Weight Loss in Subjects with Type 2 Diabetes Before and After SARS-CoV2 Infection—A Retrospective Observational Study
Abstract
Introduction
Materials and Methods
Results
Discussions
Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pantea Stoian, A.; Pricop-Jeckstadt, M.; Pana, A.; et al. Death by SARS- CoV 2: A Romanian COVID-19 multi-centre comorbidity study. Sci Rep. 2020, 10, 21613. [Google Scholar] [CrossRef]
- Anca, P.S.; Toth, P.P.; Kempler, P.; Rizzo, M. Gender differences in the battle against COVID-19: Impact of genetics, comorbidities, inflammation and lifestyle on differences in outcomes. Int J Clin Pract. 2021, 75, e13666. [Google Scholar] [CrossRef]
- Briguglio, M.; Pregliasco, F.E.; Lombardi, G.; Perazzo, P.; Banfi, G. The Malnutritional Status of the Host as a Virulence Factor for New Coronavirus SARS-CoV-2. Front Med (Lausanne). 2020, 7, 146, Published 2020 Apr 23. [Google Scholar] [CrossRef]
- Milner, J.J.; Beck, M.A. The impact of obesity on the immune response to infection. Proc Nutr Soc. 2012, 71, 298–306. [Google Scholar] [CrossRef]
- Louie, J.K.; Acosta, M.; Samuel, M.C.; et al. A novel risk factor for a novel virus: Obesity and 2009 pandemic influenza A (H1N1). Clin Infect Dis. 2011, 52, 301–312. [Google Scholar] [CrossRef]
- Di Filippo, L.; De Lorenzo, R.; D’Amico, M.; et al. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: A post-hoc analysis of a prospective cohort study. Clin Nutr. 2021, 40, 2420–2426. [Google Scholar] [CrossRef]
- Gobbi, M.; Brunani, A.; Arreghini, M.; et al. Nutritional status in post SARS-Cov2 rehabilitation patients. Clin Nutr. 2022, 41, 3055–3060. [Google Scholar] [CrossRef]
- Bedock, D.; Bel Lassen, P.; Mathian, A.; et al. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin Nutr ESPEN. 2020, 40, 214–219. [Google Scholar] [CrossRef]
- Anker, M.S.; Landmesser, U.; von Haehling, S.; Butler, J.; Coats, A.J.S.; Anker, S.D. Weight loss, malnutrition, and cachexia in COVID-19: Facts and numbers. J Cachexia Sarcopenia Muscle. 2021, 12, 9–13. [Google Scholar] [CrossRef]
- Liu, W.; Hu, C.; Zhao, S. Sarcopenia and Mortality Risk of Patients with Sepsis: A Meta-Analysis. Int J Clin Pract. 2022, 2022, 4974410, Published 2022 Jan 31. [Google Scholar] [CrossRef]
- Wang, A.; Medzhitov, R. Counting Calories: The Cost of Inflammation. Cell. 2019, 177, 223–224. [Google Scholar] [CrossRef]
- Silverio, R.; Gonçalves, D.C.; Andrade, M.F.; Seelaender, M. Coronavirus Disease 2019 (COVID-19) and Nutritional Status: The Missing Link? Adv Nutr. 2021, 12, 682–692. [Google Scholar] [CrossRef]
- Soetedjo, N.N.M.; Iryaningrum, M.R.; Damara, F.A.; et al. Prognostic properties of hypoalbuminemia in COVID-19 patients: A systematic review and diagnostic meta-analysis. Clin Nutr ESPEN. 2021, 45, 120–126. [Google Scholar] [CrossRef]
- Gerriets, V.A.; MacIver, N.J. Role of T cells in malnutrition and obesity. Front Immunol. 2014, 5, 379. [Google Scholar] [CrossRef]
