Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Determination of Enzyme Activities
2.3. Second-Tier Tests
2.4. Confirmatory Testing
3. Results
3.1. Screening Outcomes
3.1.1. Mucopolysaccharidosis Type I
3.1.2. Pompe Disease
3.1.3. Fabry Disease
3.1.4. Gaucher Disease
4. Discussion
5. Limitations
- A high number of false positives and pseudodeficiencies, which affect families and healthcare systems. Our results demonstrate that biochemical 2TTs are effective in reducing the recall rate for MPS I (GAG quantification) and GD (LysoGb1). In FD, the use of LysoGb3 in the neonatal period is debated [59]. The development of a 2TT is important for all the screened diseases. The approach to reducing the false-positive rate for PD includes both biochemical (creatine/creatinine over GAA ratio by MS/MS) [65] and/or molecular 2TTs [66,67,68] and postanalytical tools, e.g., CLIR [69,70].
- The identification of an increasing number of VUSs, especially for PD and FD. Some of these patients may never develop symptoms; however, they require ongoing monitoring, which causes anxiety for families and costs for healthcare systems. Future improvements in the management of these patients are likely to arise from a better understanding of the genotype/phenotype correlation and the natural history of the disease.
- The use of NBS detects newborns across the full phenotypic spectrum of severity, although not all subtypes benefit equally from early detection. Central nervous system damage from neuropathic LSDs, such as GD2, cannot be treated currently [71]. Despite the benefit of informing genetic counseling for parents, an untreatable disease may not fit the criteria for NBS. Potential new therapies for the central nervous system are under development.
- Ethical issues due to the high incidence of late-onset forms. For these disorders, the onset is often unpredictable and some “patients-in-waiting” may never develop symptoms [72], resulting in unnecessary anxiety and medical intervention, but also the potential treatment of these patients as “vulnerable children” [73]. Challenges remain in identifying better biomarkers for phenotype prediction and the best tailored strategy for the follow-up, management and treatment of these patients.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Wraith, J.E. Lysosomal disorders. Semin. Neonatol. 2002, 7, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.L.; Tecedor, L.; Chang, M.; Davidson, B.L. Clarifying Lysosomal Storage Diseases. Trends Neurosci. 2011, 34, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.D.; Futerman, A.H. Lysosomal Storage Disorders: Old Diseases, Present and Future Challenges. Pediatr. Endocrinol. Rev. 2013, 11, 59–63. [Google Scholar] [PubMed]
- Gelb, M.H.; Scott, C.R.; Turecek, F. Newborn Screening for Lysosomal Storage Diseases. Clin. Chem. 2015, 61, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Gelb, M.H.; Lukacs, Z.; Ranieri, E.; Schielen, P.C.J.I. Newborn Screening for Lysosomal Storage Disorders: Methodologies for Measurement of Enzymatic Activities in Dried Blood Spots. Int. J. Neonatal Screen. 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-H.; Lee, N.-C.; Thurberg, B.L.; Chiang, S.-C.; Zhang, X.K.; Keutzer, J.; Huang, A.-C.; Wu, M.-H.; Huang, P.-H.; Tsai, F.-J.; et al. Pompe Disease in Infants: Improving the Prognosis by Newborn Screening and Early Treatment. Pediatrics 2009, 124, e1116–e1125. [Google Scholar] [CrossRef]
