Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarricone, R.; Ciani, O.; Torbica, A.; Brouwer, W.; Chaloutsos, G.; Drummond, M.F.; Martelli, N.; Persson, U.; Leidl, R.; Levin, L.; et al. Lifecycle Evidence Requirements for High-Risk Implantable Medical Devices: A European Perspective. Expert Rev. Med. Devices 2020, 17, 993–1006. [Google Scholar] [CrossRef]
- Zhang, B.L.; Bianco, R.W.; Schoen, F.J. Preclinical Assessment of Cardiac Valve Substitutes: Current Status and Considerations for Engineered Tissue Heart Valves. Front. Cardiovasc. Med. 2019, 6, 72. [Google Scholar] [CrossRef]
- Malinauskas, R.A.; Hariharan, P.; Day, S.W.; Herbertson, L.H.; Buesen, M.; Steinseifer, U.; Aycock, K.I.; Good, B.C.; Deutsch, S.; Manning, K.B.; et al. FDA Benchmark Medical Device Flow Models for CFD Validation. ASAIO J. 2017, 63, 150. [Google Scholar] [CrossRef]
- Kovarovic, B.J.; Rotman, O.M.; Parikh, P.; Slepian, M.J.; Bluestein, D. Patient-Specific in Vitro Testing for Evaluating TAVR Clinical Performance—A Complementary Approach to Current ISO Standard Testing. Artif. Organs 2021, 45, E41–E52. [Google Scholar] [CrossRef]
- Bozkurt, S.; Preston-Maher, G.L.; Torii, R.; Burriesci, G. Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation. Ann. Biomed. Eng. 2017, 45, 1852–1864. [Google Scholar] [CrossRef]
- Rasmussen, J.; Skov, S.N.; Nielsen, D.B.; Jensen, I.L.; Tjørnild, M.J.; Johansen, P.; Hjortdal, V.E. In-Vitro and in-Vivo Evaluation of a Novel Bioprosthetic Pulmonary Valve for Use in Congenital Heart Surgery. J. Cardiothorac. Surg. 2019, 14, 6. [Google Scholar] [CrossRef]
- Kuang, D.; Lei, Y.; Yang, L.; Wang, Y. Preclinical Study of a Self-Expanding Pulmonary Valve for the Treatment of Pulmonary Valve Disease. Regen. Biomater. 2020, 7, 609–618. [Google Scholar] [CrossRef]
- Rocchi, M.; Gross, C.; Moscato, F.; Schlöglhofer, T.; Meyns, B.; Fresiello, L. An in Vitro Model to Study Suction Events by a Ventricular Assist Device: Validation with Clinical Data. Front. Physiol. 2023, 14, 1155032. [Google Scholar] [CrossRef]
- Bozkurt, S.; van de Vosse, F.N.; Rutten, M.C.M. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System. J. Med. Biol. Eng. 2016, 36, 308–315. [Google Scholar] [CrossRef]
- Cappon, F.; Wu, T.; Papaioannou, T.; Du, X.; Hsu, P.-L.; Khir, A.W. Mock Circulatory Loops Used for Testing Cardiac Assist Devices: A Review of Computational and Experimental Models. Int. J. Artif. Organs 2021, 44, 793–806. [Google Scholar] [CrossRef]
- Leopaldi, A.M.; Vismara, R.; Lemma, M.; Valerio, L.; Cervo, M.; Mangini, A.; Contino, M.; Redaelli, A.; Antona, C.; Fiore, G.B. In Vitro Hemodynamics and Valve Imaging in Passive Beating Hearts. J. Biomech. 2012, 45, 1133–1139. [Google Scholar] [CrossRef]
- Granegger, M.; Aigner, P.; Kitzmüller, E.; Stoiber, M.; Moscato, F.; Michel-Behnke, I.; Schima, H. A Passive Beating Heart Setup for Interventional Cardiology Training. Curr. Dir. Biomed. Eng. 2016, 2, 735–739. [Google Scholar] [CrossRef]
- Menne, M.F.; Grossmann, B.; Schmitz-Rode, T.; Steinseifer, U. Passive Beating Heart Platform for Testing, Training and Teaching of Transcatheter Therapies. Struct. Heart 2019, 3, 56. [Google Scholar] [CrossRef]
