Redefining Surgical Materials: Applications of Silk Fibroin in Osteofixation and Fracture Repair
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction/Synthesis
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. In Vitro Studies
3.2. In Vivo Studies
4. Discussion
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karl, J.W.; Olson, P.R.; Rosenwasser, M.P. The Epidemiology of Upper Extremity Fractures in the United States, 2009. J. Orthop. Trauma 2015, 29, e242–e244. [Google Scholar] [CrossRef]
- Fugarino, B.; Fox, M.P.; Terhoeve, C.; Pappas, N. Costs Associated With Single-Use and Conventional Sets for Distal Radius Plating. J. Hand Surg. 2017, 42, 930.e1–930.e4. [Google Scholar] [CrossRef]
- Augat, P.; von Rüden, C. Evolution of fracture treatment with bone plates. Injury 2018, 49 (Suppl. S1), S2–S7. [Google Scholar] [CrossRef]
- Lujerdean, C.; Baci, G.M.; Cucu, A.A.; Dezmirean, D.S. The Contribution of Silk Fibroin in Biomedical Engineering. Insects 2022, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Foppiani, J.A.; Weidman, A.; Alvarez, A.H.; Valentine, L.; Devi, K.; Kaplan, D.L.; Lin, S.J. Clinical Use of Non-Suture Silk-Containing Products: A Systematic Review. Biomimetics 2023, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Perrone, G.S.; Leisk, G.G.; Lo, T.J.; Moreau, J.E.; Haas, D.S.; Papenburg, B.J.; Golden, E.B.; Partlow, B.P.; Fox, S.E.; Ibrahim, A.M.; et al. The use of silk-based devices for fracture fixation. Nat. Commun. 2014, 5, 3385. [Google Scholar] [CrossRef] [PubMed]
- Seib, F.P. Emerging Silk Material Trends: Repurposing, Phase Separation and Solution-Based Designs. Materials 2021, 14, 1160. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Koolen, P.G.; Kim, K.; Perrone, G.S.; Kaplan, D.L.; Lin, S.J. Absorbable biologically based internal fixation. Clin. Podiatr. Med. Surg. 2015, 32, 61–72. [Google Scholar] [CrossRef]
- Meng, W.; Sun, S.; Xie, D.; Dai, S.; Shao, W.; Zhang, Q.; Qin, C.; Liang, G.; Li, X. Engineering defective Co3O4 containing both metal doping and vacancy in octahedral cobalt site as high performance catalyst for methane oxidation. Mol. Catal. 2024, 553, 113768. [Google Scholar] [CrossRef]
- Zeng, J.; Qi, P.; Wang, Y.; Liu, Y.; Sui, K. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J. Hazard. Mater. 2021, 410, 124633. [Google Scholar] [CrossRef]
- Xia, M.; Pan, N.; Zhang, C.; Zhang, C.; Fan, W.; Xia, Y.; Wang, Z.; Sui, K. Self-Powered Multifunction Ionic Skins Based on Gradient Polyelectrolyte Hydrogels. ACS Nano 2022, 16, 4714–4725. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Shamseer, L.; Tricco, A.C. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst. Rev. 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med Res. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Elia, R.; Michelson, C.D.; Perera, A.L.; Harsono, M.; Leisk, G.G.; Kugel, G.; Kaplan, D.L. Silk electrogel coatings for titanium dental implants. J. Biomater. Appl. 2015, 29, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Vyas, C.; Zhang, J.; Øvrebø, Ø.; Huang, B.; Roberts, I.; Setty, M.; Allardyce, B.; Haugen, H.; Rajkhowa, R.; Bartolo, P. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Mater. Sci. Eng. C 2021, 118, 111433. [Google Scholar] [CrossRef] [PubMed]
- Koolen, P.G.L.; Haas, D.; Kim, K.; Fox, S.; Ibrahim, A.M.S.; Kim, P.; Kaplan, D.L.; Lin, S.J. Increased Osteoid Formation in BMP-2-Loaded Silk-Based Screws. Plast. Reconstr. Surg. 2016, 137, 808e–817e. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pu, X.; Zheng, G.; Feng, X.; Yang, X.; Zhang, B.; Zhang, Y.; Yin, Q.; Xia, H. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility. Sci. Rep. 2016, 6, 37418. [Google Scholar] [CrossRef]
