Enhancing Target Tracking: A Novel Grid-Based Beetle Antennae Search Algorithm and Confusion-Aware Detection
Abstract
:1. Introduction
- A grid-based path planning algorithm inspired by the BAS algorithm.
- A secondary search mechanism based on a dynamic grid index and a distance-based step update strategy to improve the path quality and search speed.
- A grid fallback mechanism to escape local extreme regions.
- A confusion-aware multi-class object detection and localization framework.
2. Related Work
2.1. Neural Networks in UAV Target Tracking
2.2. Path Planning in UAV Target Tracking
2.3. UAV Target Tracking System
3. Methodology
- (1)
- It is assumed that the displacement of the target in the Z-axis direction is negligible during its movement.
- (2)
- The initial positions and velocities of the UAV and the targets are both assumed to be known and within a certain range.
3.1. Front-End Optimization
3.1.1. Preliminaries of Bionic Algorithm
3.1.2. Grid-Based Beetle Antennae Search
Algorithm 1 GBAS algorithm for path planning. |
Input: Given the target position and the current position of the UAV . Establish the cost function . The variables n, , , , , M, , r, and are initialized. |
Output: The list of waypoints . |
1: while do |
2: Calculate and according to Equations (8) and (5). |
3: Update the mapping M. |
4: . |
5: if then |
6: . |
7: end if |
8: Calculate and according to Equation (7). |
9: Detect and remove Occluded or Discarded nodes. |
10: if No candidate nodes available then |
11: Update and to the previous state. |
12: Continue. |
13: end if |
14: . |
15: . |
16: end while |
17: return X |
3.1.3. Time Complexity Analysis
3.2. Confusion-Aware Object Localization
3.2.1. Multi-Class Object Detection
3.2.2. Confusion-Aware Mechanism
3.2.3. Depth-Based Object Localization
4. Results and Discussion
4.1. Parameter-Sensitive Testing
4.2. Number Function Evaluation
4.3. Performance Comparisons and Statistical Tests
4.4. Object Detection Tests
4.5. Managerial Implications and Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Zhou, Y. The Review of Target Tracking for UAV. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 1800–1805. [Google Scholar] [CrossRef]
- Han, Y.; Liu, H.; Wang, Y.; Liu, C. A Comprehensive Review for Typical Applications Based Upon Unmanned Aerial Vehicle Platform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9654–9666. [Google Scholar] [CrossRef]
- Jurn, Y.N.; Mahmood, S.A.; Aldhaibani, J.A. Anti-Drone System Based Different Technologies: Architecture, Threats and Challenges. In Proceedings of the 2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 27–28 August 2021; pp. 114–119. [Google Scholar] [CrossRef]
- Patle, B.; Babu L, G.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile robot. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of Robot 3D Path Planning Algorithms. J. Control Sci. Eng. 2016, 2016, 7426913. [Google Scholar] [CrossRef]
- Jeon, B.; Lee, Y.; Kim, H.J. Integrated Motion Planner for Real-time Aerial Videography with a Drone in a Dense Environment. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1243–1249. [Google Scholar] [CrossRef]
- Pan, N.; Zhang, R.; Yang, T.; Cui, C.; Xu, C.; Gao, F. Fast-Tracker 2.0: Improving autonomy of aerial tracking with active vision and human location regression. IET Cyber-Syst. Robot. 2021, 3, 292–301. [Google Scholar] [CrossRef]
- Ji, J.; Pan, N.; Xu, C.; Gao, F. Elastic Tracker: A Spatio-temporal Trajectory Planner for Flexible Aerial Tracking. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 47–53. [Google Scholar] [CrossRef]
- Chen, D.; Li, S.; Liao, L. A recurrent neural network applied to optimal motion control of mobile robots with physical constraints. Appl. Soft Comput. 2019, 85, 105880. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Gao, G.; Liu, Z.; Liu, P. An accelerating convolutional neural networks via a 2D entropy based-adaptive filter search method for image recognition. Appl. Soft Comput. 2023, 142, 110326. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Wan, S.H.; Wang, X.F.; Tan, M.; Zou, L.; Li, X.L.; Chen, Y. A benchmark data set for aircraft type recognition from remote sensing images. Appl. Soft Comput. 2020, 89, 106132. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Wang, Y. Autonomous target tracking of multi-UAV: A two-stage deep reinforcement learning approach with expert experience. Appl. Soft Comput. 2023, 145, 110604. [Google Scholar] [CrossRef]
- Hu, C.; Qu, G.; Zhang, Y. Pigeon-inspired fuzzy multi-objective task allocation of unmanned aerial vehicles for multi-target tracking. Appl. Soft Comput. 2022, 126, 109310. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top. 2019, 228, 2313–2324. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, Z.; Xu, T.; Guo, S.; Feng, S.; Yao, W.; Lan, Y. YOLO-Based UAV Technology: A Review of the Research and Its Applications. Drones 2023, 7, 190. [Google Scholar] [CrossRef]
