Newborn Screening by DNA-First: Systematic Evaluation of the Eligibility of Inherited Metabolic Disorders Based on Treatability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Project Team Participants
2.2. Study Design
2.2.1. Meeting 1: Defining Treatability and Strategy of the Selection Process
2.2.2. Literature Review by the Core Team
2.2.3. Meetings 2 and 3: Evaluation of the Literature Review by the Core and Project Teams
3. Results
3.1. Genes Already Screened for in Current NBS
3.2. Results of the Literature Review of the Remaining 1397 Genes
3.2.1. Lack of Literature and/or Evidence
3.2.2. Treatability
3.2.3. Other Reasons
3.3. Considerations for the Final List of Genes
4. Discussion
4.1. Challenges in Defining Treatability
4.2. Consensus on the Selected Genes from the Literature Review
4.3. Considerations for the Final List of Genes
4.4. Limitations
4.5. Applicability of Our Final List
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Inherited Metabolic Disorders | Associated Gene | MIM Phenotype | MIM Gene/ Locus |
---|---|---|---|
| HMGCL | 246450 | 613898 |
| MCCC1 | 210200 | 609010 |
| MCCC2 | 210210 | 609014 |
| HSD3B7 | 607765 | 607764 |
| PTS | 261640 | 612719 |
| ADA | 102700 | 608958 |
| AKT2 | 240900 | 164731 |
| AGXT | 259900 | 604285 |
| ALDOB | 229600 | 612724 |
| AMN | 618882 | 605799 |
| APOC2 | 207750 | 608083 |
| APOE | 617347 | 107741 |
| ARG1 | 207800 | 608313 |
| GATM | 612718, 134600 | 602360 |
| ASL | 207900 | 608310 |
| ASS1 | 215700 | 603470 |
| ARSA | 250100 | 607574 |
| GCH1 | 233910, 128230 | 600225 |
| BAAT | 619232 | 602938 |
| BTD | 253260 | 609019 |
| BCKDHA | 248600 | 608348 |
| BCKDHB | 248600 | 248611 |
| BCKDK | 614923 | 614901 |
| CAD | 616457 | 114010 |
| CPS1 | 237300 | 608307 |
| CA5A | 615751 | 114761 |
| CPT1A | 255120 | 600528 |
| CPT2 | 600649, 608836, 255110 | 600650 |
| SLC25A20 | 212138 | 613698 |
| SI | 222900 | 609845 |
| ATP7B | 277900 | 606882 |
| CTPS1 | 615897 | 123860 |
| CBS | 236200 | 613381 |
| CTNS | 219800, 219900, 219750 | 606272 |
| DBT | 620699 | 248610 |
| QDPR | 248600 | 612676 |
| DNAJC12 | 617384 | 606060 |
| ETFDH | 231680 | 231675 |
| ETFA | 231680 | 608053 |
| ETFB | 231680 | 130410 |
| SLC40A1 | 606069 | 604653 |
| FOLR1 | 613068 | 136430 |
| FBP1 | 229700 | 611570 |
| FAH | 276700 | 613871 |
| GALK1 | 230200 | 604313 |
| GALT | 230400 | 606999 |
| GBA | 230800, 230900, 231000, 230105 | 606463 |
| GCK | 606176, 602485, 125853, 125851 | 138079 |
| SLC2A2 | 227810 | 138160 |
| G6PC | 232200 | 613742 |
| SLC37A4 | 232220, 232240, 619525 | 602671 |
| SLC2A1 | 606777, 612126, 608885, 601042 | 138140 |
| GLUD1 | 606762 | 138130 |
| GCDH | 231670 | 608801 |
| AGL | 232400 | 610860 |
| GPIHBP1 | 615947 | 612757 |
| GAMT | 612736 | 601240 |
| HJV | 602390 | 608374 |
| GYS2 | 240600 | 138571 |
| HLCS | 253270 | 609018 |
| MMADHC | 277410, 620953, 620952 | 611935 |
| SLC5A1 | 606824 | 182380 |
| IVD | 243500 | 607036 |
| LPL | 238600, 144250 | 609708 |
| ACADM | 201450 | 607008 |
| MMACHC | 277400 | 609831 |
| MCEE | 251120 | 608419 |
| MMUT | 251000 | 609058 |
| MMAA | 251100 | 607481 |
| HMGCS2 | 605911 | 600234 |
| ACAT1 | 203750 | 607809 |
| SLC25A15 | 238970 | 603861 |
| NAGS | 237310 | 608300 |
| OAT | 258870 | 613349 |
| OTC | 311250 | 300461 |
| PAH | 261600 | 612349 |
| PGM1 | 614921 | 171900 |
| SLC22A5 | 212140 | 603377 |