- Leopaldi, A.M.; Vismara, R.; van Tuijl, S.; Redaelli, A.; van de Vosse, F.N.; Fiore, G.B.; Rutten, M.C.M. A Novel Passive Left Heart Platform for Device Testing and Research. Med. Eng. Phys. 2015, 37, 361–366. [Google Scholar] [CrossRef]
- Park, M.H.; Zhu, Y.; Imbrie-Moore, A.M.; Wang, H.; Marin-Cuartas, M.; Paulsen, M.J.; Woo, Y.J. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front. Cardiovasc. Med. 2021, 8, 673689. [Google Scholar] [CrossRef]
- Paulsen, M.J.; Bae, J.H.; Imbrie-Moore, A.M.; Wang, H.; Hironaka, C.E.; Farry, J.M.; Lucian, H.; Thakore, A.D.; Cutkosky, M.R.; Joseph Woo, Y. Development and Ex Vivo Validation of Novel Force-Sensing Neochordae for Measuring Chordae Tendineae Tension in the Mitral Valve Apparatus Using Optical Fibers with Embedded Bragg Gratings. J. Biomech. Eng. 2020, 142, 0145011–0145019. [Google Scholar] [CrossRef]
- de Hart, J.; de Weger, A.; van Tuijl, S.; Stijnen, J.M.A.; van den Broek, C.N.; Rutten, M.C.M.; de Mol, B.A. An Ex Vivo Platform to Simulate Cardiac Physiology: A New Dimension for Therapy Development and Assessment. Int. J. Artif. Organs 2011, 34, 495–505. [Google Scholar] [CrossRef]
- Peper, E.S.; Leopaldi, A.M.; van Tuijl, S.; Coolen, B.F.; Strijkers, G.J.; Baan, J.; Planken, R.N.; de Weger, A.; Nederveen, A.J.; Marquering, H.A.; et al. An Isolated Beating Pig Heart Platform for a Comprehensive Evaluation of Intracardiac Blood Flow with 4D Flow MRI: A Feasibility Study. Eur. Radiol. Exp. 2019, 3, 40. [Google Scholar] [CrossRef]
- Bozkurt, S.; van Tuijl, S.; Schampaert, S.; van de Vosse, F.N.; Rutten, M.C.M. Arterial Pulsatility Improvement in a Feedback-Controlled Continuous Flow Left Ventricular Assist Device: An Ex-Vivo Experimental Study. Med. Eng. Phys. 2014, 36, 1288–1295. [Google Scholar] [CrossRef]
- Bozkurt, S.; van Tuijl, S.; van de Vosse, F.N.; Rutten, M.C.M. Arterial Pulsatility under Phasic Left Ventricular Assist Device Support. Biomed. Mater. Eng. 2016, 27, 451–460. [Google Scholar] [CrossRef]
- Kondruweit, M.; Friedl, S.; Heim, C.; Wittenberg, T.; Weyand, M.; Harig, F. A New Ex Vivo Beating Heart Model to Investigate the Application of Heart Valve Performance Tools with a High-Speed Camera. ASAIO J. 2014, 60, 38. [Google Scholar] [CrossRef]
- Pelgrim, G.J.; Das, M.; Haberland, U.; Slump, C.; Handayani, A.; van Tuijl, S.; Stijnen, M.; Klotz, E.; Oudkerk, M.; Wildberger, J.E.; et al. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion. BioMed Res. Int. 2015, 2015, 412716. [Google Scholar] [CrossRef]
- Kappler, B.; Ledezma, C.A.; van Tuijl, S.; Meijborg, V.; Boukens, B.J.; Ergin, B.; Tan, P.J.; Stijnen, M.; Ince, C.; Díaz-Zuccarini, V.; et al. Investigating the Physiology of Normothermic Ex Vivo Heart Perfusion in an Isolated Slaughterhouse Porcine Model Used for Device Testing and Training. BMC Cardiovasc. Disord. 2019, 19, 254. [Google Scholar] [CrossRef]
- Kappler, B.; van Tuijl, S.; Ergin, B.; Fixsen, L.; Stijnen, M.; Ince, C.; de Mol, B.A. Attenuated Cardiac Function Degradation in Ex Vivo Pig Hearts. Int. J. Artif. Organs 2020, 43, 173–179. [Google Scholar] [CrossRef]