- Çintaş, E.; Özyer, B.; Şimşek, E. Vision-Based Moving UAV Tracking by Another UAV on Low-Cost Hardware and a New Ground Control Station. IEEE Access 2020, 8, 194601–194611. [Google Scholar] [CrossRef]
- Phung, K.P.; Lu, T.H.; Nguyen, T.T.; Le, N.L.; Nguyen, H.H.; Hoang, V.P. Multi-model Deep Learning Drone Detection and Tracking in Complex Background Conditions. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 14–16 October 2021; pp. 189–194. [Google Scholar] [CrossRef]
- Hong, T.; Liang, H.; Yang, Q.; Fang, L.; Kadoch, M.; Cheriet, M. A Real-Time Tracking Algorithm for Multi-Target UAV Based on Deep Learning. Remote Sens. 2023, 15, 2. [Google Scholar] [CrossRef]
- Meng, L.; Qing, S.; Qinjun, Z.; Yongliang, Z. Route planning for unmanned aerial vehicle based on rolling RRT in unknown environment. In Proceedings of the 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 15–17 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lei, L.; Kun, Z.; Dewei, W.; Kun, H.; Hailin, L.; Qiurong, Z. A Method of Hybrid Intelligence for UAV Route Planning Based on Membrane System. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1317–1320. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Zatarain, O. Dynamic Path Optimization for Robot Route PlanningDynamic Path Optimization for Robot Route Planning. In Proceedings of the 2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Milan, Italy, 23–25 July 2019; pp. 47–53. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Liu, Y.; Tian, L.; Chen, H. A novel bionic algorithm inspired by plant root foraging behaviors. Appl. Soft Comput. 2015, 37, 95–113. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Liu, X.; Zuo, F.; Zhou, H. An efficient manta ray foraging optimization algorithm with individual information interaction and fractional derivative mutation for solving complex function extremum and engineering design problems. Appl. Soft Comput. 2024, 150, 111042. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Choudhary, S.; Pachauri, R.; Shrivastava, A.; Kumar, D. A review on artificial bee colony and it’s engineering applications. J. Crit. Rev. 2020, 7, 2020. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wu, H.; Gao, Y. An ant colony optimization based on local search for the vehicle routing problem with simultaneous pickup–delivery and time window. Appl. Soft Comput. 2023, 139, 110203. [Google Scholar] [CrossRef]
- Mirjalili, S. Evolutionary algorithms and neural networks. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2019; Volume 780, pp. 43–53. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm- A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar] [CrossRef]
- Li, G.; Liu, C.; Wu, L.; Xiao, W. A mixing algorithm of ACO and ABC for solving path planning of mobile robot. Appl. Soft Comput. 2023, 148, 110868. [Google Scholar] [CrossRef]
- Aslan, M.F.; Durdu, A.; Sabanci, K. Goal distance-based UAV path planning approach, path optimization and learning-based path estimation: GDRRT*, PSO-GDRRT* and BiLSTM-PSO-GDRRT*. Appl. Soft Comput. 2023, 137, 110156. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, X.; Jin, Y.; Chen, Z.; Li, S.; Khan, A.H.; Chen, D. Intelligent Beetle Antennae Search for UAV Sensing and Avoidance of Obstacles. Sensors 2019, 19, 1758. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. BSAS: Beetle Swarm Antennae Search Algorithm for Optimization Problems. arXiv 2018, arXiv:1807.10470. [Google Scholar] [CrossRef]
- Khan, A.H.; Cao, X.; Li, S.; Katsikis, V.N.; Liao, L. BAS-ADAM: An ADAM based approach to improve the performance of beetle antennae search optimizer. IEEE/CAA J. Autom. Sin. 2020, 7, 461–471. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, R.; Pan, N.; Xu, C.; Gao, F. Fast-Tracker: A Robust Aerial System for Tracking Agile Target in Cluttered Environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 328–334. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Foead, D.; Ghifari, A.; Kusuma, M.B.; Hanafiah, N.; Gunawan, E. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci. 2021, 179, 507–514. [Google Scholar] [CrossRef]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
- Liu, C.; Wu, L.; Xiao, W.; Li, G.; Xu, D.; Guo, J.; Li, W. An improved heuristic mechanism ant colony optimization algorithm for solving path planning. Knowl.-Based Syst. 2023, 271, 110540. [Google Scholar] [CrossRef]
- Liu, C.; Wu, L.; Huang, X.; Xiao, W. Improved dynamic adaptive ant colony optimization algorithm to solve pipe routing design. Knowl.-Based Syst. 2022, 237, 107846. [Google Scholar] [CrossRef]
- Jocher, G. YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics/tree/main (accessed on 16 September 2024).