- Furlano, M.; Ars, E.; Matamala, A.; Brossa, V.; Martí, J.; del Prado-Venegas, M.; Crespi, J.; Roe, E.; Torra, R. The Benefits of Early versus Late Therapeutic Intervention in Fabry Disease. Case Rep. Genet. 2022, 2022, 3208810. [Google Scholar] [CrossRef]
- Pjetraj, D.; Santoro, L.; Sgattoni, C.; Padella, L.; Zampini, L.; Monachesi, C.; Gabrielli, O.; Catassi, C. 18-year follow-up of enzyme-replacement therapy in two siblings with attenuated mucopolysaccharidosis I. Am. J. Med. Genet. Part A 2023, 191, 564–569. [Google Scholar] [CrossRef]
- Yang, C.-F.; Liao, T.-W.E.; Chu, Y.-L.; Chen, L.-Z.; Huang, L.-Y.; Yang, T.-F.; Ho, H.-C.; Kao, S.-M.; Niu, D.-M. Long-term outcomes of very early treated infantile-onset Pompe disease with short-term steroid premedication: Experiences from a nationwide newborn screening programme. J. Med. Genet. 2023, 60, 430–439. [Google Scholar] [CrossRef]
- Kuiper, G.-A.; Meijer, O.L.M.; Langereis, E.J.; Wijburg, F.A. Failure to Shorten the Diagnostic Delay in Two Ultra-Orphan Diseases (Mucopolysaccharidosis Types I and III): Potential Causes and Implications. Orphanet J. Rare Dis. 2018, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Giugliani, R.; Muschol, N.; Keenan, H.A.; Dant, M.; Muenzer, J. Improvement in Time to Treatment, But Not Time to Diagnosis, in Patients with Mucopolysaccharidosis Type I. Arch. Dis. Child. 2021, 106, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Altarescu, G.; Barriales-Villa, R.; Mignani, R.; Pawlaczyk, K.; Pieruzzi, F.; Terryn, W.; Vujkovac, B.; Ortiz, A. An Expert Consensus on Practical Clinical Recommendations and Guidance for Patients with Classic Fabry Disease. Mol. Genet. Metab. 2022, 137, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Marsden, D.; Levy, H. Newborn Screening of Lysosomal Storage Disorders. Clin. Chem. 2010, 56, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Scott, C.R.; Chamoles, N.A.; Ghavami, A.; Pinto, B.M.; Turecek, F.; Gelb, M.H. Direct Multiplex Assay of Lysosomal Enzymes in Dried Blood Spots for Newborn Screening. Clin. Chem. 2004, 50, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Millington, D.S.; Bali, D.S. Current State of the Art of Newborn Screening for Lysosomal Storage Disorders. Int. J. Neonatal Screen. 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.; Pagliardini, S.; Yasuda, M.; Tukel, T.; Thiagarajan, G.; Sakuraba, H.; Ponzone, A.; Desnick, R.J. High Incidence of Later-Onset Fabry Disease Revealed by Newborn Screening. Am. J. Hum. Genet. 2006, 79, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Colon, C.; Ortolano, S.; Melcon-Crespo, C.; Alvarez, J.V.; Lopez-Suarez, O.E.; Couce, M.L.; Fernández-Lorenzo, J.R. Newborn Screening for Fabry Disease in the North-West of Spain. Eur. J. Pediatr. 2017, 176, 1075–1081. [Google Scholar] [CrossRef]
- Wittmann, J.; Karg, E.; Turi, S.; Legnini, E.; Wittmann, G.; Giese, A.-K.; Lukas, J.; Gölnitz, U.; Klingenhäger, M.; Bodamer, O.; et al. Newborn Screening for Lysosomal Storage Disorders in Hungary. In JIMD Reports-Case and Research Reports, 2012/3; Springer: Berlin/Heidelberg, Germany, 2012; Volume 6, pp. 117–125. [Google Scholar] [CrossRef]
- Mechtler, T.P.; Stary, S.; Metz, T.F.; De Jesús, V.R.; Greber-Platzer, S.; Pollak, A.; Herkner, K.R.; Streubel, B.; Kasper, D.C. Neonatal Screening for Lysosomal Storage Disorders: Feasibility and Incidence from a Nationwide Study in Austria. Lancet 2012, 379, 335–341. [Google Scholar] [CrossRef]