- Schampaert, S.; van ’t Veer, M.; Rutten, M.C.M.; van Tuijl, S.; de Hart, J.; van de Vosse, F.N.; Pijls, N.H.J. Autoregulation of Coronary Blood Flow in the Isolated Beating Pig Heart. Artif. Organs 2013, 37, 724–730. [Google Scholar] [CrossRef]
- Houser, S.R.; Margulies, K.B.; Murphy, A.M.; Spinale, F.G.; Francis, G.S.; Prabhu, S.D.; Rockman, H.A.; Kass, D.A.; Molkentin, J.D.; Sussman, M.A.; et al. Animal Models of Heart Failure. Circ. Res. 2012, 111, 131–150. [Google Scholar] [CrossRef]
- Camacho, P.; Fan, H.; Liu, Z.; He, J.-Q. Large Mammalian Animal Models of Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 30. [Google Scholar] [CrossRef]
- Silva, K.A.S.; Emter, C.A. Large Animal Models of Heart Failure. JACC Basic Transl. Sci. 2020, 5, 840–856. [Google Scholar] [CrossRef]
- Schmitto, J.D.; Ortmann, P.; Akdis, M.; Alekuzei, H.; Steinke, K.; Kolat, P.; Popov, A.F.; Liakopoulos, O.J.; Waldmann-Beushausen, R.; Mirzaie, M.; et al. Miniaturized HIA Microdiagonal Pump as Left Ventricular Assist Device in a Sheep Model. ASAIO J. 2008, 54, 233–236. [Google Scholar] [CrossRef]
- Monreal, G.; Sherwood, L.C.; Sobieski, M.A.; Giridharan, G.A.; Slaughter, M.S.; Koenig, S.C. Large Animal Models for Left Ventricular Assist Device Research and Development. ASAIO J. 2014, 60, 2–8. [Google Scholar] [CrossRef]
- Wang, Y.; Conger, J.L.; Handy, K.; Smith, P.A.; Cheema, F.H.; Sampaio, L.C.; Lin, F.; Chen, C.; Morgan, J.A. In Vivo Hemodynamic Evaluation of CH-VAD in a Bovine Model for 14 Days. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 4512–4515. [Google Scholar] [CrossRef]
- Kheradvar, A.; Zareian, R.; Kawauchi, S.; Goodwin, R.L.; Rugonyi, S. Animal Models for Heart Valve Research and Development. Drug Discov. Today Dis. Models 2017, 24, 55–62. [Google Scholar] [CrossRef]
- Viceconti, M.; Henney, A.; Morley-Fletcher, E. In Silico Clinical Trials: How Computer Simulation Will Transform the Biomedical Industry. Int. J. Clin. Trials 2016, 3, 37–46. [Google Scholar] [CrossRef]
- Hampshire, V.A.; Gilbert, S.H. Refinement, Reduction, and Replacement (3R) Strategies in Preclinical Testing of Medical Devices. Toxicol. Pathol. 2019, 47, 329–338. [Google Scholar] [CrossRef]
- Gorzalczany, S.B.; Rodriguez Basso, A.G. Strategies to Apply 3Rs in Preclinical Testing. Pharmacol. Res. Perspect. 2021, 9, e00863. [Google Scholar] [CrossRef]
- Shi, Y.; Lawford, P.; Hose, R. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. Biomed. Eng. OnLine 2011, 10, 33. [Google Scholar] [CrossRef]
- Shim, E.B.; Sah, J.Y.; Youn, C.H. Mathematical Modeling of Cardiovascular System Dynamics Using a Lumped Parameter Method. Jpn. J. Physiol. 2004, 54, 545–553. [Google Scholar] [CrossRef]
- Kokalari, I.; Karaja, T.; Guerrisi, M. Review on Lumped Parameter Method for Modeling the Blood Flow in Systemic Arteries. J. Biomed. Sci. Eng. 2013, 6, 27458. [Google Scholar] [CrossRef]
- Shimizu, S.; Une, D.; Kawada, T.; Hayama, Y.; Kamiya, A.; Shishido, T.; Sugimachi, M. Lumped Parameter Model for Hemodynamic Simulation of Congenital Heart Diseases. J. Physiol. Sci. 2018, 68, 103–111. [Google Scholar] [CrossRef]