| PCCA | 606054 | 232000 |
| PCCB | 606054 | 232050 |
| SLC46A1 | 229050 | 611672 |
| PCBD1 | 264070 | 126090 |
| PNP | 613179 | 164050 |
| SLC52A3 | 211500, 211530 | 613350 |
| SLC52A2 | 614707 | 607882 |
| AHCY | 613752 | 180960 |
| CYP27A1 | 213700 | 606530 |
| OXCT1 | 245050 | 601424 |
| TPK1 | 614458 | 606370 |
| SLC19A3 | 607483 | 606152 |
| TCN2 | 275350 | 613441 |
| HADHA | 609015, 609016 | 600890 |
| TAT | 276600 | 613018 |
| TH | 605407 | 191290 |
| ACADVL | 201475 | 609575 |
| ABCD1 | 300100 | 300371 |
| ALDH7A1 | 266100 | 107323 |
| IDUA | 607014, 607015, 607016 | 252800 |
| TTPA | 277460 | 600415 |
| AKR1D1 | 235555 | 604741 |
Appendix B
Genes excluded because of a lack of literature (N = 1003) |
1. No genotype–phenotype relation is known for the disorder (Total N = 71 and N = 15 disorders for which there was no phenotype/genotype relation) |
ACACB, ACMSD, AGMO, ALDH1L2, ALPI, ANPEP, APOO, ATP5PO, BBOX1, BLOC1S3, BLOC1S6, CCS, COX16, DTNBP1, DTYMK, DUT, EIF6, FAAH2, FA2H, FAM20B, GALNT14, GABRA6, GFUS, GNPNAT1, GON7, GYG2, HACD1, KMO, LAP3, LIPN, MAT2A, MCAT, MOCS3, MPST, NAPB, NDUFA8, NDUFAF7, NDUFB7, NME3, NPL, NT5E, OXA1L, PDPR, PDZK1IP1, PDE12, PHYKPL, PLIN5, PNPLA4, POLRMT, PRORP, RIC3, RNF31, RPS20, SAT1, SHPK, SLC10A1, SLC19A1, SLC27A5, SLC29A1, SORD, SORCS3, SQOR, STAP1, SUGCT, SV2A, TAF1A, TCN1, TLCD3B, TOMM70, UGCG, UQCRFS1, VPS4A, YRDC. |
2. Insufficient evidence for an (effective) treatment (N = 897, one IMD has multiple gene entries (not included)) |
A4GALT, AARS1, AARS2, ABAT, ABCD3, ABHD12, ABHD5, ACACA, ACAD8, ACAD9, ACADSB, ACBD5, ACER3, ACO2, ACOX1, ACOX2, ACSL4, ACY1, ADA, ADA2, ADAR, ADAT3, ADSL, AFG3L2, AGA, AGK, AGPAT2, AGPS, AICDA, AIFM1, AIMP1, AIMP2, AK1, ALDH18A1, ALDH18A1, ALDH3A2, ALDH6A1, ALDOA, ALG1, ALG11, ALG12, ALG13, ALG2, ALG3, ALG6, ALG8, ALG9, AMACR, AMPD2, AMPD3, ANGPTL3, AP1B1, AP1S1, AP1S2, AP3B1, AP3B2, AP3D1, AP4B1, AP4E1, AP4M1, AP4S1, AP5Z1, APOC3, APOE, APOE, APOPT1, ARCN1, ARFGEF2, ARSG, ASAH1, ASAH1, ASNS, ASPA, ATAD3A, ATG5, ATIC, ATP5F1A, ATP5F1D, ATP5F1E, ATP5MD, ATP6AP1, ATP6AP2, ATP6V0A2, ATP6V1A, ATP6V1E1, ATP7A, ATP7A, ATP8A2, ATPAF2, AUH, B3GALNT2, B3GALT6, B3GAT3, B3GLCT, B4GALNT1, B4GALT1, B4GALT7, B4GAT1, BCAP31, BCAT2, BCS1L, BMS1, BOLA3, BPNT2, C12orf65, C1GALT1C1, C1QBP, CANT1, CARS1, CARS2, CAT, CCDC115, CEP89, CERS1, CERS2, CETP, CHAT, CHCHD10, CHKB, CHRNE, CHST14, CHST6, CHSY1, CLCN2, CLN3, CLN5, CLN6, CLN8, CLP1, CLPB, CLPP, CLPX, CLTC, CMPK2, CNDP1, COA3, COA5, COA6, COA7, COASY, COG1, COG2, COG4, COG4, COG5, COG6, COG7, COG8, COL4A3BP, COPA, COPB2, COQ4, COQ8B, COX10, COX14, COX15, COX20, COX4I1, COX4I2, COX5A, COX6A1, COX6A2, COX6B1, COX7B, COX8A, CPOX, CRAT, CRPPA, CSGALNACT1, CTSA, CTSC, CTSD, CTSF, CTSK, CYB5R3, CYP11B2, CYP11B2, CYP2U1, CYP4F22, CYP51A1, CYP7A1, CYP7B1, D2HGDH, DALRD3, DARS1, DARS2, DDC, DDHD1, DDHD2, DDOST, DEGS1, DGAT1, DGUOK, DHCR24, DHDDS, DHTKD1, DIABLO, DKC1, DMGDH, DNA2, DNAJC19, DNAJC21, DNM1, DNM2, DOLK, DPAGT1, DPM1, DPM2, DPM3, DPYD, DPYS, DSE, DYM, DYNC1H1, EARS2, EBP, EBP, ECHS1, EHHADH, ELAC2, ELOVL1, ELOVL4, ELOVL4, ELOVL5, ELP1, ELP2, EMC1, EMG1, EPG5, EPM2A, EPRS1, ERAL1, EXT2, EXTL3, FAR1, FARS2, FARSA, FARSB, FASTKD2, FBXL4, FDFT1, FDX2, FDXR, FECH, FH, FH, FIG4, FIG4, FKRP, FKTN, FOXRED1, FTL, FTL, FTSJ1, FUCA1, FUK, FUT8, G6PC3, GAA, GABBR2, GABRA1, GABRB1, GABRB2, GABRB3, GABRD, GABRG2, GAD1, GALNS, GALNT3, GANAB, GARS1, GATC, GBA2, GCK, GCLC, GDAP1, GFER, GFM1, GFM2, GGPS1, GGT1, GK, GLA, GLB1, GLB1, GLRA1, GLRB, GLYCTK, GM2A, GMPPA, GMPPB, GNE, GNE, GNMT, GNPAT, GNPTAB, GNPTG, GORAB, GOSR2, GPAA1, GPD1, GPHN, GPI, GPT2, GPX4, GRIA2, GRIA3, GRIA4, GRID2, GRM1, GRM1, GSR, GSS, GTPBP3, GUF1, GYS1, HAAO, HADH, HAO1, HARS1, HARS2, HCCS, HEPHL1, HEXA, HEXB, HFE, HIBADH, HIBCH, HK1, HK1, HMOX1, HPD, HPGD, HPRT1, HPS3, HPS5, HPS6, HS6ST1, HS6ST2, HSD17B4, HSPA9, HSPD1, HSPE1, HTRA2, HYAL1, IARS1, IARS2, IBA57, IDH1, IDH2, IDH3A, IDH3B, IFIH1, IL1RAPL1, IMPDH1, INPP5E, INPP5K, INPPL1, INS, INS, INSR, ISCA1, ISCA2, ISCU, ITPA, ITPR1, KARS1, KARS1, KCTD7, KDSR, KIF1A, KIF5C, KYNU, L2HGDH, LAGE3, LAMP2, LARGE1, LARS1, LARS2, LCAT, LDHD, LFNG, LIAS, LIPA, LIPC, LIPE, LIPT1, LIPT2, LONP1, LPA, LPIN1, LPIN2, LRPPRC, LSS, LTC4S, LYRM4, LYRM7, LYST, MAGT1, MAN1B1, MAN2B2, MANBA, MAOA, MARS1, MARS2, MAT1A, MBOAT7, MBTPS1, MCOLN1, MDH1, MDH2, MDH2, MECR, MFF, MFN2, MFSD2A, MFSD8, MGAT2, MGME1, MICOS13, MICU1, MICU2, MIEF2, MIPEP, MMAB, MOCOS, MOCS2, MOGS, MPC1, MPDU1, MPI, MPV17, MRM2, MRPL12, MRPL24, MRPL3, MRPL44, MRPS14, MRPS16, MRPS2, MRPS22, MRPS23, MRPS25, MRPS28, MRPS34, MRPS7, MSMO1, MSTO1, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, MT-RNR1, MT-RNR2, MT-TA, MT-TC, MT-TD, MT-TE, MT-TF, MT-TG, MT-TH, MT-TI, MT-TK, MT-TL1, MT-TL2, MT-TM, MT-TN, MT-TP, MT-TQ, MT-TR, MT-TS1, MT-TS2, MT-TT, MT-TV, MTTW, MTTY, MTFMT, MTHFD1, MTM1, MTMR2, MTO1, MTPAP, MTTP, MVK, MVK, NADSYN1, NAGA, NANS, NARS2, NAT8L, NAXD, NAXE, NBAS, NDST1, NDUFA1, NDUFA10, NDUFA11, NDUFA12, NDUFA13, NDUFA2, NDUFA4, NDUFA6, NDUFA9, NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, NDUFAF5, NDUFAF6, NDUFAF8, NDUFB10, NDUFB11, NDUFB3, NDUFB8, NDUFB9, NDUFC2, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NEPRO, NEU1, NFS1, NFU1, NGLY1, NHLRC1, NMNAT1, NNT, NPC1, NPC2, NSDHL, NSUN2, NSUN3, NT5C3A, NUBPL, NUDT15, NUS1, OCRL, OGDH, OGT, OPA1, OPA3, OPLAH, OSGEP, PAICS, PAM16, PANK2, PARS2, PC, PCK1, PCK2, PCSK9, PCYT1A, PCYT1A, PCYT2, PDK3, PEPD, PET100, PET117, PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX5, PEX6, PEX7, PGAM2, PGAP1, PGAP2, PGAP3, PGM3, PHYH, PI4K2A, PI4KA, PIGB, PIGC, PIGG, PIGH, PIGK, PIGL, PIGN, PIGP, PIGQ, PIGS, PIGT, PIGU, PIGV, PIGW, PIGY, PIK3C2A, PIK3CA, PIK3CD, PIK3R1, PIK3R2, PIK3R5, PIKFYVE, PIP5K1C, PISD, PITRM1, PLA2G4A, PLA2G6, PLCB1, PLCB3, PLCB4, PLCD1, PLCE1, PLCG2, PLIN1, PLPBP, PMPCA, PMPCB, PNKD, PNPLA2, PNPLA6, PNPLA8, PNPO, PNPT1, POGLUT1, POLG, POLG2, POLR1A, POLR1B, POLR1C, POLR1C, POLR1D, POLR3A, POLR3A, POLR3B, POMGNT1, POMGNT2, POMK, POMT1, POMT2, POP1, PPCS, PPT1, PRKAG2, PRODH, PSAP, PSAP, PSAP, PSAP, PTCD3, PTDSS1, PTEN, PTRH2, PUS1, PUS3, PYCR1, PYCR2, QARS1, QRSL1, RAB18, RAB23, RAB3GAP1, RAB3GAP2, RAB7A, RARS1, RARS2, RBCK1, RBSN, RFT1, RFX6, RMND1, RMRP, RNASEH1, RNASEH2A, RNASEH2B, RNASEH2C, RNASET2, RPIA, RPL10, RPS23, RRM2B, RTN4IP1, RUBCN, RXYLT1, SACS, SAMHD1, SARS1, SARS2, SBF1, SBF2, SC5D, SCARB1, SCARB2, SCO1, SCO2, SCP2, SCYL1, SCYL2, SDHAF1, SDHB, SDHD, SECISBP2, SELENOI, SEPSECS, SERAC1, SFXN4, SGMS2, SGPL1, SLC10A2, SLC11A2, SLC13A3, SLC13A5, SLC17A5, SLC1A1, SLC1A2, SLC1A3, SLC1A4, SLC22A12, SLC25A1, SLC25A10, SLC25A11, SLC25A12, SLC25A21, SLC25A22, SLC25A24, SLC25A26, SLC25A3, SLC25A38, SLC25A4, SLC25A42, SLC25A46, SLC26A1