- Eyskens, F.; Devos, S. Newborn Screening for Lysosomal Storage Disorders in Belgium: The Importance of Sex- and Age-Dependent Reference Ranges. J. Inborn Errors Metab. Screen. 2017, 5, 2326409817744231. [Google Scholar] [CrossRef]
- Dionisi-Vici, C.; Rizzo, C.; Burlina, A.B.; Caruso, U.; Sabetta, G.; Uziel, G.; Abeni, D. Inborn Errors of Metabolism in the Italian Pediatric Population: A National Retrospective Survey. J. Pediatr. 2002, 140, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Paciotti, S.; Persichetti, E.; Pagliardini, S.; Deganuto, M.; Rosano, C.; Balducci, C.; Codini, M.; Filocamo, M.; Menghini, A.R.; Pagliardini, V.; et al. First Pilot Newborn Screening for Four Lysosomal Storage Diseases in an Italian Region: Identification and Analysis of a Putative Causative Mutation in the GBA Gene. Clin. Chim. Acta 2012, 413, 1827–1831. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.B.; Polo, G.; Salviati, L.; Duro, G.; Zizzo, C.; Dardis, A.; Bembi, B.; Cazzorla, C.; Rubert, L.; Zordan, R.; et al. Newborn Screening for Lysosomal Storage Disorders by Tandem Mass Spectrometry in North East Italy. J. Inherit. Metab. Dis. 2018, 41, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Polo, G.; Burlina, A.P.; Ranieri, E.; Colucci, F.; Rubert, L.; Pascarella, A.; Duro, G.; Tummolo, A.; Padoan, A.; Plebani, M.; et al. Plasma and Dried Blood Spot Lysosphingolipids for the Diagnosis of Different Sphingolipidoses: A Comparative Study. Clin. Chem. Lab. Med. CCLM 2019, 57, 1863–1874. [Google Scholar] [CrossRef] [PubMed]
- Polo, G.; Gueraldi, D.; Giuliani, A.; Rubert, L.; Cazzorla, C.; Salviati, L.; Marzollo, A.; Biffi, A.; Burlina, A.P.; Burlina, A.B. The Combined Use of Enzyme Activity and Metabolite Assays as a Strategy for Newborn Screening of Mucopolysaccharidosis Type I. Clin. Chem. Lab. Med. CCLM 2020, 58, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Ruoppolo, M.; Malvagia, S.; Boenzi, S.; Carducci, C.; Dionisi-Vici, C.; Teofoli, F.; Burlina, A.; Angeloni, A.; Aronica, T.; Bordugo, A.; et al. Expanded Newborn Screening in Italy Using Tandem Mass Spectrometry: Two Years of National Experience. Int. J. Neonatal Screen. 2022, 8, 47. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Rizzardi, C.; Commone, A.; Gueraldi, D.; Maines, E.; Salviati, L.; Di Salvo, G.; Burlina, A.B. Unusual Evolution of Hypertrophic Cardiomyopathy in Non-Compaction Myocardium in a Pompe Disease Patient. J. Clin. Med. 2023, 12, 2365. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Cazzorla, C.; Gueraldi, D.; Loro, C.; Massa, P.; Puma, A.; Cananzi, M.; Salviati, L.; Burlina, A.P.; Burlina, A.B. Long-Term Follow-up of a Patient with Neonatal Form of Gaucher Disease. Am. J. Med. Genet. Part A 2023, 191, 1917–1922. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Burlina, A.P.; Manara, R.; Cazzorla, C.; Rubert, L.; Gueraldi, D.; Toniolli, E.; Quaia, E.; Burlina, A.B. Bone Disease in Early Detected Gaucher Type I Disease: A Case Report. JIMD Rep. 2022, 63, 414–419. [Google Scholar] [CrossRef]
- Lukacs, Z. Mucopolysaccharides. In Laboratory Guide to the Methods in Biochemical Genetics; Blau, N., Duran, M., Gibson, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 287–324. [Google Scholar]
- Kemper, A.R. Newborn Screening for MPS I: Final Report from the Condition Review Workgroup; Duke Clinical Research Institute: Durham, NC, USA, 2015; Available online: https://Hrsa.Gov/Sites/Default/Files/Hrsa/Advisory-Committees/Heritable-Disorders/Meetings/Heritable%20Disorders%202004-2015/2015/February%2012-3,%202015/Kemper-Mps1.Pdf (accessed on 20 September 2023).