- Bozkurt, S. Computational Simulation of Cardiac Function and Blood Flow in the Circulatory System under Continuous Flow Left Ventricular Assist Device Support during Atrial Fibrillation. Appl. Sci. 2020, 10, 876. [Google Scholar] [CrossRef]
- Lee, B.-K. Computational Fluid Dynamics in Cardiovascular Disease. Korean Circ. J. 2011, 41, 423–430. [Google Scholar] [CrossRef]
- Esmailie, F.; Razavi, A.; Yeats, B.; Sivakumar, S.K.; Chen, H.; Samaee, M.; Shah, I.A.; Veneziani, A.; Yadav, P.; Thourani, V.H.; et al. Biomechanics of Transcatheter Aortic Valve Replacement Complications and Computational Predictive Modeling. Struct. Heart 2022, 6, 100032. [Google Scholar] [CrossRef] [PubMed]
- Ghodrati, M.; Maurer, A.; Schlöglhofer, T.; Khienwad, T.; Zimpfer, D.; Beitzke, D.; Zonta, F.; Moscato, F.; Schima, H.; Aigner, P. The Influence of Left Ventricular Assist Device Inflow Cannula Position on Thrombosis Risk. Artif. Organs 2020, 44, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Fonte, T.A.; Min, J.K. Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve. J. Am. Coll. Cardiol. 2013, 61, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.D.; Narracott, A.; von Tengg-Kobligk, H.; Silva Soto, D.A.; Hsiao, S.; Lungu, A.; Evans, P.; Bressloff, N.W.; Lawford, P.V.; Hose, D.R.; et al. Computational Fluid Dynamics Modelling in Cardiovascular Medicine. Heart Br. Card. Soc. 2016, 102, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, H.; Zhang, M.; Tupin, S.; Qiao, A.; Liu, Y.; Ohta, M.; Anzai, H. Prediction of 3D Cardiovascular Hemodynamics before and after Coronary Artery Bypass Surgery via Deep Learning. Commun. Biol. 2021, 4, 99. [Google Scholar] [CrossRef]
- Veronesi, F.; Corsi, C.; Caiani, E.G.; Sarti, A.; Lamberti, C. Tracking of Left Ventricular Long Axis from Real-Time Three-Dimensional Echocardiography Using Optical Flow Techniques. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 174–181. [Google Scholar] [CrossRef] [PubMed]
- El Missiri, A.M.; El Meniawy, K.A.L.; Sakr, S.A.S.; Mohamed, A.S.E. Normal Reference Values of Echocardiographic Measurements in Young Egyptian Adults. Egypt. Heart J. 2016, 68, 209–215. [Google Scholar] [CrossRef]
- Bozkurt, S. Mathematical Modeling of Cardiac Function to Evaluate Clinical Cases in Adults and Children. PLoS ONE 2019, 14, e0224663. [Google Scholar] [CrossRef]
- Clay, S.; Alfakih, K.; Radjenovic, A.; Jones, T.; Ridgway, J.P.; Sinvananthan, M.U. Normal Range of Human Left Ventricular Volumes and Mass Using Steady State Free Precession MRI in the Radial Long Axis Orientation. Magn. Reson. Mater. Phys. Biol. Med. 2006, 19, 41–45. [Google Scholar] [CrossRef]
- Addetia, K.; Miyoshi, T.; Amuthan, V.; Citro, R.; Daimon, M.; Gutierrez Fajardo, P.; Kasliwal, R.R.; Kirkpatrick, J.N.; Monaghan, M.J.; Muraru, D.; et al. Normal Values of Left Ventricular Size and Function on Three-Dimensional Echocardiography: Results of the World Alliance Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2022, 35, 449–459. [Google Scholar] [CrossRef]
