Apatite Formation on α-Tricalcium Phosphate Modified with Bioresponsive Ceramics in Simulated Body Fluid Containing Alkaline Phosphatase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of α-TCP Sintered Bodies and Surface Modification with Phosphate Esters
2.2. Preparation of SBF and Sample Soaking
2.3. Characterisation
3. Results and Discussion
3.1. α-TCP Sintered Bodies without Phosphate Ester Modification
3.2. α-TCP Sintered Bodies Modified with Methyl Phosphate (MeP5d)
3.3. α-TCP Sintered Bodies Modified with Butyl Phosphate (BuP5d)
3.4. α-TCP Sintered Bodies Modified with Dodecyl Phosphate (DoP5d)
3.5. Sample Reactivity Based on Changes in the Ca and P Concentrations in SBF and SBF Containing ALP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Best, S.M.; Porter, A.E.; Thian, E.S.; Huang, J. Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008, 28, 1319–1327. [Google Scholar] [CrossRef]
- Yoo, J.J.; Kim, Y.-M.; Yoon, K.S.; Koo, K.-H.; Song, W.S.; Kim, H.J. Alumina-on-alumina total hip arthroplasty: A five-year minimum follow-up study. J. Bone Jt. Surg. Am. Vol. 2005, 87, 530–535. [Google Scholar] [CrossRef]
- da Hora Sales, P.H.; Barros, A.W.P.; de Oliveira-Neto, O.B.; de Lima, F.J.C.; de Albuquerque Tavares Carvalho, A.; Leão, J.C. Do zirconia dental implants present better clinical results than titanium dental implants? A systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101324. [Google Scholar] [CrossRef]
- Okuda, T.; Ioku, K.; Yonezawa, I.; Minagi, H.; Gonda, Y.; Kawachi, G.; Kamitakahara, M.; Shibata, Y.; Murayama, H.; Kurosawa, H.; et al. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials 2008, 29, 2719–2728. [Google Scholar] [CrossRef]
- Neo, M.; Nakamura, T.; Ohtsuki, C.; Kasai, R.; Kokubo, T.; Yamamuro, T. Ultrastructural study of the A-W GC-bone interface after long-term implantation in rat and human bone. J. Biomed. Mater. Res. 1994, 28, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Al-Maawi, S.; Barbeck, M.; Herrera-Vizcaíno, C.; Egli, R.; Sader, R.; Kirkpatrick, C.J.; Bohner, M.; Ghanaati, S. Thermal treatment at 500 °C significantly reduces the reaction to irregular tricalcium phosphate granules as foreign bodies: An in vivo study. Acta Biomater. 2021, 121, 621–636. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, O.; Shiwaku, Y.; Hamai, R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent. Mater. J. 2020, 39, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, M.; Mihailowitsch, L.; Santhirasegaran, M.; Brandt, V.; Tiller, J.C. Enzyme-induced mineralization of hydrogels with amorphous calcium carbonate for fast synthesis of ultrastiff, strong and tough organic–inorganic double networks. J. Mater. Sci. 2021, 56, 15299–15312. [Google Scholar] [CrossRef]
- Douglas, T.E.L.; Łapa, A.; Samal, S.K.; Declercq, H.A.; Schaubroeck, D.; Mendes, A.C.; der Voort, P.V.; Dokupil, A.; Plis, A.; De Schamphelaere, K.; et al. Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. J. Tissue Eng. Regener. Med. 2017, 11, 3556–3566. [Google Scholar] [CrossRef]
- Yeom, B.; Char, K. Enzyme-assisted growth of nacreous CaCO3/polymer hybrid nanolaminates via the formation of mineral bridges. J. Cryst. Growth 2016, 443, 31–37. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yoshimura, H.; Aizawa, M. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel. Mater. Sci. Eng. C 2013, 33, 2534–2540. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yamamoto, H.; Aizawa, M. Synthesis of plate-shaped hydroxyapatite via an enzyme reaction of urea with urease and its characterization. Powder Technol. 2012, 222, 193–200. [Google Scholar] [CrossRef]
- Jokic, B.; Tanaskovic, D.; Jankovic-Castvan, I.; Drmanic, S.; Petrovic, R.; Janackovic, D. Synthesis of nanosized calcium hydroxyapatite particles by the catalytic decomposition of urea with urease. J. Mater. Res. 2007, 22, 1156–1161. [Google Scholar] [CrossRef]
- Chernykh, I.N.; Dolgova, V.K.; Gopin, A.V.; Severin, A.V.; Kharlanov, A.N.; Nikolaev, A.L. Using enzymatic synthesis of hydroxyapatite as a technique to develop materials for biomedical applications. Ceram. Int. 2024, 50, 9149–9158. [Google Scholar] [CrossRef]
- Foley, B.; Guibert, C.; Selmane, M.; Mezzetti, A.; Lefebvre, C.; El Kirat, K.; Landoulsi, J. Tunable enzyme-assisted mineralization of apatitic calcium phosphate by homogeneous catalysis. Int. J. Mol. Sci. 2023, 24, 43. [Google Scholar] [CrossRef]
- Colaço, E.; Brouri, D.; Méthivier, C.; Valentin, L.; Oudet, F.; El Kirat, K.; Guibert, C.; Landoulsi, J. Calcium phosphate mineralization through homogenous enzymatic catalysis: Investigation of the early stages. J. Colloid Interface Sci. 2020, 565, 43–54. [Google Scholar] [CrossRef]
- Douglas, T.E.L.; Piegat, A.; Declercq, H.A.; Schaubroeck, D.; Balcaen, L.; Bliznuk, V.; De Meyer, B.; Vanhaecke, F.; Cornelissen, R.; El Fray, M.; et al. Composites of polyvinyl alcohol (PVA) hydrogel and calcium and magnesium phosphate formed by enzymatic functionalization. Mater. Lett. 2014, 137, 62–67. [Google Scholar] [CrossRef]
- Xie, M.; Olderøy, M.Ø.; Zhang, Z.; Andreassen, J.-P.; Strand, B.L.; Sikorski, P. Biocomposites prepared by alkaline phosphatase mediated mineralization of alginate microbeads. RSC Adv. 2012, 2, 1457–1465. [Google Scholar] [CrossRef]
- Tanaka, H.; Ihata, D. Phase transformation of calcium phenyl phosphate in calcium hydroxyapatite using alkaline phosphatase at body temperature. Mater. Res. Bull. 2010, 45, 103–108. [Google Scholar] [CrossRef]
- Hasegawa, T. Matrix vesicle-mediated mineralization in bone. Hokkaido J. Dent. Sci. 2017, 38, 47–55. [Google Scholar]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef] [PubMed]
- ISO 23317:2014; Implants for Surgery—In Vitro Evaluation for Apatite-Forming Ability of Implant Materials. ISO: Geneva, Switzerland, 2014.