- Mraz, M.; Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014, 222, R113–R127. [Google Scholar] [CrossRef]
- O’Shea, D.; Hogan, A.E. Dysregulation of Natural Killer Cells in Obesity. Cancers (Basel). 2019, 11, 573, Published 2019 Apr 23. [Google Scholar] [CrossRef]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv Nutr. 2016, 7, 66–75, Published 2016 Jan 15. [Google Scholar] [CrossRef]
- Ryan, P.M.; Caplice, N.M. Is Adipose Tissue a Reservoir for Viral Spread, Immune Activation, and Cytokine Amplification in Coronavirus Disease 2019? Obesity (Silver Spring). 2020, 28, 1191–1194. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; Kruizenga, H.M.; Konings, L.A.; et al. Poor nutritional status, risk of sarcopenia and nutrition related complaints are prevalent in COVID-19 patients during and after hospital admission. Clin Nutr ESPEN. 2021, 43, 369–376. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Breda, J.; et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020, 39, 1631–1638. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Jebb, S.A.; Cole, T.J.; Doman, D.; Murgatroyd, P.R.; Prentice, A.M. Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model. Br J Nutr. 2000, 83, 115–122. [Google Scholar] [CrossRef]
- Karatas, S.; Yesim, T.; Beysel, S. Impact of lockdown COVID-19 on metabolic control in type 2 diabetes mellitus and healthy people. Prim Care Diabetes. 2021, 15, 424–427. [Google Scholar] [CrossRef]
- Sankar, P.; Ahmed, W.N.; Mariam Koshy, V.; Jacob, R.; Sasidharan, S. Effects of COVID-19 lockdown on type 2 diabetes, lifestyle and psychosocial health: A hospital-based cross-sectional survey from South India. Diabetes Metab Syndr. 2020, 14, 1815–1819. [Google Scholar] [CrossRef]
- Biamonte, E.; Pegoraro, F.; Carrone, F.; et al. Weight change and glycemic control in type 2 diabetes patients during COVID-19 pandemic: The lockdown effect. Endocrine. 2021, 72, 604–610. [Google Scholar] [CrossRef]
- Silaghi, A.; Gaspar, B.S.; Epistatu, D.; Bălan, D.G.; Păunică, I.; Dumitriu, A.S.; Paunica, S.; Socea, B.; Constantin, V.D. Upper gastrointestinal bleeding in the COVID-19 pandemic; particularities of diagnosis and therapy. J Mind Med Sci. 2022, 9, 276–284. [Google Scholar] [CrossRef]
- Papachristou, S.; Stamatiou, I.; Stoian, A.P.; Papanas, N. New-Onset Diabetes in COVID-19: Time to Frame Its Fearful Symmetry. Diabetes Ther. 2021, 12, 461–464. [Google Scholar] [CrossRef]
- Stoian, A.P.; Papanas, N.; Prazny, M.; et al. Incretin-Based Therapies Role in COVID-19 Era: Evolving Insights. J Cardiovasc Pharmacol Ther. 2020, 25, 494–496. [Google Scholar] [CrossRef]
- Kirwan, R.; McCullough, D.; Butler, T.; Perez de Heredia, F.; Davies, I.G.; Stewart, C. Sarcopenia during COVID-19 lockdown restrictions: Long- term health effects of short-term muscle loss. Geroscience. 2020, 42, 1547–1578. [Google Scholar] [CrossRef]
- Welch, C.; Greig, C.; Masud, T.; Wilson, D.; Jackson, T.A. COVID-19 and Acute Sarcopenia. Aging Dis. 2020, 11, 1345–1351, Published 2020 Dec 1. [Google Scholar] [CrossRef]