- Moore, D.; Connock, M.J.; Wraith, E.; Lavery, C. The Prevalence of and Survival in Mucopolysaccharidosis I: Hurler, Hurler-Scheie and Scheie Syndromes in the UK. Orphanet J. Rare Dis. 2008, 3, 24. [Google Scholar] [CrossRef]
- Taylor, J.L.; Clinard, K.; Powell, C.M.; Rehder, C.; Young, S.P.; Bali, D.; Beckloff, S.E.; Gehtland, L.M.; Kemper, A.R.; Lee, S.; et al. The North Carolina Experience with Mucopolysaccharidosis Type I Newborn Screening. J. Pediatr. 2019, 211, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.A.; Pasquini, E.; Spada, M.; Polo, G.; Burlina, A. Newborn Screening in Mucopolysaccharidoses. Ital. J. Pediatr. 2018, 44, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.B.; Gragnaniello, V. Newborn Screening of Mucopolysaccharidosis Type I. Crit. Rev. Clin. Lab. Sci. 2022, 59, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-H.; Lee, N.-C.; Chen, P.-W.; Yeh, H.-Y.; Gelb, M.H.; Chiu, P.-C.; Chu, S.-Y.; Lee, C.-H.; Lee, A.-R.; Hwu, W.-L. Newborn Screening for Morquio Disease and Other Lysosomal Storage Diseases: Results from the 8-Plex Assay for 70,000 Newborns. Orphanet J. Rare Dis. 2020, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-K.; Lin, H.-Y.; Wang, T.-J.; Huang, Y.-H.; Chan, M.-J.; Liao, H.-C.; Lo, Y.-T.; Wang, L.-Y.; Tu, R.-Y.; Fang, Y.-Y.; et al. Status of Newborn Screening and Follow up Investigations for Mucopolysaccharidoses I and II in Taiwan. Orphanet J. Rare Dis. 2018, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.A.; Atherton, A.M.; Burton, B.K.; Day-Salvatore, D.L.; Kaplan, P.; Leslie, N.D.; Scott, C.R.; Stockton, D.W.; Thomas, J.A.; Muenzer, J. Mucopolysaccharidosis Type I Newborn Screening: Best Practices for Diagnosis and Management. J. Pediatr. 2017, 182, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, V.; Gueraldi, D.; Rubert, L.; Manzoni, F.; Cazzorla, C.; Giuliani, A.; Polo, G.; Salviati, L.; Burlina, A. Report of Five Years of Experience in Neonatal Screening for Mucopolysaccharidosis Type I and Review of the Literature. Int. J. Neonatal Screen. 2020, 6, 85. [Google Scholar] [CrossRef]
- Reuser, A.J.J.; Hirschhorn, R.; Kroos, M.A. Pompe Disease: Glycogen Storage Disease Type II: Acid α-Glucosidase (Acid Maltase) Deficiency. In The Online Metabolic and Molecular Bases of Inherited Disease; Valle, D., Antonarakis, S., Ballabio, A., Beaudet, A.L., Mitchell, G.A., Eds.; McGraw-Hill: New York, NY, USA, 2019. [Google Scholar]
- Yang, C.-F.; Yang, C.C.; Liao, H.-C.; Huang, L.-Y.; Chiang, C.-C.; Ho, H.-C.; Lai, C.-J.; Chu, T.-H.; Yang, T.-F.; Hsu, T.-R.; et al. Very Early Treatment for Infantile-Onset Pompe Disease Contributes to Better Outcomes. J. Pediatr. 2016, 169, 174–180. [Google Scholar] [CrossRef]