- Wang, H.; Maeda, T.; Miyazaki, T. Effect of calcium acetate content on apatite-forming ability and mechanical property of PMMA bone cement modified with quaternary ammonium. Materials 2020, 13, 4998. [Google Scholar] [CrossRef]
- Hakimi, F.; Abroon, M.; Sadighian, S.; Ramazani, A. Evaluation of bone-like apatite biomineralization on biomimetic graphene oxide/hydroxyapatite nanocomposite. Inorg. Chem. Commun. 2023, 149, 110450. [Google Scholar] [CrossRef]
- Miyazaki, T.; Imanaka, S.; Akaike, J. Relationship between valence of titania and apatite mineralization behavior in simulated body environment. J. Am. Ceram. Soc. 2021, 104, 3545–3553. [Google Scholar] [CrossRef]
- Miyazaki, T.; Hosokawa, T.; Yokoyama, K.; Shiraishi, T. Compositional dependence of the apatite formation ability of Ti–Zr alloys designed for hard tissue reconstruction. J. Mater. Sci. Mater. Med. 2020, 31, 110. [Google Scholar] [CrossRef]
- Baino, F.; Yamaguchi, S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: Review and challenges. Biomimetics 2020, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, T.; Ujiyama, T.; Nakamura, J.; Kawashita, M.; Ohtsuki, C. Behaviour of calcium phosphate ester salts in a simulated body fluid modified with alkaline phosphatase: A new concept of ceramic biomaterials. Mater. Adv. 2020, 1, 3215–3220. [Google Scholar] [CrossRef]
- Yokoi, T.; Mio, A.; Nakamura, J.; Sugawara-Narutaki, A.; Kawashita, M.; Ohtsuki, C. Transformation behaviour of salts composed of calcium ions and phosphate esters with different linear alkyl chain structures in a simulated body fluid modified with alkaline phosphatase. Sci. Technol. Adv. Mater. 2022, 23, 341–351. [Google Scholar] [CrossRef]
- Uchino, T.; Yamaguchi, K.; Kawachi, G.; Kikuta, K.; Kamitakahara, M.; Ohtsuki, C. Formation of hydroxyapatite on ceramics consisting of tricalcium phosphate in a simulated body fluid. J. Ceram. Soc. Jpn. 2008, 116, 96–99. [Google Scholar] [CrossRef]
- Ozin, G.A.; Varaksa, N.; Coombs, N.; Davies, J.E.; Perovic, D.D.; Ziliox, M. Bone mimetics: A composite of hydroxyapatite and calciumdodecylphosphate lamellar phase. J. Mater. Chem. 1997, 7, 1601–1607. [Google Scholar] [CrossRef]
Sample Name | Phosphate Ester | Treatment Period (d) |
---|---|---|
MeP5d | Methyl phosphate | 5 |
BuP5d | Butyl phosphate | 5 |
DoP5d | Dodecyl phosphate | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokoi, T.; Tomita, S.; Nakamura, J.; Sugawara-Narutaki, A.; Matsukawa, Y.; Kawashita, M.; Ohtsuki, C. Apatite Formation on α-Tricalcium Phosphate Modified with Bioresponsive Ceramics in Simulated Body Fluid Containing Alkaline Phosphatase. Biomimetics 2024, 9, 502. https://doi.org/10.3390/biomimetics9080502
Yokoi T, Tomita S, Nakamura J, Sugawara-Narutaki A, Matsukawa Y, Kawashita M, Ohtsuki C. Apatite Formation on α-Tricalcium Phosphate Modified with Bioresponsive Ceramics in Simulated Body Fluid Containing Alkaline Phosphatase. Biomimetics. 2024; 9(8):502. https://doi.org/10.3390/biomimetics9080502
Chicago/Turabian StyleYokoi, Taishi, Shinji Tomita, Jin Nakamura, Ayae Sugawara-Narutaki, Yuko Matsukawa, Masakazu Kawashita, and Chikara Ohtsuki. 2024. "Apatite Formation on α-Tricalcium Phosphate Modified with Bioresponsive Ceramics in Simulated Body Fluid Containing Alkaline Phosphatase" Biomimetics 9, no. 8: 502. https://doi.org/10.3390/biomimetics9080502
APA StyleYokoi, T., Tomita, S., Nakamura, J., Sugawara-Narutaki, A., Matsukawa, Y., Kawashita, M., & Ohtsuki, C. (2024). Apatite Formation on α-Tricalcium Phosphate Modified with Bioresponsive Ceramics in Simulated Body Fluid Containing Alkaline Phosphatase. Biomimetics, 9(8), 502. https://doi.org/10.3390/biomimetics9080502