Evolutionary Approach to Optimal Oil Skimmer Assignment for Oil Spill Response: A Case Study
Abstract
:1. Introduction
2. Prior Work Related to Resource Allocation
3. Oil Skimmer Assignment Problems
4. Proposed Methods
4.1. Genetic Algorithm
4.2. Surrogate Model for Evaluation
4.3. GA-Based Mobilized Location Minimizer
5. Experimental Results
5.1. Evaluation by Simulation
5.2. Evaluation by Surrogate Model
5.3. Mobilized Location Minimization
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GA | genetic algorithm |
DNN | deep neural network |
ht | hectotonne (100 tonnes) |
MAE | mean absolute error |
RMSE | root mean square error |
AIS | Automatic Identification System |
KCG | Korea Coast Guard |
LHW | length × height × width |
LH | length × height |
Appendix A. Clustering Analysis of Oil Skimmer Assignments
Appendix B. Scenarios of Oil Spill Accidents
- Past oil spill accident records (frequency and spill volume): analyzing data from the past oil spill accident database (from 2000 to 2019) based on a grid system (300 m × 300 m) established for the South Korea maritime area to derive accident frequencies and maximum spill volumes for each grid cell;
- Vessel traffic density (collision risk): to understand the likelihood of vessel accidents closely related to oil spill accidents, vessel traffic density (frequency) for each grid cell is derived from AIS data for 2018 at hourly intervals, and cumulative annual vessel traffic for each grid cell is calculated. Additionally, analysis of collision risk is performed, defining collision risk as the sum of collision risks for different encounter situations (head-on collision, crossing collision, rear-end/overtaking collision), with higher collision risks indicating a higher probability of oil spill accidents;
- Oil movement density: estimation of oil movement density for each grid cell is conducted based on AIS data at hourly intervals for 2018;
- Oil storage facilities (storage capacity): analyzing data on oil storage facilities from the KCG’s database in 2019 for the South Korean maritime area, based on the grid system of 300 m × 300 m, allows us to derive the oil storage capacity for each grid cell. High-capacity oil storage facilities (with storage capacities of 1000 hectotonnes or more) are primarily distributed around major ports such as Incheon North, Pyeongtaek, Daesan, Yeosu, Busan, and Ulsan;
- Estimation of spill volume: since most maritime oil spill accidents are caused by vessels in operation and spill volumes are influenced by the size of the vessel, the maximum dimensions of vessels at accident locations are identified using AIS information. Vessel sizes are then determined, and spill volumes are calculated by distinguishing between tanker and non-tanker vessels.
References
- Han, Y.; Nambi, I.M.; Clement, T.P. Environmental impacts of the Chennai oil spill accident—A case study. Sci. Total Environ. 2018, 626, 795–806. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Tharakan, G.G.; Ceder, A. Optimal response to oil spills: The strategic decision case. Oper. Res. 1986, 34, 190–330. [Google Scholar] [CrossRef]
- Yun, J.-H.; Cho, D.; Kuk, S.-K.; Choi, Y.; Kim, W.-D.; Cho, K.; Choi, D.-H.; Kim, S.-G. A Study on Practical Strategies for Estimating the National Control Ability of Oil Spill Control; Korea Maritime and Ocean University Technical Report; Korea Coast Guard: Incheon, Republic of Korea, 2009. [Google Scholar]
- Bui, T.N.; Moon, B.R. Genetic algorithm and graph partitioning. IEEE Trans. Comput. 1996, 45, 841–855. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Caraffini, F. Preface to “swarm and evolutionary computation—Bridging theory and practice”. Mathematics 2023, 11, 1209. [Google Scholar] [CrossRef]