- Yan, S.; He, L.; Hai, A.M.; Hu, Z.; You, R.; Zhang, Q.; Kaplan, D.L. Controllable Production of Natural Silk Nanofibrils for Reinforcing Silk-Based Orthopedic Screws. Polymers 2023, 15, 1645. [Google Scholar] [CrossRef]
- Shi, C.; Liao, X.; Pu, X.; Li, X.; Wu, R.; Deng, D.; Zhou, Y.; Huang, X. Degradation of internal fixation materials based on antibacterial and absorbable silk containing different gentamicin concentrations. J. Biomater. Appl. 2022, 37, 33–39. [Google Scholar] [CrossRef]
- Bottagisio, M.; Palombella, S.; Lopa, S.; Sangalli, F.; Savadori, P.; Biagiotti, M.; Sideratou, Z.; Tsiourvas, D.; Lovati, A.B. Vancomycin-nanofunctionalized peptide-enriched silk fibroin to prevent methicillin-resistant Staphylococcus epidermidis-induced femoral nonunions in rats. Front. Cell. Infect. Microbiol. 2022, 12, 1056912. [Google Scholar] [CrossRef] [PubMed]
- James, E.N.; Van Doren, E.; Li, C.; Kaplan, D.L. Silk Biomaterials-Mediated miRNA Functionalized Orthopedic Devices. Tissue Eng. Part A 2019, 25, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Suryavanshi, A.; Khanna, K.; Sindhu, K.R.; Bellare, J.; Srivastava, R. Development of bone screw using novel biodegradable composite orthopedic biomaterial: From material design to in vitro biomechanical and in vivo biocompatibility evaluation. Biomed. Mater. 2019, 14, 045020. [Google Scholar] [CrossRef]
- Zhang, Q.-C.; Ding, W.; Ding, S.-L.; Meng, Q.-B.; Su, D.-H.; Zhang, T.-W.; Chen, Q.; Lian, R.-X.; Zhao, M.-D.; Yu, B.-Q.; et al. Robust bioactive protein-based screws with dual crosslinked network for internal bone fixation. Compos. Part B Eng. 2022, 238, 109884. [Google Scholar] [CrossRef]
- Asadi, H.; Ghalei, S.; Handa, H.; Ramasamy, R.P. Cellulose nanocrystal reinforced silk fibroin coating for enhanced corrosion protection and biocompatibility of Mg-based alloys for orthopedic implant applications. Prog. Org. Coat. 2021, 161, 106525. [Google Scholar] [CrossRef]
- Elia, R.; Michelson, C.D.; Perera, A.L.; Brunner, T.F.; Harsono, M.; Leisk, G.G.; Kugel, G.; Kaplan, D.L. Electrodeposited silk coatings for bone implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Yeon, Y.K.; Park, H.S.; Lee, J.M.; Lee, J.S.; Lee, Y.J.; Sultan, M.T.; Seo, Y.B.; Lee, O.J.; Kim, S.H.; Park, C.H. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures. J. Biomater. Sci. Polym. Ed. 2018, 29, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Chen, W.; Jin, W.; Sun, Y.; Gu, K.; Mi, R.; Chen, N.; Chen, S.; Shao, Z. An interference screw made by silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. J. Mater. Chem. B 2021, 9, 5352–5364. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Vu, H.V.; Hanna, P.; Lechtig, A.; Qiu, Y.; Mu, X.; Ling, S.; Nazarian, A.; Lin, S.J.; et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 2020, 19, 102–108. [Google Scholar] [CrossRef]
- Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D.L.; Buehler, M.J. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 2017, 8, 1387. [Google Scholar] [CrossRef]
- Sparkes, J.; Holland, C. Analysis of the pressure requirements for silk spinning reveals a pultrusion dominated process. Nat. Commun. 2017, 8, 594. [Google Scholar] [CrossRef]
- Irimia-Vladu, M. ChemInform Abstract: “Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future. Chem. Soc. Rev. 2013, 43, 588–610. [Google Scholar] [CrossRef]
- Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk materials—A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837. [Google Scholar] [CrossRef]
- Huang, W.; Ling, S.; Li, C.; Omenetto, F.G.; Kaplan, D.L. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 2018, 47, 6486–6504. [Google Scholar] [CrossRef]
- Hamweendo, A.; Ionel, B. Modern Production Methods for Titanium Alloys: A Review. In Titanium Alloys; Maciej, M., Waldemar, Z., Jan, S., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 2. [Google Scholar]