- Li, C.; Desai, A.K.; Gupta, P.; Dempsey, K.; Bhambhani, V.; Hopkin, R.J.; Ficicioglu, C.; Tanpaiboon, P.; Craigen, W.J.; Rosenberg, A.S.; et al. Transforming the Clinical Outcome in CRIM-Negative Infantile Pompe Disease Identified via Newborn Screening: The Benefits of Early Treatment with Enzyme Replacement Therapy and Immune Tolerance Induction. Genet. Med. 2021, 23, 845–855. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Deodato, F.; Gasperini, S.; Donati, M.A.; Canessa, C.; Fecarotta, S.; Pascarella, A.; Spadaro, G.; Concolino, D.; Burlina, A.; et al. Immune Responses to Alglucosidase in Infantile Pompe Disease: Recommendations from an Italian Pediatric Expert Panel. Ital. J. Pediatr. 2022, 48, 41. [Google Scholar] [CrossRef]
- Huggins, E.; Holland, M.; Case, L.E.; Blount, J.; Landstrom, A.P.; Jones, H.N.; Kishnani, P.S. Early Clinical Phenotype of late Onset Pompe Disease: Lessons Learned from Newborn Screening. Mol. Genet. Metab. 2022, 135, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.C.; Chang, K.L.; In’t Groen, S.L.; de Faria, D.O.; Huang, H.J.; Pijnappel, W.P.; Hwu, W.L.; Chien, Y.H. Outcome of Later-Onset Pompe Disease Identified Through Newborn Screening. J. Pediatr. 2022, 244, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Bergsma, A.J.; in ’t Groen, S.L.M.; van den Dorpel, J.J.; van den Hout, H.J.; van der Beek, N.A.; Schoser, B.; Toscano, A.; Musumeci, O.; Bembi, B.; Dardis, A.; et al. A Genetic Modifier of Symptom Onset in Pompe Disease. EBioMedicine 2019, 43, 553–561. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, E.; Bergsma, A.J.; van Gestel, T.J.M.; in ’t Groen, S.L.M.; Zaehres, H.; Araúzo-Bravo, M.J.; Schöler, H.R.; van der Ploeg, A.T.; Pijnappel, W.P. GAA Deficiency in Pompe Disease Is Alleviated by Exon Inclusion in iPSC-Derived Skeletal Muscle Cells. Mol. Ther. Nucleic Acids 2017, 7, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, V.; Pijnappel, P.W.W.M.; Burlina, A.P.; In’t Groen, S.L.M.; Gueraldi, D.; Cazzorla, C.; Maines, E.; Polo, G.; Salviati, L.; Di Salvo, G.; et al. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol. Genet. Metab. Rep. 2022, 33, 100929. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.; Bodamer, O.A.; Watson, M.S.; Wilcox, W.R. Lysosomal Storage Diseases: Diagnostic Confirmation and Management of Presymptomatic Individuals. Genet. Med. 2011, 13, 457–484. [Google Scholar] [CrossRef] [PubMed]
- Filocamo, M.; Grossi, S.; Stroppiano, M.; Tortori-Donati, P.; Regis, S.; Allegri, A.; Di Rocco, M. Homozygosity for a Non-Pseudogene Complex Glucocerebrosidase Allele as Cause of an Atypical Neuronopathic form of Gaucher Disease. Am. J. Med. Genet. Part A 2005, 134A, 95–96. [Google Scholar] [CrossRef]
- Hopkins, P.V.; Campbell, C.; Klug, T.; Rogers, S.; Raburn-Miller, J.; Kiesling, J. Lysosomal Storage Disorder Screening Implementation: Findings from the First Six Months of Full Population Pilot Testing in Missouri. J. Pediatr. 2015, 166, 172–177. [Google Scholar] [CrossRef]
- Burton, B.K.; Charrow, J.; Hoganson, G.E.; Waggoner, D.; Tinkle, B.; Braddock, S.R.; Schneider, M.; Grange, D.K.; Nash, C.; Shryock, H.; et al. Newborn Screening for Lysosomal Storage Disorders in Illinois: The Initial 15-Month Experience. J. Pediatr. 2017, 190, 130–135. [Google Scholar] [CrossRef]