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef]
- Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K.R. Explaining deep neural networks and beyond: A review of methods and applications. Proc. IEEE 2021, 109, 247–278. [Google Scholar] [CrossRef]
- Shin, S.-S.; Kim, Y.-H. Optimal agent search using surrogate-assisted genetic algorithms. Mathematics 2023, 11, 230. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H. Simulation-based optimization for dynamic resource allocation. Autom. Constr. 2004, 13, 409–420. [Google Scholar] [CrossRef]
- Gong, Y.J.; Zhang, J.; Chung, H.S.H.; Chen, W.N.; Zhan, Z.H.; Li, Y.; Shi, Y.H. An efficient resource allocation scheme using particle swarm optimization. IEEE Trans. Evol. Comput. 2012, 16, 801–816. [Google Scholar] [CrossRef]
- Tyagi, G.; Singh, R.; Hussain, A. Applications of genetic algorithm in water resources management and optimization. In Proceedings of the International Conference on Advanced Computing and Software Engineering, Sultanpur, India, 8–9 February 2019; pp. 137–143. [Google Scholar]
- Wang, L.; Guo, S.; Li, X.; Du, B.; Xu, W. Distributed manufacturing resource selection strategy in cloud manufacturing. Int. J. Adv. Manuf. Technol. 2018, 94, 3375–3388. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, Y.-H. Maximizing the coverage of sensor deployments using a memetic algorithm and fast coverage estimation. IEEE Trans. Cybern. 2021, 52, 6531–6542. [Google Scholar] [CrossRef] [PubMed]
- Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving; Addison-Wesley Longman Publishing Co.: Boston, MA, USA, 1984. [Google Scholar]
- Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 2003, 35, 268–308. [Google Scholar] [CrossRef]
- Dai, Z.S.; Wang, X.L. Optimal resource allocation on grid systems for maximizing service reliability using a genetic algorithm. Reliab. Eng. Syst. Saf. 2006, 91, 1071–1082. [Google Scholar] [CrossRef]
- Lavric, V.; Iancu, P.; Pleşu, V. Optimal water system topology through genetic algorithm under multiple contaminated-water sources constraint. Comput. Aided Chem. Eng. 2004, 18, 433–438. [Google Scholar] [CrossRef]
- Guerrero, C.; Lera, I.; Juiz, C. Genetic algorithm for multi-objective optimization of container allocation in cloud architecture. J. Grid Comput. 2018, 16, 113–135. [Google Scholar] [CrossRef]
- Topham, D.R. An analysis of the performance of weir type oil skimmers. Spill Sci. Technol. Bull. 2002, 7, 289–297. [Google Scholar] [CrossRef]
- Dantzig, G.B. Linear programming. Oper. Res. 2002, 50, 42–47. [Google Scholar] [CrossRef]
- Klemmt, A.; Horn, S.; Weigert, G.; Wolter, K.J. Simulation-based optimization vs. mathematical programming: A hybrid approach for optimizing scheduling problems. Robot. Comput.-Integr. Manuf. 2009, 25, 917–925. [Google Scholar] [CrossRef]
- Yegul, M.F.; Erenay, F.S.; Striepe, S.; Yavuz, M. Improving configuration of complex production lines via simulation-based optimization. Comput. Ind. Eng. 2017, 109, 295–312. [Google Scholar] [CrossRef]
- Ganbold, O.; Kundu, K.; Li, H.; Zhang, W. A Simulation-based optimization method for warehouse worker assignment. Algorithms 2020, 13, 326. [Google Scholar] [CrossRef]
- Lipowski, A.; Lipowska, D. Roulette-wheel selection via stochastic acceptance. Phys. Stat. Mech. Its Appl. 2012, 391, 2193–2196. [Google Scholar] [CrossRef]
- Burjorjee, K.M. Explaining optimization in genetic algorithms with uniform crossover. In Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms XII, Adelaide, Australia, 16–20 January 2013; pp. 37–50. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, Y.-H. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Trans. Cybern. 2013, 43, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, J.; Yun, J.-H.; Kim, Y.-H. Optimal equipment assignment for oil spill response using a genetic algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019; pp. 375–376. [Google Scholar] [CrossRef]