- Grainger, D. The Williams dictionary of biomaterials David F. Williams, Liverpool University Press, Liverpool, Great Britain, 1999. Mater. Today-Mater Today 1999, 2, 29. [Google Scholar] [CrossRef]
- Wang, Y.; Rudym, D.D.; Walsh, A.; Abrahamsen, L.; Kim, H.J.; Kim, H.S.; Kirker-Head, C.; Kaplan, D.L. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008, 29, 3415–3428. [Google Scholar] [CrossRef]
- Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M.J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S.J.; Kaplan, D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2020, 5, 61–81. [Google Scholar] [CrossRef]
- Imola, M.J.; Hamlar, D.D.; Shao, W.; Chowdhury, K.; Tatum, S. Resorbable plate fixation in pediatric craniofacial surgery: Long-term outcome. Arch. Facial Plast. Surg. 2001, 3, 79–90. [Google Scholar] [CrossRef]
- Larsen, M.W.; Pietrzak, W.S.; DeLee, J.C. Fixation of osteochondritis dissecans lesions using poly(l-lactic acid)/poly(glycolic acid) copolymer bioabsorbable screws. Am. J. Sports Med. 2005, 33, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Lindqvist, C. Rigid internal fixation of mandibular fractures. An analysis of 270 fractures treated using the AO/ASIF method. Int. J. Oral Maxillofac. Surg. 1992, 21, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Bos, R.R.; Boering, G.; Rozema, F.R.; Leenslag, J.W. Resorbable poly(L-lactide) plates and screws for the fixation of zygomatic fractures. J. Oral Maxillofac. Surg. 1987, 45, 751–753. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies focused on silk screws or screws utilizing silk derivatives. | Literature reviews, as they provide secondary analysis rather than original research data. |
Studies centered on silk plates or plates using silk derivatives. | Systematic reviews, which aggregate findings from multiple studies but do not offer new experimental data. |
Clinical studies investigating the application, efficacy, or safety of silk-derived screws and plates. | Letters to the editor, which often include preliminary observations, comments, or critiques without detailed empirical evidence. |
Experimental studies exploring the properties, biocompatibility, or innovative uses of silk in surgery. | Studies focusing on other silk products not directly related to screws or plates, to maintain the research focus’s specificity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foppiani, J.A.; Taritsa, I.C.; Foster, L.; Patel, A.; Hernandez Alvarez, A.; Lee, D.; Lin, G.J.; Lee, T.C.; Gavlasova, D.; Escobar-Domingo, M.J.; et al. Redefining Surgical Materials: Applications of Silk Fibroin in Osteofixation and Fracture Repair. Biomimetics 2024, 9, 286. https://doi.org/10.3390/biomimetics9050286
Foppiani JA, Taritsa IC, Foster L, Patel A, Hernandez Alvarez A, Lee D, Lin GJ, Lee TC, Gavlasova D, Escobar-Domingo MJ, et al. Redefining Surgical Materials: Applications of Silk Fibroin in Osteofixation and Fracture Repair. Biomimetics. 2024; 9(5):286. https://doi.org/10.3390/biomimetics9050286
Chicago/Turabian StyleFoppiani, Jose A., Iulianna C. Taritsa, Lacey Foster, Armaan Patel, Angelica Hernandez Alvarez, Daniela Lee, Gavin J. Lin, Theodore C. Lee, Dominika Gavlasova, Maria J. Escobar-Domingo, and et al. 2024. "Redefining Surgical Materials: Applications of Silk Fibroin in Osteofixation and Fracture Repair" Biomimetics 9, no. 5: 286. https://doi.org/10.3390/biomimetics9050286
APA StyleFoppiani, J. A., Taritsa, I. C., Foster, L., Patel, A., Hernandez Alvarez, A., Lee, D., Lin, G. J., Lee, T. C., Gavlasova, D., Escobar-Domingo, M. J., Kaplan, D. L., & Lin, S. J. (2024). Redefining Surgical Materials: Applications of Silk Fibroin in Osteofixation and Fracture Repair. Biomimetics, 9(5), 286. https://doi.org/10.3390/biomimetics9050286