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar] [CrossRef]
- Huang, A.S.; Bachrach, A.; Henry, P.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. In Robotics Research: The 15th International Symposium ISRR; Springer International Publishing: Cham, Switzerland, 2017; pp. 235–252. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Zheng, Y.; Chen, Z.; Lv, D.; Li, Z.; Lan, Z.; Zhao, S. Air-to-Air Visual Detection of Micro-UAVs: An Experimental Evaluation of Deep Learning. IEEE Robot. Autom. Lett. 2021, 6, 1020–1027. [Google Scholar] [CrossRef]
- Jocher, G. YOLOv5 Release v7.0. 2022. Available online: https://github.com/ultralytics/yolov5/tree/v7.0 (accessed on 16 September 2024).
- Li, C.; Li, L.; Geng, Y.; Jiang, H.; Cheng, M.; Zhang, B.; Ke, Z.; Xu, X.; Chu, X. YOLOv6 v3.0: A full-scale reloading. arXiv 2023, arXiv:2301.05586. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar] [CrossRef]
- Zhang, H.; Li, F.; Liu, S.; Zhang, L.; Su, H.; Zhu, J.; Ni, L.M.; Shum, H.Y. DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. arXiv 2022, arXiv:2203.03605. [Google Scholar] [CrossRef]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. arXiv 2024, arXiv:2304.08069. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Initial movement distance. | |
Decay rate as beetle nears target. | |
Adjusts step size based on distance. | |
r | Area within which search stops. |
Parameters | Value | Description |
---|---|---|
2000*dim | The maximum number of iterations of the algorithm | |
1 | The convergence error of the algorithm | |
10 | The initial step size | |
C | −6 | A constant used to adjust the lower limit of the step size |
k | 0.0001 | Reflects the gradient when the step size decreases |
m | 5000 | The role of adjustment error effects |
L | 5 | The maximum number of times without significant improvement |
1.5 | The step-size growth rate | |
1 | The total group number |
Dimension | 10 | 30 | 50 | 100 | ||||
---|---|---|---|---|---|---|---|---|
Function | Mean | Std | Mean | Std | Mean | Std | Mean | Std |
F1 | 4.07e+03 | 3.46e+03 | 5.27e+03 | 5.64e+03 | 9.36e+03 | 9.98e+03 | 1.61e+04 | 1.88e+04 |
F3 | 0.00e+00 | 0.00e+00 | 1.19e+05 | 3.78e+04 | 2.32e+05 | 5.25e+04 | 6.19e+05 | 1.12e+05 |
F4 | 9.49e+00 | 1.57e+01 | 4.25e+01 | 3.00e+01 | 5.90e+01 | 3.80e+01 | 1.07e+02 | 4.87e+01 |
F5 | 2.47e+02 | 1.20e+02 | 7.56e+02 | 1.57e+02 | 1.08e+03 | 1.87e+02 | 2.29e+03 | 2.89e+02 |
F6 | 9.36e+01 | 2.06e+01 | 9.81e+01 | 1.30e+01 | 9.80e+01 | 1.09e+01 | 9.70e+01 | 7.53e+00 |