, SLC28A1, SLC29A3, SLC2A10, SLC2A9, SLC30A9, SLC33A1, SLC35A1, SLC35A1, SLC35A3, SLC35C1, SLC38A8, SLC39A13, SLC45A1, SLC5A2, SLC5A7, SLC6A17, SLC6A19, SLC6A2, SLC6A3, SLC6A5, SLC6A9, SLC7A14, SLC7A3, SLC7A5, SLC9A7, SLCO2A1, SMPD1, SMPD4, SMS, SNAP25, SNORD118, SNX14, SPATA5, SPG11, SPG20, SPG7, SPNS2, SPTLC1, SPTLC2, SRD5A3, SSBP1, SSR3, SSR4, ST3GAL3, ST3GAL5, STAT2, STT3A, STT3B, STX11, STX1B, STXBP1, STXBP2, SUMF1, SURF1, SYN1, SYNJ1, SYT1, SYT14, SYT2, TACO1, TALDO1, TANGO2, TARS1, TARS2, TAZ, TBXAS1, TCOF1, TECPR2, TECR, TFAM, TFRC, THG1L, TIMM22, TIMM50, TIMM8A, TIMMDC1, TIMMDC1, TK2, TKFC, TKT, TMEM126A, TMEM126B, TMEM165, TMEM173, TMEM70, TMPRSS6, TOP3A, TOR1A, TP53RK, TPI1, TPMT, TPP1, TPRKB, TRAK1, TRAPPC11, TRAPPC12, TRAPPC4, TRAPPC6B, TRAPPC9, TREX1, TRIT1, TRMT1, TRMT10C, TRMT5, TSEN15, TSEN2, TSEN34, TSFM, TTC19, TUFM, TUSC3, TWNK, TXN2, TXNRD2, TYR, UBTF, UGDH, UGP2, UGT1A1, UNC13D, UPB1, UQCC2, UQCC3, UQCRB, UQCRC2, UQCRQ, UROC1, VAPB, VARS1, VARS2, VIPAS39, VLDLR, VPS11, VPS13B, VPS33A, VPS33B, VPS45, WARS1, WARS2, WDR4, WDR45, XDH, XPNPEP3, XYLT1, XYLT2, YARS1, YARS2, YIF1B, YME1L1, ZFYVE26 |
3. Extremely rare disorders (or frequency yet unknown), only described in 5 or fewer patients (N = 18) |
ACAT2, CYB5A, DBH, ENO3, FCSK, FTH1, GATB, GLS, GLS, GYG1, HYKK, NADK2, NFE2L2, ODC1, PSAT1, PSPH, SLC7A2, TRAPPC2L |
Genes excluded on the basis of treatability (N = 177) |
4. Contradicting literature on the treatment outcome (N = 6) |
GRIN1, GRIN2A, GRIN2B, GRIN2D, KCNJ11, SLC18A2 |
5. Poor prognosis (despite treatment) (N = 15) |
ABCC6, DNM1L, ENPP1, ETHE1, GALC, GLUL, HSD17B10, KCNJ11, NSDHL, RAB27A, SLC25A20, SLC35D1, SNAP29, SUOX, VAMP1 |
6. Variable phenotype, with one phenotype’s treatability disputable (N = 24) |
ALG14, BSCL2, BSCL2, CPT2, CYP11B1, EFL1, FLAD1, FTCD, GBE1, HADHB, HADHB, HNF4A, LBR, PARN, PKLR, SBDS, SDHA, SLC19A2, TBC1D24, TBK1, TRMT10A, TRMU, TSEN54, VAMP2 |
7. Treatment options are promising but still experimental (N = 19) |
ALDH5A1, ALPL, AMPD1, APOA1, ATAD1, DHODH, GFPT1, GNS, GOT2, HGSNAT, MAN2B1, MOCS1, NAGLU, PDHB, PDXK, PIGA, SGSH, SLC6A8, TF |
8. No evidence that early detection and early treatment before clinical presentation leads to considerable benefit (N = 64) |
AASS, ABCA1, ABCB6, ABCB7, ALAS2, APOA1, CBLIF, CERS3, CYP11B1, FXN, G6PD, GALM, GATA1, GSTZ1, HK1, HOGA1, HPS1, HPS4, ITPR2, LACC1, LMAN1, MCFD2, MTHFR, MYO5A, NBEAL2, NR1H4, OAS1, PDX1, PFKM, PGK1, PMVK, PNPLA1, PPM1K, PRKCSH, PSTPIP1, RPL11, RPL15, RPL18, RPL26, RPL27, RPL35, RPL35A, RPL5, RPS10, RPS15A, RPS17, RPS19, RPS24, RPS26, RPS27, RPS28, RPS29, RPS7, SEC23A, SEC23B, SLC25A13, SLC52A1, SLC6A1, TRNT1, TSR2, TYMP, UNG, VMA21, VPS13D |
9. Positive treatment response in less than 75% of patients (N = 6) |
ADK, ARSA, COQ8A, MTR, MTRR, PDSS1 |
10. Partially treatable disorders in which the available treatment has insufficient effect and/or critical manifestations of the disorder cannot be prevented (N = 43) |
ABCD4, ACSF3, AMT, ARSB, ATP13A2, CD320, CUBN, CYB561, DGKE, DHCR7, DHFR, DLAT, DLD, GATM, GCH1, GLDC, GLRX5, GRHPR, GUSB, HCFC1, HPD, IDS, MLYCD, MMACHC + PRDX1, MTHFS, NOLA2, NOLA3, PDHA1, PDHX, PDP1, PHGDH, PIGM, PIGO, PNP, PRPS1, PRPS1, SLC16A1, SLC25A32, SUCLA2, SUCLG1, TH, THAP11, ZNF143 |
Genes excluded for other reasons (N = 187) |
