Use of Nanoparticles in Regenerative Dentistry: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Declaration and Protocol
2.2. Inclusion and Exclusion Criteria
- -
- Patient or population (P): extracted human teeth and dental cells involved in dental regenerative procedures.
- -
- Intervention (I): application of different nanoparticles.
- -
- Outcomes: evidence of therapeutic potential in dental regeneration (osteoblastic differentiation, osteogenic differentiation, increase of alkaline phosphatase activity).
- -
- Study design (S): in vitro (studies conducted with stem cells).
2.3. Search Strategy
2.3.1. Databases/Sources of Information
2.3.2. Search Terms
2.3.3. Studies Selection
2.3.4. Data Extraction
2.3.5. Quality Evaluation/Analysis
3. Results
3.1. Study Selection and Flowchart
3.2. Data Extraction Results
3.3. Quality Evaluation Results
3.4. Bibliometric Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yazdanian, M.; Rahmani, A.; Tahmasebi, E.; Tebyanian, H.; Yazdanian, A.; Mosaddad, S.A. Current and Advanced Nanomaterials in Dentistry as Regeneration Agents: An Update. Mini-Rev. Med. Chem. 2021, 21, 899–918. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzynski, M.; Zawadzka-Knefel, A.; Lubojanski, A.; Dobrzynski, W.; Janecki, M.; Kurek, K.; Szymonowicz, M.; Wiglusz, R.J.; Rybak, Z. Nanomaterials Application in Endodontics. Materials 2021, 14, 5296. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasalu, P.K.P.; Dora, C.P.; Swami, R.; Jasthi, V.C.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Anwer, M.K. Nanomaterials in Dentistry: Current Applications and Future Scope. Nanomaterials 2022, 12, 1676. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu, S.; Racovita, S.; Gugoasa, I.A.; Lungan, M.A.; Popa, M.; Desbrieres, J. The Benefits of Smart Nanoparticles in Dental Applications. Int. J. Mol. Sci. 2021, 22, 2585. [Google Scholar] [CrossRef] [PubMed]
- Bapat, R.A.; Joshi, C.P.; Bapat, P.; Chaubal, T.V.; Pandurangappa, R.; Jnanendrappa, N.; Gorain, B.; Khurana, S.; Kesharwani, P. The use of nanoparticles as biomaterials in dentistry. Drug Discov. Today 2019, 24, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Khoroushi, M.; Khademi, A.A.; Dastgurdi, M.E.; Abdolrahimi, M. Nanobiomaterials in endodontics. In Nanobiomaterials in Dentistry: Applications of Nanobiomaterials; Elsevier: Amsterdam, The Netherlands, 2016; Volume 11, pp. 389–424. [Google Scholar]
- Bonilla-Represa, V.; Abalos-Labruzzi, C.; Herrera-Martinez, M.; Guerrero-Pérez, M.O. Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials 2020, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.; Acevedo-Jake, A.M.; Griffith, A.; Kadincesme, N.; Dabek, K.; Hindi, D.; Kim, K.K.; Kobayashi, Y.; Shimizu, E.; Kumar, V. Cells and material-based strategies for regenerative endodontics. Bioact. Mater. 2022, 14, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Faggion, C.M., Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
- Moonesi Rad, R.; Atila, D.; Evis, Z.; Keskin, D.; Tezcaner, A. Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration. J. Tissue Eng. Regen. Med. 2019, 13, 1331–1345. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Y.; Joubert, C.; Bruder, G.; Liu, Y.; Chang, C.C.; Simon, M.; Walker, S.G.; Rafailovich, M. Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds. Polymers 2016, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, C.; Shrestha, S.; Torneck, C.; Kishen, A. Effects of a Bioactive Scaffold Containing a Sustained Transforming Growth Factor-beta 1 releasing Nanoparticle System on the Migration and Differentiation of Stem Cells from the Apical Papilla. J. Endod. 2016, 42, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Saharkhiz, M.; Ayadilord, M.; Emadian Razavi, F.; Naseri, M. Effects of phytosomal curcumin treatment on modulation of immunomodulatory and pulp regeneration genes in dental pulp mesenchymal stem cells. Odontology 2022, 110, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.C.; Venkatesh, K.V.; Nandini, V.; Sihivahanan, D.; Alamoudi, A.; Bahammam, H.A.; Bahammam, S.A.; Zidane, B.; Bahammam, M.A.; Chohan, H.; et al. Evaluating the Effect of Tideglusib-Loaded Bioactive Glass Nanoparticles as a Potential Dentine Regenerative Material. Materials 2022, 15, 4567. [Google Scholar] [CrossRef] [PubMed]