- Wasserstein, M.P.; Caggana, M.; Bailey, S.M.; Desnick, R.J.; Edelmann, L.; Estrella, L.; Holzman, I.; Kelly, N.R.; Kornreich, R.; Kupchik, S.G.; et al. The New York Pilot Newborn Screening Program for Lysosomal Storage Diseases: Report of the First 65,000 Infants. Genet. Med. 2019, 21, 631–640. [Google Scholar] [CrossRef]
- Liao, H.-C.; Chiang, C.-C.; Niu, D.-M.; Wang, C.-H.; Kao, S.-M.; Tsai, F.-J.; Huang, Y.-H.; Liu, H.-C.; Huang, C.-K.; Gao, H.-J.; et al. Detecting Multiple Lysosomal Storage Diseases by Tandem Mass Spectrometry—A National Newborn Screening Program in Taiwan. Clin. Chim. Acta 2014, 431, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Zhan, X.; Gu, X.; Zhang, H. Successful Newborn Screening for Gaucher Disease Using Fluorometric Assay in China. J. Hum. Genet. 2017, 62, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.-C.; Chen, P.-W.; Hwu, W.-L.; Lee, A.-J.; Chen, L.-C.; Lee, N.-C.; Chiou, L.-Y.; Chien, Y.-H. Performance of the Four-Plex Tandem Mass Spectrometry Lysosomal Storage Disease Newborn Screening Test: The Necessity of Adding a 2nd Tier Test for Pompe Disease. Int. J. Neonatal Screen. 2018, 4, 41. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Kido, J.; Sugawara, K.; Yoshida, S.; Matsumoto, S.; Shimazu, T.; Matsushita, Y.; Inoue, T.; Hirose, S.; Endo, F.; et al. Newborn Screening for Gaucher Disease in Japan. Mol. Genet. Metab. Rep. 2022, 31, 100850. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, V.; Burlina, A.P.; Commone, A.; Gueraldi, D.; Puma, A.; Porcù, E.; Stornaiuolo, M.; Cazzorla, C.; Burlina, A.B. Newborn Screening for Fabry Disease: Current Status of Knowledge. Int. J. Neonatal Screen. 2023, 9, 31. [Google Scholar] [CrossRef]
- Desnick, R.J.; Ioannou, Y.A.; Eng, C.M. α-Galactosidase A Deficiency: Fabry Disease; McGraw Hill: New York, NY, USA, 2021. [Google Scholar]
- Hwu, W.-L.; Chien, Y.-H.; Lee, N.-C.; Chiang, S.-C.; Dobrovolny, R.; Huang, A.-C.; Yeh, H.-Y.; Chao, M.-C.; Lin, S.-J.; Kitagawa, T.; et al. Newborn Screening for Fabry Disease in Taiwan Reveals a High Incidence of the Later-Onset GLA Mutation c.936+919G>A (IVS4+919G>A). Hum. Mutat. 2009, 30, 1397–1405. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Burlina, A.P.; Polo, G.; Giuliani, A.; Salviati, L.; Duro, G.; Cazzorla, C.; Rubert, L.; Maines, E.; Germain, D.P.; et al. Newborn Screening for Fabry Disease in Northeastern Italy: Results of Five Years of Experience. Biomolecules 2021, 11, 951. [Google Scholar] [CrossRef]
- Spada, M.; Kasper, D.; Pagliardini, V.; Biamino, E.; Giachero, S.; Porta, F. Metabolic Progression to Clinical Phenotype in Classic Fabry Disease. Ital. J. Pediatr. 2017, 43, 1. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Huang, P.-H.; Wang, L.-Y.; Hsu, T.-R.; Li, H.-Y.; Lee, P.-C.; Hsieh, Y.-P.; Hung, S.-C.; Wang, Y.-C.; Chang, S.-K.; et al. Improvement in the Sensitivity of Newborn Screening for Fabry Disease among Females through the Use of a High-Throughput and Cost-Effective Method, DNA Mass Spectrometry. J. Hum. Genet. 2018, 63, 1–8. [Google Scholar] [CrossRef]