- Gulbulak, U.; Ertas, A. Finite Element Driven Design Domain Identification of a Beating Left Ventricular Simulator. Bioengineering 2019, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yan, J.; Zhou, Y.; Li, H.; Li, C. A Novel Dynamic Cardiac Simulator Utilizing Pneumatic Artificial Muscle. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 715–718. [Google Scholar]
- Baturalp, T.B. Design and Development of a Systemic Mock Circulation Loop with a Novel Beating Left Ventricular Simulator. Ph.D. Dissertation, Texas Tech University, Lubbock, TX, USA, 2016. [Google Scholar]
- Roche, E.T.; Wohlfarth, R.; Overvelde, J.T.B.; Vasilyev, N.V.; Pigula, F.A.; Mooney, D.J.; Bertoldi, K.; Walsh, C.J. A Bioinspired Soft Actuated Material. Adv. Mater. 2014, 26, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Sridar, S.; Majeika, C.J.; Schaffer, P.; Bowers, M.; Ueda, S.; Barth, A.J.; Sorrells, J.L.; Wu, J.T.; Hunt, T.R.; Popovic, M. Hydro Muscle—A Novel Soft Fluidic Actuator. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 4014–4021. [Google Scholar]
- Ingels, N.B., Jr. Myocardial Fiber Architecture and Left Ventricular Function. Technol. Health Care 1997, 5, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Buckberg, G.; Mahajan, A.; Saleh, S.; Hoffman, J.I.E.; Coghlan, C. Structure and Function Relationships of the Helical Ventricular Myocardial Band. J. Thorac. Cardiovasc. Surg. 2008, 136, 578–589.e11. [Google Scholar] [CrossRef] [PubMed]
- Buckberg, G.; Hoffman, J.I.E.; Mahajan, A.; Saleh, S.; Coghlan, C. Cardiac Mechanics Revisited: The Relationship of Cardiac Architecture to Ventricular Function. Circulation 2008, 118, 2571–2587. [Google Scholar] [CrossRef]
- Trumble, D.R.; McGregor, W.E.; Kerckhoffs, R.C.P.; Waldman, L.K. Cardiac Assist with a Twist: Apical Torsion as a Means to Improve Failing Heart Function. J. Biomech. Eng. 2011, 133, 101003. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Tajik, A.J.; Chandrasekaran, K.; Khandheria, B.K. Twist Mechanics of the Left Ventricle: Principles and Application. JACC Cardiovasc. Imaging 2008, 1, 366–376. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Korinek, J.; Belohlavek, M.; Narula, J.; Vannan, M.A.; Jahangir, A.; Khandheria, B.K. Left Ventricular Structure and Function: Basic Science for Cardiac Imaging. J. Am. Coll. Cardiol. 2006, 48, 1988–2001. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Krishnamoorthy, V.K.; Korinek, J.; Narula, J.; Vannan, M.A.; Lester, S.J.; Tajik, J.A.; Seward, J.B.; Khandheria, B.K.; Belohlavek, M. Left Ventricular Form and Function Revisited: Applied Translational Science to Cardiovascular Ultrasound Imaging. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2007, 20, 539–551. [Google Scholar] [CrossRef]
- Ha, H.; Kim, G.B.; Kweon, J.; Lee, S.J.; Kim, Y.-H.; Kim, N.; Yang, D.H. The Influence of the Aortic Valve Angle on the Hemodynamic Features of the Thoracic Aorta. Sci. Rep. 2016, 6, 32316. [Google Scholar] [CrossRef]
- Rotman, O.M.; Bianchi, M.; Ghosh, R.P.; Kovarovic, B.; Bluestein, D. Principles of TAVR Valve Design, Modelling, and Testing. Expert Rev. Med. Devices 2018, 15, 771–791. [Google Scholar] [CrossRef]