- Morley, J.E.; Kalantar-Zadeh, K.; Anker, S.D. COVID-19: A major cause of cachexia and sarcopenia? J Cachexia Sarcopenia Muscle. 2020, 11, 863–865. [Google Scholar] [CrossRef]
- Jensterle, M.; Herman, R.; Janež, A.; et al. The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess-The CAPISCO International Expert Panel. Int J Mol Sci. 2022, 23, 7326, Published 2022 Jun 30. [Google Scholar] [CrossRef]
- Brănescu, C.; Serban, D.; Dascălu, A.M.; Oprescu, S.M.; Savlovschi, C. Interleukin 6 and lipopolysaccharide binding protein—Markers of inflammation in acute appendicitis. Chirurgia (Bucur). 2013, 108, 206–214. [Google Scholar]
- Sato, A.Y.; Richardson, D.; Cregor, M.; et al. Glucocorticoids Induce Bone and Muscle Atrophy by Tissue-Specific Mechanisms Upstream of E3 Ubiquitin Ligases. Endocrinology. 2017, 158, 664–677. [Google Scholar] [CrossRef]
- Achamrah, N.; Colange, G.; Delay, J.; et al. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS ONE. 2018, 13, e0200465. [Google Scholar] [CrossRef]
- Popoviciu, M.S.; Paduraru, L.; Stoica, R.A.; Stoian, A.P.; Teodorescu, C.; Cavalu, S. Prevalence of comorbidities and survival analysis of COVID-19 patients—An observational study from a tertiary healthcare center in North West Romania. J Mind Med Sci. 2023, 10, 330–338. [Google Scholar] [CrossRef]
Variable | First visit (n=101) | Second visit (n=101) | p-value |
---|---|---|---|
Weight (kg) | 88.00 ± 24.45 | 86.80 ± 23.35 | <0.001 |
BMI (kg/m2) | 31.00 ± 7.93 | 30.30 ± 7.93 | <0.001 |
FM (kg) | 30.55 ± 17.47 | 28.70 ± 16.00 | 0.097 |
FFM (kg) | 57.00 ± 21.94 | 54.00 ± 22.00 | 0.583 |
TBW (kg) | 38.69 ± 11.05 | 39.70 ± 11.59 | 0.818 |
VF (%) | 13.00 ± 9.00 | 12.5 ± 8.00 | <0.001 |
HbA1c (%) | 7.38 ± 1.59 | 6.87 ± 1.06 | 0.006 |
Total cholesterol (mg/dl) | 180.50 ± 72.12 | 172.00 ± 63.25 | 0.071 |
HDL cholesterol (mg/dl) | 42.90 ± 18.40 | 43.00 ± 15.32 | 0.05 |
Triglycerides (mg/dl) | 144.00 ± 93.3 | 148.00 ± 79.5 | 0.909 |
Serum Creatinine (mg/dl) | 0.81 ± 0.3 | 0.90 ± 0.29 | 0.344 |
Blood urea nitrogen (mg/dl) | 33.50 ± 17.35 | 36.00 ± 16.00 | 0.041 |
Uric acid (mg/dl) | 5.53 ± 2.41 | 5.9 ± 2.4 | 0.405 |
eGFR (ml/min/1.73m2) | 95.00 ± 22.00 | 93.00 ± 31.5 | 0.068 |
UACR (mg/g) | 10.00 ± 24.6 | 10.00 ± 19.28 | 0.490 |
BMI = Body Mass Index, FM = Fat Mass, FFM = Fat Free Mass, TBW = Total Body Water, VF = Visceral Fat, HDL = high density lipoprotein, eGFR = glomerular filtration rate, UACR = Urinary Albumin Creatinine Ratio |
Variable | Group A (n = 51) V1 | Group B (n = 50) V1 | Group A (n = 51) V2 | Group B (n = 50) V2 |
---|---|---|---|---|
Weight (kg) | 91.9 ± 26.00 | 82.60 ± 17.73 | 90.00 ± 23.00* | 82.30 ± 18.28 |
BMI (kg/m2) | 31.80 ± 8.89 | 30.80 ± 7.4 | 30.47 ± 8.48* | 30.15 ± 7.07 |
FM (kg) | 31.39 ± 9.82 | 29.0 ± 14.85 | 28.90 ± 15.55 | 28.45 ± 16.67 |
FFM (kg) | 57.96 ± 18.8 | 54.55 ± 17.27 | 51.20 ± 26.2 | 54.35 ± 21.0 |