11. Causes disorders not within the field of IMD pediatricians in the Netherlands ** (N = 30) |
AKR1C2, AR, AR, CTPS1, CYP11A1, CYP19A1, CYP19A1, CYP21A2, ESR1, ESR2, GRM6, H6PD, HJV, HSD11B1, HSD11B2, HSD17B3, JAGN1, MAOA + MAOB, NR3C1, NR3C2, NR3C2, PGR, POR, RPL13, RPSA, SAR1B, SRD5A2, STEAP3, STS, SULT2B1 |
12. Disorders considered to be benign, mild, or not clinically relevant for NBS (N = 39) |
AAGAB, ABCC2, AGXT2, AK7, ALB, ALDH4A1, AP2S1, CTH, CYCS, DCXR, HAL, HGD, KHK, LCT, LDHB, LIPH, LPAR6, MLPH, PCSK1, PHKA2, PHKB, PRODH2, PRRT2, PYGL, PYGM, RPL21, SARDH, SELENBP1, SLC16A1, SLC27A4, SLC30A2, SLC36A2, SLC36A2 (± SLC6A20), SLC3A1, SLC7A9, SLCO1B1 + SLCO1B3, TDO2, TMEM199, TREH |
13. Clinical onset at age 10 years and older (N = 27) |
ABCC8, ABCC8, ABCG5, ABCG8, APOB, APOB, BLVRA, BMP6, CHCHD2, CPOX, CPT1C, DNAJC5, FDPS, GRN, HMBS, LDLR, LDLRAP1, MVD, NT5E, PCSK9, PHKA1, POFUT1, POLR3H, PPOX, SDHA, UROD, VPS13A |
14. Genes that also predispose for non-preventable and non-treatable disorders later in life (N = 22) |
APPL1, BLK, CYC1, DLST, DNAJC6, HNF1A, HNF1B, KIF5A, KLF11, LRRK2, MTAP, NEUROD1, NPM1, PAX4, PINK1, PRKN, SDHAF2, SDHB, SDHC, SDHD, UCP2, VPS13C |
15. Clinical diagnosis (at birth) or symptomatic *** (N = 26) |
ABCA12, ABCB11, ABCB4, ALAS2, ALOX12B, ALOXE3, ATP8B1, CHST11, CHST3, CTSB, CYP17A1, ENPP1, EOGT, EXT1, EXT2, FMO3, FTL, IMPAD1, PAPSS2, SDR9C7, SLC10A7, SLC26A2, TRAPPC2, TRIP11, UBIAD1, UROS |
16. Lack of consensus between the reviewers in the core team (N = 43) |
ACADS, AK2, AKT2, ALAD, APOA5, APRT, COQ2, COQ5, COQ6, COQ7, COQ9, CP, CTNS, EPHX1, GALE, GGCX, HAMP, HFE2, HSD3B2, LDHA, LMBRD1, LMF1, MC2R, MMADHC, MMADHC, MRAP, PDSS2, PHKG2, PMM2, PPA2, SLC30A10, SLC35A2, SLC39A14, SLC39A4, SLC39A8, SLC5A6, SLC7A7, SPR, STAR, TFR2, TMLHE, UMPS, VKORC1 |
Appendix C
IMD | Associated Gene(s) | MIM | Argument(s) to Exclude Gene(s) by the Core Team During the Literature Review | Reason(s) for Final Decision to (Re)Include Gene(s) by the Project Team After Meeting 2 |
---|---|---|---|---|
| AKT2 | *164731, #240900 | Discussion within the core team—several patients died from hypoglycemia within hours, so rapid diagnosis could be life-saving. However, results cannot be provided this rapidly. In addition, there was not enough evidence in the literature for other treatments. | AKT2 was added because the project team decided that the benefit of preventing hypoglycemic episodes, and therefore indirectly preventing complications in newborns, leads to considerable health benefits. Hepatic glycogen synthase deficiency (GYS2, MIM *138571, #240600) had already been included based on this reasoning. |
| ARSA | *607574, #250100 | Enzyme therapy does not improve outcome in every patient, according to Kaminski et al. [66]. Gene therapy is in development in mice. The core team concluded there was not enough evidence for effective treatment in >75% of patients. | Treatability highly debatable, but gene therapy was approved by the European Medicines Agency in 2020. |
| CPT2 | *600650 #614212, #600649, #608836, #255110 | First, there are major uncertainties in the natural course of these patients. Second, the Dutch Health Council had advised against the inclusion of CPT2 because of a large phenotypic variation in the severity of the disorder and the risk of overtreatment [34]. | Already a candidate for expansion of NBS. * |