- Rere, L.R.; Fanany, M.I.; Arymurthy, A.M. Simulated annealing algorithm for deep learning. Procedia Comput. Sci. 2015, 72, 137–144. [Google Scholar] [CrossRef]
- Lü, Z.; Hao, J.K. Adaptive tabu search for course timetabling. Eur. J. Oper. Res. 2010, 200, 235–244. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Yoon, Y.; Geem, Z.W. A comparison study of harmony search and genetic algorithm for the max-cut problem. Swarm Evol. Comput. 2019, 44, 130–135. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle antennae search algorithm for optimization problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
- Chen, Z.; Francis, A.; Li, S.; Liao, B.; Xiao, D.; Ha, T.T.; Li, J.; Ding, L.; Cao, X. Egret swarm optimization algorithm: An evolutionary computation approach for model free optimization. Biomimetics 2022, 7, 144. [Google Scholar] [CrossRef] [PubMed]
- Cardie, K.W.C.; Schroedl, S.R.S. Constrained k-means clustering with background knowledge. In Proceedings of the International Conference on Machine Learning, Williams College, Williamstown, MA, USA, 28 June–1 July 2001; pp. 577–584. [Google Scholar]
- Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.D.; Silverman, R.; Wu, A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 881–892. [Google Scholar] [CrossRef]
- Sammon, J.W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 1969, 18, 401–409. [Google Scholar] [CrossRef]
- Jin, Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm Evol. Comput. 2011, 1, 61–70. [Google Scholar] [CrossRef]
- Cozad, A.; Sahinidis, N.V.; Miller, D.C. Learning surrogate models for simulation-based optimization. AIChE J. 2014, 60, 2211–2227. [Google Scholar] [CrossRef]
- Angione, C.; Silverman, E.; Yaneske, E. Using machine learning as a surrogate model for agent-based simulations. PLoS ONE 2022, 17, e0263150. [Google Scholar] [CrossRef]
- Yang, D.; Wu, L.; Wang, S.; Jia, H.; Li, K.X. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773. [Google Scholar] [CrossRef]
Genetic Operation | Values |
---|---|
Selection | Roulette wheel selection [25] |
Recombination | Uniform crossover [26] of rate = 0.7 |
Mutation | Genewise mutation of rate = 0.001 |
Replacement | Elitism |
Population size | 100 |
Number of generations | 60,000 |
Measure | Values |
---|---|
Mean absolute error (MAE) | |
Root mean sqaure error (RMSE) | |
Mean work time | 17.11 h |
Location (Latitude, Longitude) | Oil Spill Accident (ht) | Oil Skimmer’s Capacity (ht) | Work Time (h) | ||
---|---|---|---|---|---|
Current | GA | Current | GA | ||
Incheon (37.456° N, 126.705° E) | 85 | 28.33 | 34.03 | 9 | 8 |
Pyeongtaek (37.016° N, 126.994° E) | 12 | not assigned | 0.5 | 4 | 4 |
Deasan (36.967° N, 126.421° E) | 450 | 34 | 32.3 | 20 | 19 |
Gunsan (35.968° N, 126.737° E) | 38 | 12.67 | 14.57 | 9 | 9 |
Mokpo (34.812° N, 126.392° E) | 85 | 28.33 | 19.67 | 10 | 10 |
Wando (34.311° N, 126.755° E) | 6 | 2 | 24.24 | 7 | 2 |
Yeosu (34.760° N, 127.662° E) | 450 | 42 | 44.31 | 18 | 18 |
Jeju (33.500° N, 126.531° E) | 8 | 2.67 | 1.79 | 8 | 6 |
Seogwipo (33.254° N, 126.560° E) | 5 | not assigned | 0.5 | 9 | 8 |
Tongyeoung (34.854° N, 128.433° E) | 17 | 5.33 | 2.84 | 5 | 5 |
Changwon (35.203° N, 128.600° E) | 12 | not assigned | 0.5 | 6 | 7 |
Busan (35.210° N, 129.069° E) | 25 | 8.33 | 3.71 | 5 | 6 |
Ulsan (35.554° N, 129.238° E) | 450 | 57 | 42.82 | 20 | 20 |
Pohang (36.093° N, 129.305° E) | 8 | 2.67 | 2.22 | 5 | 5 |