F7 | 9.37e+02 | 2.79e+02 | 3.85e+03 | 8.03e+02 | 7.09e+03 | 9.33e+02 | 1.42e+04 | 1.10e+03 |
F8 | 1.61e+02 | 6.82e+01 | 6.15e+02 | 1.65e+02 | 1.09e+03 | 1.75e+02 | 2.48e+03 | 3.23e+02 |
F9 | 3.61e+03 | 1.45e+03 | 1.36e+04 | 2.90e+03 | 3.00e+04 | 6.01e+03 | 5.90e+04 | 7.06e+03 |
F10 | 1.99e+03 | 3.92e+02 | 5.63e+03 | 6.36e+02 | 8.96e+03 | 9.54e+02 | 1.74e+04 | 1.33e+03 |
F11 | 9.45e+01 | 5.19e+01 | 1.95e+02 | 6.31e+01 | 2.89e+02 | 6.64e+01 | 3.30e+04 | 1.71e+04 |
F12 | 4.47e+06 | 3.66e+06 | 3.12e+06 | 1.95e+06 | 9.59e+06 | 4.22e+06 | 2.88e+07 | 1.44e+07 |
F13 | 1.63e+04 | 1.16e+04 | 1.66e+04 | 2.05e+04 | 1.21e+04 | 1.07e+04 | 1.43e+04 | 7.52e+03 |
F14 | 1.06e+04 | 9.63e+03 | 6.84e+05 | 6.14e+05 | 8.71e+05 | 4.48e+05 | 1.24e+06 | 5.82e+05 |
F15 | 6.78e+03 | 8.01e+03 | 7.25e+03 | 1.00e+04 | 1.00e+04 | 7.28e+03 | 3.76e+03 | 3.67e+03 |
F16 | 6.86e+02 | 2.49e+02 | 1.67e+03 | 4.03e+02 | 2.74e+03 | 4.97e+02 | 5.06e+03 | 7.41e+02 |
F17 | 5.17e+02 | 1.84e+02 | 1.17e+03 | 3.78e+02 | 2.50e+03 | 4.70e+02 | 4.65e+03 | 5.81e+02 |
F18 | 1.50e+04 | 1.18e+04 | 2.02e+06 | 1.81e+06 | 1.93e+06 | 1.34e+06 | 1.45e+06 | 6.26e+05 |
F19 | 6.53e+03 | 8.53e+03 | 1.14e+04 | 1.29e+04 | 2.57e+04 | 1.46e+04 | 4.85e+03 | 5.07e+03 |
F20 | 5.83e+02 | 1.78e+02 | 1.50e+03 | 3.73e+02 | 1.98e+03 | 3.90e+02 | 4.52e+03 | 6.70e+02 |
F21 | 2.66e+02 | 5.29e+01 | 4.51e+02 | 6.43e+01 | 7.09e+02 | 7.65e+01 | 1.48e+03 | 1.60e+02 |
F22 | 1.20e+03 | 6.26e+02 | 5.11e+03 | 9.15e+02 | 8.18e+03 | 1.06e+03 | 1.79e+04 | 1.41e+03 |
F23 | 4.06e+02 | 1.75e+02 | 6.16e+02 | 1.37e+02 | 9.84e+02 | 8.16e+01 | 1.38e+03 | 1.00e+02 |
F24 | 3.33e+02 | 1.29e+02 | 9.94e+02 | 2.06e+02 | 2.01e+03 | 2.00e+02 | 1.98e+03 | 1.32e+02 |
F25 | 4.34e+02 | 7.90e+01 | 4.12e+02 | 2.77e+01 | 5.53e+02 | 4.55e+01 | 7.87e+02 | 6.42e+01 |
F26 | 1.49e+03 | 6.03e+02 | 3.75e+03 | 1.47e+03 | 6.70e+03 | 2.09e+03 | 1.68e+04 | 2.59e+03 |
F27 | 4.63e+02 | 4.09e+01 | 5.96e+02 | 2.96e+01 | 1.21e+03 | 2.38e+02 | 1.37e+03 | 1.77e+02 |
F28 | 5.21e+02 | 1.44e+02 | 4.44e+02 | 3.66e+01 | 5.07e+02 | 3.05e+01 | 5.84e+02 | 3.05e+01 |
F29 | 4.33e+02 | 1.03e+02 | 1.38e+03 | 3.28e+02 | 2.32e+03 | 3.64e+02 | 5.52e+03 | 6.42e+02 |
F30 | 7.32e+05 | 7.94e+05 | 1.93e+05 | 2.46e+05 | 7.85e+06 | 4.34e+07 | 8.49e+05 | 6.07e+05 |
Environment | Features | Design Goals |
---|---|---|
Map 1 | Obstacles with large shapes | To evaluate the ability to handle specific passing areas |