- Kang, J.; Ha, H. Particle Image Velocimetry Investigation of Hemodynamics via Aortic Phantom. J. Vis. Exp. JoVE 2022, 25, e63492. [Google Scholar] [CrossRef] [PubMed]
- Roche, E.T.; Horvath, M.A.; Wamala, I.; Alazmani, A.; Song, S.-E.; Whyte, W.; Machaidze, Z.; Payne, C.J.; Weaver, J.C.; Fishbein, G.; et al. Soft Robotic Sleeve Supports Heart Function. Sci. Transl. Med. 2017, 9, eaaf3925. [Google Scholar] [CrossRef] [PubMed]
- Lorenzon, L.; Beccali, G.; Cianchetti, M. A Preliminary Study on an Innovative Soft Robotic Artificial Heart Ventricle. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 3–7 April 2023; pp. 1–8. [Google Scholar]
- Shi, Y.; Korakianitis, T.; Li, Z.; Shi, Y. Structure and Motion Design of a Mock Circulatory Test Rig. J. Med. Eng. Technol. 2018, 42, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-H.; Kim, Y.-M.; Lee, B.; Hong, J.; Kim, J.; Woo, S.-Y.; Yang, T.-H.; Park, Y.-H. Design and Evaluation of Enhanced Mock Circulatory Platform Simulating Cardiovascular Physiology for Medical Palpation Training. Appl. Sci. 2020, 10, 5433. [Google Scholar] [CrossRef]
- Hendry, P.J.; Ascah, K.J.; Rajagopalan, K.; Calvin, J.E. Does Septal Position Affect Right Ventricular Function during Left Ventricular Assist in an Experimental Porcine Model? Circulation 1994, 90, II353–II358. [Google Scholar] [PubMed]
- Flores, A.S.; Essandoh, M.; Yerington, G.C.; Bhatt, A.M.; Iyer, M.H.; Perez, W.; Davila, V.R.; Tripathi, R.S.; Turner, K.; Dimitrova, G.; et al. Echocardiographic Assessment for Ventricular Assist Device Placement. J. Thorac. Dis. 2015, 7, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Sack, K.L.; Dabiri, Y.; Franz, T.; Solomon, S.D.; Burkhoff, D.; Guccione, J.M. Investigating the Role of Interventricular Interdependence in Development of Right Heart Dysfunction During LVAD Support: A Patient-Specific Methods-Based Approach. Front. Physiol. 2018, 9, 520. [Google Scholar] [CrossRef] [PubMed]
- Bravo, C.A.; Navarro, A.G.; Dhaliwal, K.K.; Khorsandi, M.; Keenan, J.E.; Mudigonda, P.; O’Brien, K.D.; Mahr, C. Right Heart Failure after Left Ventricular Assist Device: From Mechanisms to Treatments. Front. Cardiovasc. Med. 2022, 9, 1023549. [Google Scholar] [CrossRef]
- Schampaert, S.; Pennings, K.A.M.A.; van de Molengraft, M.J.G.; Pijls, N.H.J.; van de Vosse, F.N.; Rutten, M.C.M. A Mock Circulation Model for Cardiovascular Device Evaluation. Physiol. Meas. 2014, 35, 687–702. [Google Scholar] [CrossRef]
- De Lazzari, B.; Capoccia, M.; Badagliacca, R.; Bozkurt, S.; De Lazzari, C. IABP versus Impella Support in Cardiogenic Shock: “In Silico” Study. J. Cardiovasc. Dev. Dis. 2023, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Alkan, R.; De Lazzari, B.; Capoccia, M.; De Lazzari, C.; Bozkurt, S. Computational Evaluation of IABP, Impella 2.5, TandemHeart and Combined IABP and Impella 2.5 Support in Cardiogenic Shock. Mathematics 2023, 11, 3606. [Google Scholar] [CrossRef]