- Tortorelli, S.; Eckerman, J.S.; Orsini, J.J.; Stevens, C.; Hart, J.; Hall, P.L.; Alexander, J.J.; Gavrilov, D.; Oglesbee, D.; Raymond, K.; et al. Moonlighting Newborn Screening Markers: The Incidental Discovery of a Second-Tier Test for Pompe Disease. Genet. Med. 2018, 20, 840–846. [Google Scholar] [CrossRef]
- Ficicioglu, C.; Ahrens-Nicklas, R.C.; Barch, J.; Cuddapah, S.R.; DiBoscio, B.S.; DiPerna, J.C.; Gordon, P.L.; Henderson, N.; Menello, C.; Luongo, N.; et al. Newborn Screening for Pompe Disease: Pennsylvania Experience. Int. J. Neonatal Screen. 2020, 6, 89. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.M.; Wilson, R.; Caggana, M.; Orsini, J.J. The Impact of Post-Analytical Tools on New York Screening for Krabbe Disease and Pompe Disease. Int. J. Neonatal Screen. 2020, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Feuchtbaum, L.; Sciortino, S.; Matteson, J.; Mathur, D.; Bishop, T.; Olney, R.S. The First Year Experience of Newborn Screening for Pompe Disease in California. Int. J. Neonatal Screen. 2020, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Hall, P.L.; Sanchez, R.; Hagar, A.F.; Jerris, S.C.; Wittenauer, A.; Wilcox, W.R. Two-Tiered Newborn Screening with Post-Analytical Tools for Pompe Disease and Mucopolysaccharidosis Type I Results in Performance Improvement and Future Direction. Int. J. Neonatal Screen. 2020, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Minter Baerg, M.M.; Stoway, S.D.; Hart, J.; Mott, L.; Peck, D.S.; Nett, S.L.; Eckerman, J.S.; Lacey, J.M.; Turgeon, C.T.; Gavrilov, D.; et al. Precision Newborn Screening for Lysosomal Disorders. Genet. Med. 2018, 20, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Hwu, W.; Chien, Y.; Lee, N. Newborn Screening for Neuropathic Lysosomal Storage Disorders. J. Inherit. Metab. Dis. 2010, 33, 381–386. [Google Scholar] [CrossRef]
- Timmermans, S.; Buchbinder, M. Patients-in-Waiting: Living between Sickness and Health in the Genomics Era. J. Health Soc. Behav. 2010, 51, 408–423. [Google Scholar] [CrossRef]
- Kokotos, F. The Vulnerable Child Syndrome. Pediatr. Rev. 2009, 30, 193–194. [Google Scholar] [CrossRef]
LSD | GD | PD | FD | MPS I | TOT |
---|---|---|---|---|---|
Total screened | 248,616 | ||||
Positive NBS | 18 | 48 | 31 | 29 | 126 |
Patients with confirmed disorder | 13 | 16 | 18 | 4 | 51 |
Pseudodeficiency | 0 | 17 | 0 | 21 | 38 |
VUS | 3 | 7 | 10 | 2 | 22 |
Carrier status | 0 | 4 | / | 2 | 6 |
Benign variant | 0 | 0 | 1 | 0 | 1 |
No variant | 0 | 0 | 2 * | 0 | 2 |
Lost before confirmatory testing | 2 | 4 | 0 | 0 | 6 |
PPV | 100% | 52% | 90% | 86% | 63% |
Incidence | 1:15,539 | 1:10,809 | 1:8879 | 1:62,154 | 1:3406 |
2015–2018 (Only IDUA Assay) | 2019–2023 (DBS GAGs as 2TT) | |
---|---|---|
Total screened | 112,446 | 136,170 |
Positive NBS | 27 | 2 |
Patients with confirmed disorder | 2 | 2 |
Pseudodeficiency | 21 | 0 |
VUS | 2 | 0 |
Carrier status | 2 | 0 |
PPV | 7.4% | 100% |