Donghae (37.507° N, 129.056° E) | 5 | 1.67 | 0.5 | 9 | 9 |
Sokcho (38.176° N, 128.520° E) | 0.5 | not assigned | 0.5 | 6 | 5 |
Total | 1656.5 | 225 | 225 | 150 | 141 |
Current Assignment | Simulation-Based GA | GA with DNN-Based Surrogate Model | ||||
---|---|---|---|---|---|---|
Location | Oil Skimmer’s Capacity (ht) | Work Time (h) | Oil Skimmer’s Capacity (ht) | Work Time (h) | Oil Skimmer’s Capacity (ht) | Work Time (h) |
Incheon | 28.33 | 9 | 17.72 | 8 | 12.62 | 8 |
Pyeongtaek | not assigned | 5 | 0.94 | 4 | 0.11 | 4 |
Deasan | 34 | 20 | 70.85 | 19 | 85.68 | 19 |
Gunsan | 12.67 | 9 | 2.1 | 10 | 0.66 | 10 |
Mokpo | 28.33 | 10 | 11.7 | 10 | 0.11 | 11 |
Wando | 2 | 9 | 1.25 | 9 | 0.11 | 9 |
Yeosu | 42 | 19 | 59.12 | 18 | 40 | 19 |
Jeju | 2.67 | 9 | 1.67 | 9 | 0.11 | 9 |
Seogwipo | not assigned | 9 | 0.91 | 9 | 0.1 | 9 |
Tongyeoung | 5.33 | 7 | 3.55 | 6 | 1.81 | 7 |
Changwon | not assigned | 8 | 2.5 | 8 | 0.77 | 8 |
Busan | 8.33 | 6 | 5.22 | 6 | 0.11 | 6 |
Ulsan | 57 | 19 | 45.63 | 20 | 82.59 | 19 |
Pohang | 2.67 | 7 | 0.81 | 7 | 0.11 | 7 |
Donghae | 1.67 | 9 | 0.92 | 9 | 0.1 | 9 |
Sokcho | not assigned | 8 | 0.11 | 8 | 0.01 | 6 |
Total capacity | 225 | 163 | 225 | 160 | 225 | 163 |
Average work time (h) | 17.361 | 17.043 | 17.105 | |||
Computing time (s) | − | 5.988 | 2.311 |
Scenario | Average | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oil Spill (ht) | 296 | 296 | 296 | 296 | 216 | 216 | 280 | 174 | 280 | 190 | 296 | 280 | 296 | 296 | 287 | 287 | 280 | 275 | 51 | ||
8:00 a.m. | Origin | 22/3 | 21/3 | 20/3 | 20/3 | 14/2 | 15/2 | 19/3 | 13/2 | 16/2 | 18/2 | 20/2 | 19/2 | 19/2 | 19/2 | 19/2 | 20/2 | 12/1 | 18/2 | 15/2 | 17.8/2.2 |
10 knots | New | 20/3 | 18/3 | 15/3 | 14/2 | 11/2 | 13/2 | 10/1 | 10/2 | 12/2 | 14/2 | 17/2 | 15/2 | 17/2 | 17/2 | 19/2 | 19/3 | 14/1 | 13/2 | 11/1 | 14.7/2.0 |
8:00 a.m. | Origin | 21/2 | 17/1 | 17/1 | 17/1 | 19/1 | 15/1 | 18/2 | 12/1 | 18/2 | 13/1 | 17/2 | 13/1 | 17/1 | 17/1 | 21/2 | 22/2 | 17/1 | 17/2 | 14/1 | 16.9/1.4 |
5 knots | New | 22/1 | 18/1 | 16/1 | 14/1 | 18/1 | 13/1 | 15/2 | 10/1 | 16/2 | 12/1 | 18/1 | 14/1 | 18/1 | 17/1 | 21/2 | 22/2 | 17/1 | 17/2 | 11/1 | 16.3/1.3 |
12:00 p.m. | Origin | 12/3 | 19/3 | 19/3 | 19/3 | 15/2 | 18/2 | 20/3 | 11/1 | 17/2 | 15/2 | 18/2 | 16/2 | 18/2 | 18/2 | 20/2 | 21/3 | 12/1 | 17/2 | 12/2 | 16.7/2.2 |
10 knots | New | 19/3 | 17/2 | 16/2 | 15/2 | 14/2 | 16/2 | 14/3 | 8/1 | 13/2 | 12/2 | 15/2 | 13/2 | 17/2 | 19/2 | 20/2 | 20/2 | 18/1 | 14/2 | 9/1 | 15.2/1.9 |
12:00 p.m. | Origin | 22/2 | 22/2 | 20/2 | 21/2 | 23/2 | 19/2 | 17/1 | 13/1 | 19/1 | 12/1 | 12/1 | 11/1 | 17/2 | 16/1 | 24/2 | 24/2 | 16/1 | 15/1 | 15/1 | 17.8/1.5 |
5 knots | New | 19/1 | 19/1 | 19/1 | 19/1 | 22/1 | 18/1 | 16/2 | 16/1 | 22/2 | 15/1 | 15/1 | 14/1 | 17/1 | 19/1 | 23/2 | 24/1 | 12/1 | 18/2 | 17/1 | 18.1/1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-H.; Kim, H.-J.; Cho, D.-H.; Yoon, Y. Evolutionary Approach to Optimal Oil Skimmer Assignment for Oil Spill Response: A Case Study. Biomimetics 2024, 9, 330. https://doi.org/10.3390/biomimetics9060330
Kim Y-H, Kim H-J, Cho D-H, Yoon Y. Evolutionary Approach to Optimal Oil Skimmer Assignment for Oil Spill Response: A Case Study. Biomimetics. 2024; 9(6):330. https://doi.org/10.3390/biomimetics9060330
Chicago/Turabian StyleKim, Yong-Hyuk, Hye-Jin Kim, Dong-Hee Cho, and Yourim Yoon. 2024. "Evolutionary Approach to Optimal Oil Skimmer Assignment for Oil Spill Response: A Case Study" Biomimetics 9, no. 6: 330. https://doi.org/10.3390/biomimetics9060330
APA StyleKim, Y.-H., Kim, H.-J., Cho, D.-H., & Yoon, Y. (2024). Evolutionary Approach to Optimal Oil Skimmer Assignment for Oil Spill Response: A Case Study. Biomimetics, 9(6), 330. https://doi.org/10.3390/biomimetics9060330