- Moonesi Rad, R.; Pazarçeviren, E.; Ece Akgün, E.; Evis, Z.; Keskin, D.; Şahin, S.; Tezcaner, A. In vitro performance of a nanobiocomposite scaffold containing boron-modified bioactive glass nanoparticles for dentin regeneration. J. Biomater. Appl. 2019, 33, 834–853. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, Y.; Zhu, X.; Zhang, Y.; Xu, H.; Wang, T.; Zhang, G. Phosphorylated PAMAM dendrimers: An analog of dentin non-collagenous proteins, enhancing the osteo/odontogenic differentiation of dental pulp stem cells. Clin. Oral Investig. 2022, 26, 1737–1751. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Firouzi, N.; Aghazadeh, Z.; Samiei, M.; Montazersaheb, S.; Khoshfetrat, A.B.; Aghazadeh, M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021, 21, 6. [Google Scholar] [CrossRef]
- Shen, R.; Xu, W.; Xue, Y.; Chen, L.; Ye, H.; Zhong, E.; Ye, Z.; Gao, J.; Yan, Y. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif. Cells Nanomed. Biotechnol. 2018, 46, 419–430. [Google Scholar] [CrossRef]
- Osmond, M.J.; Krebs, M.D. Tunable chitosan-calcium phosphate composites as cell-instructive dental pulp capping agents. J. Biomater. Sci. Polym. Ed. 2021, 32, 1450–1465. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Huang, T.-H.; Kao, C.-T.; Wu, Y.-H.; Chen, W.-C.; Shie, M.-Y. Mesoporous Calcium Silicate Nanoparticles with Drug Delivery and Odontogenesis Properties. J. Endod. 2017, 43, 69–76. [Google Scholar] [CrossRef]
- Lim, H.C.; Nam, O.H.; Kim, M.J.; El-Fiqi, A.; Yun, H.M.; Lee, Y.M.; Jin, G.Z.; Lee, H.H.; Kim, H.W.; Kim, E.C. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. Int. J. Nanomed. 2016, 11, 2557–2567. [Google Scholar] [CrossRef]
- Liu, L.; Shu, S.; Cheung, G.S.; Wei, X. Effect of miR-146a/bFGF/PEG-PEI Nanoparticles on Inflammation Response and Tissue Regeneration of Human Dental Pulp Cells. BioMed Res. Int. 2016, 2016, 3892685. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Torneck, C.D.; Kishen, A. Dentin Conditioning with Bioactive Molecule Releasing Nanoparticle System Enhances Adherence, Viability, and Differentiation of Stem Cells from Apical Papilla. J. Endod. 2016, 42, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Rad, R.M.; Alshemary, A.Z.; Evis, Z.; Keskin, D.; Altunbas, K.; Tezcaner, A. Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications. Ceram. Int. 2018, 44, 9854–9864. [Google Scholar] [CrossRef]
- Niu, C.; Yuan, K.; Ma, R.; Gao, L.; Jiang, W.; Hu, X.; Lin, W.; Zhang, X.; Huang, Z. Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol. Med. Rep. 2017, 16, 4879–4886. [Google Scholar] [CrossRef] [PubMed]
- Elshahat, S.; Elgendy, A.A.; Elsewify, T. Osteogenic Differentiation and Proliferation of Apical Papilla Stem Cells Using Chitosan-Coated Nanohydroxyapatite and Bioactive Glass Nanoparticles. Eur. J. Dent. 5 2024. [Google Scholar] [CrossRef]
- Abdelaziz, H.; Mahran, A.H.; Elsewify, T. Osteogenic differentiation and proliferation of apical papilla stem cells using nanoparticles of Neo MTA and bioactive glass. Saudi Dent. J. 2024, 36, 134–139. [Google Scholar] [CrossRef]
Databases | Search Field | Results |
---|---|---|
Medline (PubMed) | ((“silver nanoparticles”) OR (nanoparticles)) AND ((endodontic) OR (“root canal treatment”) OR (“regenerative dentistry”)) | 744 |
Scopus | ((“silver nanoparticles”) OR (nanoparticles)) AND ((endodontic) OR (“root canal treatment”) OR (“regenerative dentistry”)) | 407 |