- Schampaert, S.; van Nunen, L.X.; Pijls, N.H.J.; Rutten, M.C.M.; van Tuijl, S.; van de Vosse, F.N.; van ‘t Veer, M. Intra-Aortic Balloon Pump Support in the Isolated Beating Porcine Heart in Nonischemic and Ischemic Pump Failure. Artif. Organs 2015, 39, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Granegger, M.; Mahr, S.; Horvat, J.; Aigner, P.; Roehrich, M.; Stoiber, M.; Plasenzotti, R.; Zimpfer, D.; Schima, H.; Moscato, F. Investigation of Hemodynamics in the Assisted Isolated Porcine Heart. Int. J. Artif. Organs 2013, 36, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Doke, S.K.; Dhawale, S.C. Alternatives to Animal Testing: A Review. Saudi Pharm. J. 2015, 23, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical Considerations Regarding Animal Experimentation. J. Prev. Med. Hyg. 2022, 63, E255–E266. [Google Scholar] [CrossRef] [PubMed]
- Ferdowsian, H.R.; Beck, N. Ethical and Scientific Considerations Regarding Animal Testing and Research. PLoS ONE 2011, 6, e24059. [Google Scholar] [CrossRef] [PubMed]
- Kiraga, Ł.; Dzikowski, A. Ethical Concerns of the Veterinarian in Relation to Experimental Animals and In Vivo Research. Animals 2023, 13, 2476. [Google Scholar] [CrossRef] [PubMed]
- Sisakian, H. Cardiomyopathies: Evolution of Pathogenesis Concepts and Potential for New Therapies. World J. Cardiol. 2014, 6, 478–494. [Google Scholar] [CrossRef]
- Sanz, J.; Sánchez-Quintana, D.; Bossone, E.; Bogaard, H.J.; Naeije, R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1463–1482. [Google Scholar] [CrossRef]
- Ciarambino, T.; Menna, G.; Sansone, G.; Giordano, M. Cardiomyopathies: An Overview. Int. J. Mol. Sci. 2021, 22, 7722. [Google Scholar] [CrossRef] [PubMed]
- Díez-López, C.; Salazar-Mendiguchía, J.; García-Romero, E.; Fuentes, L.; Lupón, J.; Bayés-Genis, A.; Manito, N.; de Antonio, M.; Moliner, P.; Zamora, E.; et al. Clinical Determinants and Prognosis of Left Ventricular Reverse Remodelling in Non-Ischemic Dilated Cardiomyopathy. J. Cardiovasc. Dev. Dis. 2022, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Tayal, U.; Prasad, S.K. Myocardial Remodelling and Recovery in Dilated Cardiomyopathy. JRSM Cardiovasc. Dis. 2017, 6, 2048004017734476. [Google Scholar] [CrossRef] [PubMed]
- Merlo, M.; Caiffa, T.; Gobbo, M.; Adamo, L.; Sinagra, G. Reverse Remodeling in Dilated Cardiomyopathy: Insights and Future Perspectives. Int. J. Cardiol. Heart Vasc. 2018, 18, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yang, M.; Xie, S.; Wu, X.; Jiang, Y.; Liu, Z.; Zhao, H.; Chen, Y.; Zhang, Y.; Wang, J. Early Prediction of Left Ventricular Reverse Remodeling in First-Diagnosed Idiopathic Dilated Cardiomyopathy: A Comparison of Linear Model, Random Forest, and Extreme Gradient Boosting. Front. Cardiovasc. Med. 2021, 8, 684004. [Google Scholar] [CrossRef] [PubMed]
- Sewanan, L.R.; Shimada, Y.J. Prospects for Remodeling the Hypertrophic Heart with Myosin Modulators. Front. Cardiovasc. Med. 2022, 9, 1051564. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, B.; Tini, G.; Russo, D.; Sclafani, M.; Cava, F.; Tropea, A.; Adduci, C.; Palano, F.; Francia, P.; Autore, C. Left Ventricular Remodeling in Hypertrophic Cardiomyopathy: An Overview of Current Knowledge. J. Clin. Med. 2021, 10, 1547. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chan, W.X.; Charles, C.J.; Richards, A.M.; Sampath, S.; Abu Bakar Ali, A.; Leo, H.L.; Yap, C.H. Effects of Hypertrophic and Dilated Cardiac Geometric Remodeling on Ejection Fraction. Front. Physiol. 2022, 13, 898775. [Google Scholar] [CrossRef] [PubMed]