TBW (kg) | 34.90 ± 19.15 | 38.50 ± 14.3 | 37.40 ± 18.6 | 38.10 ± 16.25 |
VF (%) | 15.00 ± 8.00 | 11.0 ± 7.00 | 14.5 ± 7.25* | 11.00 ± 6.00 |
HbA1c (%) | 6.5 ± 1.5 | 7.0 ± 2.3 | 7.1 ± 1.5 | 6.4 ± 1.00* |
Total cholesterol (mg/dl) | 195.0 ± 61.1 | 158.0 ± 73.0 | 183.5 ± 66.08 | 152.0 ± 53.25 |
HDL cholesterol (mg/dl) | 42.00 ± 7.00 | 43.0 ± 23.0 | 41.50 ± 14.0 | 45.0 ± 18.0 |
Triglycerides (mg/dl) | 151.0 ± 76.0 | 123.0 ± 98.0 | 147.0 ± 77.95 | 152.0 ± 78.0 |
Serum Creatinine (mg/dl) | 0.76 ± 0.21 | 0.90 ± 0.29 | 0.83 ± 0.27 | 0.99 ± 0.2 |
Blood urea nitrogen (mg/dl) | 30.0 ± 15.0 | 39.0 ± 18.5 | 38.20 ± 15.08* | 32.00 ± 15.5 |
Uric acid (mg/dl) | 5.36 ± 2.30 | 6.0 ± 2.8 | 5.95 ± 2.16 | 5.50 ± 2.45 |
eGFR (ml/min/1.73m2) | 92.7 ± 19.0 | 96.50 ± 43 | 92.2 ± 25 | 93.50 ± 35.75 |
UACR (mg/g) | 6.18 ± 14.7 | 25.49 ± 34.15 | 10.0 ± 8.88 | 23.0 ± 36.5 |
* p < 0.05 |
Variable | Group A (n = 51) | Group B (n = 50) | p-value |
---|---|---|---|
Δ Weight (kg) | -3.2 ± 4.8 | -0.6 ± 3.1 | <0.001 |
ΔBMI (kg/m2) | 1.2 ± 1.63 | 0.20 ± 1.15 | 0.001 |
ΔVF (%) | 1.0 ± 2.0 | 0.00 ± 0.02 | 0.001 |
Δ HbA1c (%) | -0.2 ± 1.3 | 0.75 ± 2.0 | 0.018 |
Results are presented as median and IQR. Δ represents the difference between values at second evaluation vs first evaluation. |
© 2024 by the authors. 2024 Roxana Adriana Stoica, Florentina Gherghiceanu, Denisa Nedelcu, Valeria-Anca Pietroșel, Cristina Ioana Bica, Teodor Salmen, Claudiu Teodorescu, Mihaela Simona Popoviciu, Anca Pantea Stoian.
Share and Cite
Stoica, R.A.; Gherghiceanu, F.; Nedelcu, D.; Pietroșel, V.-A.; Bica, C.I.; Salmen, T.; Teodorescu, C.; Popoviciu, M.S.; Pantea Stoian, A. Weight Loss in Subjects with Type 2 Diabetes Before and After SARS-CoV2 Infection—A Retrospective Observational Study. J. Mind Med. Sci. 2024, 11, 505-510. https://doi.org/10.22543/2392-7674.1525
Stoica RA, Gherghiceanu F, Nedelcu D, Pietroșel V-A, Bica CI, Salmen T, Teodorescu C, Popoviciu MS, Pantea Stoian A. Weight Loss in Subjects with Type 2 Diabetes Before and After SARS-CoV2 Infection—A Retrospective Observational Study. Journal of Mind and Medical Sciences. 2024; 11(2):505-510. https://doi.org/10.22543/2392-7674.1525
Chicago/Turabian StyleStoica, Roxana Adriana, Florentina Gherghiceanu, Denisa Nedelcu, Valeria-Anca Pietroșel, Cristina Ioana Bica, Teodor Salmen, Claudiu Teodorescu, Mihaela Simona Popoviciu, and Anca Pantea Stoian. 2024. "Weight Loss in Subjects with Type 2 Diabetes Before and After SARS-CoV2 Infection—A Retrospective Observational Study" Journal of Mind and Medical Sciences 11, no. 2: 505-510. https://doi.org/10.22543/2392-7674.1525
APA StyleStoica, R. A., Gherghiceanu, F., Nedelcu, D., Pietroșel, V.-A., Bica, C. I., Salmen, T., Teodorescu, C., Popoviciu, M. S., & Pantea Stoian, A. (2024). Weight Loss in Subjects with Type 2 Diabetes Before and After SARS-CoV2 Infection—A Retrospective Observational Study. Journal of Mind and Medical Sciences, 11(2), 505-510. https://doi.org/10.22543/2392-7674.1525