Web of Science | ((“silver nanoparticles”) OR (nanoparticles)) AND ((endodontic) OR (“root canal treatment”) OR (“regenerative dentistry”)) | 457 |
Section/Topic | Checklist Item |
---|---|
Abstract | Item 1. Structured summary of trial design, methods, results, and conclusions |
Introduction Background and objectives | Item 2a. Scientific background and explanation of rationale; Item 2b. Specific objectives and/or hypotheses |
Methods Intervention | Item 3. Intervention for each group, including how and when it was administered, with sufficient detail to enable replication |
Outcomes | Item 4. Completely defined, pre-specified primary and secondary measures of outcome, including how and when they were assessed |
Sample size | Item 5. How sample size was determined |
Randomization: sequence generation | Item 6. Method used to generate random allocation sequence |
Allocation concealment mechanism | Item 7. Mechanism used to implement random allocation sequence (for example, sequentially numbered containers), describing any steps taken to conceal sequence until intervention was assigned |
Implementation | Item 8. Who generated random allocation sequence, who enrolled teeth, and who assigned teeth to intervention |
Blinding | Item 9. If done, who was blinded after assignment to intervention (for example, care providers, those assessing outcomes), and how |
Statistical methods | Item 10. Statistical methods used to compare groups for primary and secondary outcomes |
Results Outcomes and estimation | Item 11. For each primary and secondary outcome, results for each group, and estimated size of effect and its precision (for example 95% confidence interval) |
Discussion Limitations | Item 12. Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses |
Other information Funding | Item 13. Sources of funding and other support (for example suppliers of drugs), role of funders |
Protocol | Item 14. Where full trial protocol can be accessed, if available |
Author | Year | Type of Study | Control Group | Affected Tissue | Type of Nanoparticle | Effect |
---|---|---|---|---|---|---|
Moonesi Rad et al. [11] | 2019 | In vitro | hDPSC of third molars | Bone | Bioactive glass NPs + boron modified membrane | Promotes guided bone regeneration (GBR) |
Zhang et al. [12] | 2016 | In vitro | DPSC of third molars | DPSC | ZnO NPs | Promotes DPSC differentiation |
Bellamy et al. [13] | 2016 | In vitro | 2.104 SCAP seeded | Apical papilla cells (SCAP) | Chitosan NP + TGF-B1 | Promotes SCAP migration and differentiation |
Saharkhiz et al. [14] | 2022 | In vitro | 3rd human molars without caries | Dental pulp mesenchymal stem cells | NP of phytosomal curcumin | Promotes regeneration |
Rao et al. [15] | 2022 | In vitro | Human dental pulp fibroblasts | Dentin-pulp complex | Bioactive glass + Tideglusib (tideglusib-BgNP) | Proliferation and migration of hDPSC (regeneration) |
Moonesi Rad y cols et al. [16] | 2019 | In vitro | hDPSC of the third molar | Dentin | Bioactive glass NPs + modified boron | Promotes dentin regeneration |
Liu et al. [17] | 2022 | In vitro | Human 3rd molars and premolars | Dental pulp stem cells | Phosphorylated P-PANAM | Odontogenic differentiation |
Alipour et al. [18] | 2021 | In vitro | hDPSCs teeth | hDPSCs | Alg + Gel + NPHA | Odontogenic and osteogenic differentiation |
Shen et al. [19] | 2018 | In vitro | hDPLSC | Periodontal tissue | Chitosan and PLA | Osteogenic proliferation and differentiation |
Osmond et al. [20] | 2021 | In vitro | hDPSC | Pulp | NPDCPD/NPDCPD + TEGDMA NPHA/NPHA + TEGDMA | Direct pulp coating (DPL) |
Huang et al. [21] | 2017 | In vitro | hDPSC of extracted human premolars | Pulp tissue | Mesoporous calcium silicate nanoparticles | Odontogenesis and biocompatible |
Lim et al. [22] | 2016 | In vitro | hDPC Prof. Takata | Human dental pulp cells | Bioactive glass NPs + dexamethasone | Odontogenesis stimulation |