- Bertini, M.; Sengupta, P.P.; Nucifora, G.; Delgado, V.; Ng, A.C.T.; Marsan, N.A.; Shanks, M.; van Bommel, R.R.J.; Schalij, M.J.; Narula, J.; et al. Role of Left Ventricular Twist Mechanics in the Assessment of Cardiac Dyssynchrony in Heart Failure. JACC Cardiovasc. Imaging 2009, 2, 1425–1435. [Google Scholar] [CrossRef]
- Phan, T.T.; Shivu, G.N.; Abozguia, K.; Gnanadevan, M.; Ahmed, I.; Frenneaux, M. Left Ventricular Torsion and Strain Patterns in Heart Failure with Normal Ejection Fraction Are Similar to Age-Related Changes. Eur. J. Echocardiogr. 2009, 10, 793–800. [Google Scholar] [CrossRef]
- Songsangjinda, T.; Krittayaphong, R. Impact of Different Degrees of Left Ventricular Strain on Left Atrial Mechanics in Heart Failure with Preserved Ejection Fraction. BMC Cardiovasc. Disord. 2022, 22, 160. [Google Scholar] [CrossRef] [PubMed]
- Morimura, H.; Okamoto, Y.; Takada, J.; Tabata, M.; Iwasaki, K. Repairable Ex Vivo Model of Functional and Degenerative Mitral Regurgitation. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2023, 64, ezad371. [Google Scholar] [CrossRef] [PubMed]
- Karl, R.; Romano, G.; Marx, J.; Eden, M.; Schlegel, P.; Stroh, L.; Fischer, S.; Hehl, M.; Kühle, R.; Mohl, L.; et al. An Ex-Vivo and in-Vitro Dynamic Simulator for Surgical and Transcatheter Mitral Valve Interventions. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation 2019, 140, e9–e68. [Google Scholar] [CrossRef] [PubMed]
- Bakaya, K.; Paracha, W.; Schievano, S.; Bozkurt, S. Assessment of Cardiac Dimensions in Children Diagnosed with Hypertrophic Cardiomyopathy. Echocardiography 2022, 39, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Lesage, R.; Van Oudheusden, M.; Schievano, S.; Van Hoyweghen, I.; Geris, L.; Capelli, C. Mapping the Use of Computational Modelling and Simulation in Clinics: A Survey. Front. Med. Technol. 2023, 5, 1125524. [Google Scholar] [CrossRef]
- Yoo, S.-J.; Spray, T.; Austin, E.H.; Yun, T.-J.; van Arsdell, G.S. Hands-on Surgical Training of Congenital Heart Surgery Using 3-Dimensional Print Models. J. Thorac. Cardiovasc. Surg. 2017, 153, 1530–1540. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baturalp, T.B.; Bozkurt, S. Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling. Biomimetics 2024, 9, 269. https://doi.org/10.3390/biomimetics9050269
Baturalp TB, Bozkurt S. Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling. Biomimetics. 2024; 9(5):269. https://doi.org/10.3390/biomimetics9050269
Chicago/Turabian StyleBaturalp, Turgut Batuhan, and Selim Bozkurt. 2024. "Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling" Biomimetics 9, no. 5: 269. https://doi.org/10.3390/biomimetics9050269
APA StyleBaturalp, T. B., & Bozkurt, S. (2024). Design and Analysis of a Polymeric Left Ventricular Simulator via Computational Modelling. Biomimetics, 9(5), 269. https://doi.org/10.3390/biomimetics9050269