| SLC25A20 | *613698, #212138 | Poor prognosis, with most patients dying within 3 months, and only a few who were treated early had a favorable outcome in the medium term [ORPHA: 159]. | Already a candidate for expansion of NBS. * |
| CTPS1 | *123860 #615897 | IMD is not treated within the IMD departments in the Netherlands. | IMD is treatable by hemopoietic stem cell transplant. While invasive, this is crucial to survive infections early in life. |
| CTNS | *606272 #219800, #219900, #219750 | Highly disputed within the core team. Excluded because one of the four phenotypes has an adult-onset. | The benefit of starting early in newborns is clear according to Hohenfellner et al. [67] (except for renal Fanconi syndrome). |
| HJV | *608374 #602390 | IMD is not treated within the IMD departments in the Netherlands. | Early detection of the disorder is important because iron depletion by phlebotomy can prevent organ damage and all disease manifestations, see Roetto et al. [68]. |
| PNP | *164050 #613179 | Not treatable according to van Karnebeek et al. [46,47]. Highly invasive hemopoietic stem cell transplant is crucial to survive infections early in life. | The efficacy of treatment depends on an early approach, see La Marca et al. [69]. |
| TH | *191290 #605407 | A progressive, often lethal, neurometabolic disorder that can be improved but not cured by L-dopa, see Hoffman et al. [70] and de Lonlay et al. [71]. | Only a very few patients respond poorly (or not at all). These patients have two severe mutations. According to Willemsen et al. [72], early diagnosis and treatment improve final outcome with regard to motor and cognitive functions. |
Argument(s) to Include Gene(s) by the Core Team During the Literature Review | Reason(s) for Final Decision to Exclude Gene(s) by the Project Team After Meeting 2 | |||
| SLC25A19 | *606521 #613710 #607196 | With early diagnosis and immediate start of optimal treatment, the prognosis improves in most patients. | Excluded due to the existence of a lethal variant (Marcé-Grau et al. [73]), according to criterion 6 in Figure 1: Variable phenotype, with the treatability of one phenotype disputable. |
Appendix D. Discussion on IMDs from the Current NBS and the Secondary Findings
Appendix E. Considerations for the Final List of Genes, Part 2
References
- TNO. The Newborn Blood Spot Screening Monitor 2019; Rijksinstituut voor Volksgezondheid en Milieu-Centrum voor Bevolkingsonderzoek; TNO: The Hague, The Netherlands, 2021. [Google Scholar]
- TNO. The Newborn Blood Spot Screening Monitor 2020; Rijksinstituut voor Volksgezondheid en Milieu-Centrum voor Bevolkingsonderzoek; TNO: The Hague, The Netherlands, 2022. [Google Scholar]
- TNO. The Newborn Blood Spot Screening Monitor 2021; Rijksinstituut voor Volksgezondheid en Milieu-Centrum voor Bevolkingsonderzoek; TNO: The Hague, The Netherlands, 2023. [Google Scholar]
- TNO. The Newborn Blood Spot Screening Monitor 2022; Rijksinstituut voor Volksgezondheid en Milieu-Centrum voor Bevolkingsonderzoek; TNO: The Hague, The Netherlands, 2023. [Google Scholar]
- National Institute for Public Health and Environment. Pre- and Neonatal Screenings (PNS), Heel Prick Screening Test [1]. Ministry of Health, Welfare and Sport. 2024. Available online: https://www.pns.nl/en/prenatal-and-newborn-screening/heel-prick-screening-test (accessed on 30 June 2024).