Liu et al. [23] | 2016 | In vitro | Human premolars and 3ºM (DPC) | Dental pulp cells (DPC) | PEG–PEI NPs | Inflammatory response and regeneration |
Shrestha et al. [24] | 2016 | In vitro | Extracted human teeth | SCAP | Dexamethasone + chitosan NP | Odontogenic differentiation |
Rad et al. [25] | 2018 | In vitro | 3rd human molars hDPSC | hDPSC | Boron-doped bioactive glass NPs | Odontogenic differentiation |
Niu et al. [26] | 2017 | In vitro | Healthy extracted premolars hDPSC | hDPSC | Gold NPs (AFVBHuNPs) | Stimulates osteogenesis |
Elshahat et al. [27] | 2024 | In vitro | 3rd human molars | SCAP | Chitosan-coated nanohydroxyapatite and bioactive glass 45S5 NPs | Osteogenic differentiation and proliferation |
Abdelaziz et al. [28] | 2024 | In vitro | 3rd human molars | SCAP | Bioactive glass 45S5 NPs and Neo MTA | Osteogenic differentiation and proliferation |
Studies | [11] | [12] | [13] | [14] | [15] | [16] | [17] | [18] | [19] |
Ítems | |||||||||
1 | No | No | Yes | No | No | No | Yes | Yes | Yes |
2a | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes |
2b | Yes | No | Yes | Yes | No | Yes | Yes | Yes | Yes |
3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
4 | No | No | No | No | No | No | No | No | No |
5 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
6 | No | No | No | No | No | No | No | No | No |
7 | No | No | No | No | No | No | No | No | No |
8 | No | No | No | No | Yes* | No | No | No | No |
9 | No | No | No | No | No | No | No | No | No |
10 | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
11 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
12 | No | No | No | No | Yes | No | Yes | No | Yes |
13 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
14 | No | No | No | Yes | No | No | No | Yes | Yes |
Bias% | 40% | 33.33% | 53.33% | 53.33% | 53.33% | 40% | 60% | 60% | 66.66% |
Studies | [20] | [21] | [22] | [23] | [24] | [25] | [26] | [27] | [28] |
Ítems | |||||||||
1 | No | Yes | No | Yes | Yes | No | No | Yes | Yes |
2a | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
2b | No | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes |
3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
4 | No | No | No | No | No | No | No | No | No |
5 | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes |
6 | No | No | No | No | No | No | No | No | No |
7 | No | No | No | No | No | No | No | No | No |
8 | No | No | No | No | No | No | No | No | No |
9 | No | No | No | No | No | No | No | No | No |
10 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
11 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
12 | No | No | No | Yes | No | No | Yes | No | No |
13 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
14 | No | No | No | No | No | No | No | No | No |
Bias% | 40% | 53.33% | 40% | 60% | 53.33% | 40% | 53.33% | 53.33% | 53.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecci-Lloret, M.P.; Gea-Alcocer, S.; Murcia-Flores, L.; Rodríguez-Lozano, F.J.; Oñate-Sánchez, R.E. Use of Nanoparticles in Regenerative Dentistry: A Systematic Review. Biomimetics 2024, 9, 243. https://doi.org/10.3390/biomimetics9040243
Pecci-Lloret MP, Gea-Alcocer S, Murcia-Flores L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Use of Nanoparticles in Regenerative Dentistry: A Systematic Review. Biomimetics. 2024; 9(4):243. https://doi.org/10.3390/biomimetics9040243
Chicago/Turabian StylePecci-Lloret, María Pilar, Silvia Gea-Alcocer, Laura Murcia-Flores, Francisco Javier Rodríguez-Lozano, and Ricardo Elías Oñate-Sánchez. 2024. "Use of Nanoparticles in Regenerative Dentistry: A Systematic Review" Biomimetics 9, no. 4: 243. https://doi.org/10.3390/biomimetics9040243
APA StylePecci-Lloret, M. P., Gea-Alcocer, S., Murcia-Flores, L., Rodríguez-Lozano, F. J., & Oñate-Sánchez, R. E. (2024). Use of Nanoparticles in Regenerative Dentistry: A Systematic Review. Biomimetics, 9(4), 243. https://doi.org/10.3390/biomimetics9040243