Map 2 | Obstacles with discrete distributions | To evaluate the efficiency of the algorithm |
Map 3 | Obstacles with concave shapes | To evaluate the ability to handle concave obstacles |
Map | Algorithm | Path Length | Run Times (ms) | Speedup | ||
---|---|---|---|---|---|---|
Mean ± Std ↓ | p-Value ↓ | Mean ± Std ↓ | p-Value ↓ | Mean ↑ | ||
Map 1 | A * [45] | 49.18 ± 0.00 | 3.02e-11 | 1.81 ± 1.30 | 1.21e-12 | 321% |
SPSO [37] | 57.20 ± 10.17 | 8.91e-02 | 2.56 ± 2.34 | 3.01e-11 | 495% | |
IACO-IABC [38] | 58.18 ± 0.00 | 3.35e-11 | 1.68 ± 1.41 | 3.01e-11 | 291% | |
GDRRT * [39] | 58.48 ± 5.25 | 4.98e-04 | 2.20 ± 1.12 | 4.07e-11 | 412% | |
GBAS (Ours) | 55.67 ± 2.88 | - | 0.43 ± 0.17 | - | - | |
Map 2 | A * [45] | 54.60 ± 0.00 | 1.33e-08 | 1.29 ± 0.29 | 4.20e-10 | 135% |
SPSO [37] | 60.41 ± 10.39 | 1.44e-02 | 1.60 ± 0.78 | 3.02e-11 | 191% | |
IACO-IABC [38] | 61.60 ± 0.00 | 2.84e-08 | 1.98 ± 1.21 | 3.02e-11 | 260% | |
GDRRT * [39] | 61.43 ± 2.95 | 5.32e-03 | 1.04 ± 0.46 | 1.19e-06 | 89% | |
GBAS (Ours) | 59.10 ± 3.53 | - | 0.55 ± 0.16 | - | - | |
Map 3 | A * [45] | 57.43 ± 0.00 | 7.47e-10 | 1.20 ± 0.11 | 5.09e-06 | 46% |
SPSO [37] | 62.89 ± 8.65 | 2.17e-01 | 2.61 ± 1.51 | 3.02e-11 | 218% | |
IACO-IABC [38] | 63.67 ± 0.00 | 7.87e-11 | 1.84 ± 1.31 | 3.02e-11 | 124% | |
GDRRT * [39] | 62.49 ± 3.82 | 5.08e-03 | 0.99 ± 0.32 | 2.92e-02 | 21% | |
GBAS (Ours) | 61.59 ± 6.41 | - | 0.82 ± 0.40 | - | - |
Target | Method | Mean Times ↓ (ms) | Speedup ↑ |
---|---|---|---|
1 m/s | Ji et al. [8] | 0.96 | 233% |
Ours | 0.18 | - | |
2 m/s | Ji et al. [8] | 1.41 | 555% |
Ours | 0.22 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Ma, C.; Chen, D. Enhancing Target Tracking: A Novel Grid-Based Beetle Antennae Search Algorithm and Confusion-Aware Detection. Biomimetics 2024, 9, 567. https://doi.org/10.3390/biomimetics9090567
Lu Y, Ma C, Chen D. Enhancing Target Tracking: A Novel Grid-Based Beetle Antennae Search Algorithm and Confusion-Aware Detection. Biomimetics. 2024; 9(9):567. https://doi.org/10.3390/biomimetics9090567
Chicago/Turabian StyleLu, Yixuan, Chencong Ma, and Dechao Chen. 2024. "Enhancing Target Tracking: A Novel Grid-Based Beetle Antennae Search Algorithm and Confusion-Aware Detection" Biomimetics 9, no. 9: 567. https://doi.org/10.3390/biomimetics9090567
APA StyleLu, Y., Ma, C., & Chen, D. (2024). Enhancing Target Tracking: A Novel Grid-Based Beetle Antennae Search Algorithm and Confusion-Aware Detection. Biomimetics, 9(9), 567. https://doi.org/10.3390/biomimetics9090567