs (DE102022101791A1); Deutsches Patentamt: Munich, Germany, 2022. [Google Scholar]
- Zhang, X.; Zhu, B. Topology Optimization of Compliant Mechanisms; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Peckham Engineering and Tool: Precision Linear Flexure Bearing Catridge; Defense Technical Information Center: Fort Belvoir, VA, USA, 1994.
- Chen, N.; Chen, X.; Wu, Y.N.; Yang, C.G.; Xu, L. Spiral profile design and parameter analysis of flexure spring. Cryogenics 2006, 46, 409–419. [Google Scholar] [CrossRef]
- Howell, L.; Olsen, B.; Magleby, S. Handbook of Compliant Mechanisms; John Wiley & Sons, Incorporated: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Brodersen, C.; McElrone, A. Maintenance of xylem Network Transport Capacity: A Review of Embolism Repair in Vascular Plants. Front. Plant Sci. 2013, 4, 108. [Google Scholar] [CrossRef]
- Magleby, S.; Merriam, E.; Jones, J.; Howell, L. Monolithic 2 DOF fully compliant space pointing mechanism. J. Mech. Sci. 2013, 4, 381–390. [Google Scholar] [CrossRef]
- Hunter, J.; Roubicek, C.; Stephen, M.; Magleby, S.; Howell, L. Preliminary Design of a Deployable Optical Space Array Based on a Thickened Origami Flasher Pattern. Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. 2023, 8, 47. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thuilot, T.; Wullweber, M.-G.; Fischer, M.; Bennemann, M.; Seidl, T. Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve. Biomimetics 2024, 9, 207. https://doi.org/10.3390/biomimetics9040207
Thuilot T, Wullweber M-G, Fischer M, Bennemann M, Seidl T. Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve. Biomimetics. 2024; 9(4):207. https://doi.org/10.3390/biomimetics9040207
Chicago/Turabian StyleThuilot, Thomas, Moses-Gereon Wullweber, Matthias Fischer, Michael Bennemann, and Tobias Seidl. 2024. "Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve" Biomimetics 9, no. 4: 207. https://doi.org/10.3390/biomimetics9040207
APA StyleThuilot, T., Wullweber, M. -G., Fischer, M., Bennemann, M., & Seidl, T. (2024). Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve. Biomimetics, 9(4), 207. https://doi.org/10.3390/biomimetics9040207