- National Institute for Public Health and Environment. Pre- and Neonatal Screenings (PNS), Clinical Picture. Ministry of Health, Welfare and Sport. 2024. Available online: https://www.pns.nl/en/heel-prick/clinical-picture (accessed on 30 June 2024).
- van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primers 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, K.; Dijkstra, A.M.; Bouva, M.J.; van der Krogt, J.; Bijsterveld, K.; van der Sluijs, F.; Velden, M.G.d.S.d.; Koop, K.; Rossi, A.; Thomas, J.A.; et al. Maleic acid is a biomarker for maleylacetoacetate isomerase deficiency; implications for newborn screening of tyrosinemia type 1. J. Inherit. Metab. Dis. 2023, 46, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Al-Hertani, W.; Cyr, D.; Laframboise, R.; Parizeault, G.; Wang, S.P.; Rossignol, F.; Berthier, M.-T.; Giguère, Y.; Waters, P.J.; et al. Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J. Med. Genet. 2017, 54, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Hagemeijer, M.C.; Oussoren, E.; Ruijter, G.J.G.; Onkenhout, W.; Huidekoper, H.H.; Ebberink, M.S.; Waterham, H.R.; Ferdinandusse, S.; de Vries, M.C.; Huigen, M.C.D.G.; et al. Abnormal VLCADD newborn screening resembling MADD in four neonates with decreased riboflavin levels and VLCAD activity. JIMD Rep. 2021, 61, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hong, Y.H. Asymptomatic maternal 3-methylcrotonylglycinuria detected by her unaffected baby’s neonatal screening test. Korean J. Pediatr. 2014, 57, 329. [Google Scholar] [CrossRef]
- Health Council of the Netherlands. Neonatale Hielprikscreening op Severe Combined Immunodeficiency (SCID). 2024. Available online: https://www.gezondheidsraad.nl/onderwerpen/preventie/alle-adviezen-over-preventie/neonatale-hielprikscreening-op-severe-combined-immunodeficiency-scid#:~:text=In%202021%20is%20SCID%20toegevoegd,SCID%20onder%20de%20doelziekte%20geschaard (accessed on 4 August 2024).
- Health Council of the Netherlands. Neonatal Screening; Health Council of the Netherlands: The Hague, The Netherlands, 2005. [Google Scholar]
- Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; Mooney, S.D.; et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef]
- Boemer, F.; Fasquelle, C.; D’otreppe, S.; Josse, C.; Dideberg, V.; Segers, K.; Guissard, V.; Capraro, V.; Debray, F.; Bours, V. A next-generation newborn screening pilot study: NGS on dried blood spots detects causal mutations in patients with inherited metabolic diseases. Sci. Rep. 2017, 7, 17641. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F.; Smith, L.D.; Kunard, C.M.; Bainbridge, M.; Batalov, S.; Benson, W.; Blincow, E.; Caylor, S.; Chambers, C.; Del Angel, G.; et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 2022, 109, 1605. [Google Scholar] [CrossRef]
- Veldman, A.; Kiewiet, M.B.G.; Heiner-Fokkema, M.R.; Nelen, M.R.; Sinke, R.J.; Sikkema-Raddatz, B.; Voorhoeve, E.; Westra, D.; Dollé, M.E.T.; Schielen, P.C.J.I.; et al. Towards Next-Generation Sequencing (NGS)-Based Newborn Screening: A Technical Study to Prepare for the Challenges Ahead. Int. J. Neonatal Screen. 2022, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Strand, J.; Gul, K.A.; Erichsen, H.C.; Lundman, E.; Berge, M.C.; Trømborg, A.K.; Sørgjerd, L.K.; Ytre-Arne, M.; Hogner, S.; Halsne, R.; et al. Second-Tier Next Generation Sequencing Inte-grated in Nationwide Newborn Screening Provides Rapid Molecular Diagnostics of Severe Combined Immunodeficiency. Front. Immunol. 2020, 11, 1417. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.C.H.; Mak, C.M.; Yeung, M.C.W.; Law, E.C.-Y.; Cheung, J.; Wong, T.K.; Cheng, V.W.-S.; Lee, J.K.H.; Wong, J.C.L.; Fung, C.W.; et al. Harnessing Next-Generation Sequencing as a Timely and Accurate Second-Tier Screening Test for Newborn Screening of Inborn Errors of Metabolism. Int. J. Neonatal Screen. 2024, 10, 19. [Google Scholar] [CrossRef]