Pt. 1 (Female) | Pt. 2 (Female) | Pt. 3 (Male) | Pt. 4 (Female) | |
---|---|---|---|---|
Diagnosis | ||||
IDUA activity on DBS | 0.22 µmol/L/h | 0.17 µmol/L/h | 0.17 µmol/L/h | 0.12 µmol/L/h |
GAGs on DBS HS nv < 3.2 µg/mL; DS nv < 2.7 µg/mL | NA | NA | HS 6.3 µg/mL, DS 33 µg/mL | HS 7.8 µg/mL, DS 41 µg/mL |
uGAGs HS nv < 4.6 mg/mmol crea; DS nv < 38.1 mg/mmol crea | HS 148.9 mg/mmol crea, DS 172 mg/mmol crea | HS 121.9 mg/mmol crea and DS 80 mg/mmol crea | HS 60.9 mg/mmol crea and DS 58 mg/mmol crea | HS 274 mg/mmol crea and DS 287.7 mg/mmol crea |
Molecular analysis (DNA) | homozygous c.1598C>G | homozygous p.Tyr201* | c.603C>G + c.-14_10del | homozygous c.46_57del12 |
Protein | homozygous p.Pro533Arg | homozygous p.Tyr201* | pTyr201* + intronic variant | homozygous p.Tyr201* |
Phenotype | Hurler/Scheie | Hurler | Hurler | Hurler |
Treatment | ||||
ERT (laronidase 100 U/kg) (age) | 30 days | 45 days | 19 days | 9 days |
HSCT (age) | no | 6 months | 6 months | 6 months |
Last follow-up | ||||
Age | 6.5 years old | 6 years old | 1.5 years | 1 year |
Clinical features | diffuse corneal clouding | mild coarse facial features, deformity of lumbar vertebral bodies, diffuse corneal clouding. | Mild deformity of vertebral bodies, diffuse corneal clouding. | deformity of thoracic and lumbar vertebral bodies, diffuse corneal clouding. |
Cognitive function | WPPSI III: 93 | WPPSI III: 121 | Bayley 3: 75 | Bayley 3: 100 |
Chimerism | / | 94% donor | 86% donor | 100% donor |
IDUA nv 1.9–15 µmol/L/h | / | 6.49 µmol/L/h | 3.49 µmol/L/h | 12.60 µmol/L/h |
uGAGs | HS 9.2 mg/mmol crea, DS 15.4 mg/mmol crea | HS 2.6 mg/mmol crea, DS 5.5 mg/mmol crea | HS 3.9 mg/mol crea, DS 12 mg/mmol crea | HS 8.4 mg/mmol crea, DS 13.2 mg/mmol crea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gragnaniello, V.; Cazzorla, C.; Gueraldi, D.; Puma, A.; Loro, C.; Porcù, E.; Stornaiuolo, M.; Miglioranza, P.; Salviati, L.; Burlina, A.P.; et al. Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy. Int. J. Neonatal Screen. 2024, 10, 3. https://doi.org/10.3390/ijns10010003
Gragnaniello V, Cazzorla C, Gueraldi D, Puma A, Loro C, Porcù E, Stornaiuolo M, Miglioranza P, Salviati L, Burlina AP, et al. Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy. International Journal of Neonatal Screening. 2024; 10(1):3. https://doi.org/10.3390/ijns10010003
Chicago/Turabian StyleGragnaniello, Vincenza, Chiara Cazzorla, Daniela Gueraldi, Andrea Puma, Christian Loro, Elena Porcù, Maria Stornaiuolo, Paolo Miglioranza, Leonardo Salviati, Alessandro P. Burlina, and et al. 2024. "Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy" International Journal of Neonatal Screening 10, no. 1: 3. https://doi.org/10.3390/ijns10010003
APA StyleGragnaniello, V., Cazzorla, C., Gueraldi, D., Puma, A., Loro, C., Porcù, E., Stornaiuolo, M., Miglioranza, P., Salviati, L., Burlina, A. P., & Burlina, A. B. (2024). Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy. International Journal of Neonatal Screening, 10(1), 3. https://doi.org/10.3390/ijns10010003