- Trier, C.; Fournous, G.; Strand, J.M.; Stray-Pedersen, A.; Pettersen, R.D.; Rowe, A.D. Next-generation sequencing of newborn screening genes: The accuracy of short-read mapping. npj Genom. Med. 2020, 5, 36. [Google Scholar] [CrossRef]
- van Campen, J.C.; Sollars, E.S.; Thomas, R.C.; Bartlett, C.M.; Milano, A.; Parker, M.D.; Dawe, J.; Winship, P.R.; Peck, G.; Grafham, D.; et al. Next Generation Sequencing in Newborn Screening in the United Kingdom National Health Service. Int. J. Neonatal Screen. 2019, 5, 40. [Google Scholar] [CrossRef] [PubMed]
- Holm, I.A.; Agrawal, P.B.; Ceyhan-Birsoy, O.; Christensen, K.D.; Fayer, S.; Frankel, L.A.; Genetti, C.A.; Krier, J.B.; LaMay, R.C.; Levy, H.L.; et al. The BabySeq project: Implementing genomic sequencing in newborns. BMC Pediatr. 2018, 18, 225. [Google Scholar] [CrossRef]
- Yang, R.L.; Qian, G.L.; Wu, D.W.; Miao, J.K.; Yang, X.; Wu, B.Q.; Yan, Y.Q.; Li, H.B.; Mao, X.M.; He, J.; et al. A multicenter prospective study of next-generation sequenc-ing-based newborn screening for monogenic genetic diseases in China. World J. Pediatr. 2023, 19, 663–673. [Google Scholar] [CrossRef]
- La Marca, G.; Carling, R.S.; Moat, S.J.; Yahyaoui, R.; Ranieri, E.; Bonham, J.R.; Schielen, P.C.J.I. Current State and Innovations in Newborn Screening: Continuing to Do Good and Avoid Harm. Int. J. Neonatal Screen. 2023, 9, 15. [Google Scholar] [CrossRef]
- Stenton, S.L.; Campagna, M.; Philippakis, A.; O’Donnell-Luria, A.; Gelb, M.H. First-tier next-generation sequencing for newborn screening: An important role for biochemical second-tier testing. Genet. Med. Open 2023, 1, 100821. [Google Scholar] [CrossRef]
- Kiewiet, G.; Westra, D.; de Boer, E.N.; van Berkel, E.; Hofste, T.G.; van Zweeden, M.; Derks, R.C.; Leijsten, N.F.; Ruiterkamp-Versteeg, M.H.; Charbon, B.; et al. Future of Dutch NGS-Based Newborn Screening: Exploring the Technical Possibilities and Assessment of a Variant Classification Strategy. Int. J. Neonatal Screen. 2024, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Fan, C.; Huang, Y.; Feng, J.; Zhang, Y.; Miao, J.; Wang, X.; Li, Y.; Huang, C.; Jin, W.; et al. Genomic Sequencing as a First-Tier Screening Test and Outcomes of Newborn Screening. JAMA Netw. Open 2023, 6, e2331162. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, H.; Gu, Y. Genome Sequencing for Newborn Screening—An Effective Approach for Tackling Rare Diseases. JAMA Netw. Open 2023, 6, e2331141. [Google Scholar] [CrossRef] [PubMed]
- Spiekerkoetter, U.; Bick, D.; Scott, R.; Hopkins, H.; Krones, T.; Gross, E.S.; Bonham, J.R. Genomic newborn screening: Are we entering a new era of screening? J. Inherit. Metab. Dis. 2023, 46, 778–795. [Google Scholar] [CrossRef] [PubMed]
- Green, R.C.; Shah, N.; Genetti, C.A.; Yu, T.; Zettler, B.; Uveges, M.K.; Ceyhan-Birsoy, O.; Lebo, M.S.; Pereira, S.; Agrawal, P.B.; et al. Actionability of unanticipated monogenic disease risks in newborn genomic screening: Findings from the BabySeq Project. Am. J. Hum. Genet. 2023, 110, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Dery, V. Revisiting Wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull World Health Organ 2008, 86, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.G.; Jungner, G.; World Health Organization. Principles and Practice of Screening for Disease; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Sturdy, S.; Miller, F.; Hogarth, S.; Armstrong, N.; Chakraborty, P.; Cressman, C.; Dobrow, M.; Flitcroft, K.; Grossman, D.; Harris, R.; et al. Half a Century of Wilson & Jungner: Reflections on the Governance of Population Screening. Wellcome Open Res. 2020, 5, 158. [Google Scholar] [PubMed]
- Gezondheidsraad. Advies Screenen op Niet-Behandelbare Aandoeningen Vroeg in het Leven; Ministerie van Volksgezond-Heid WeS, Ed.; Gezondheidsraad: Den Haag, The Netherlands, 2020. [Google Scholar]
- Lombardo, S.; Seedat, F.; Elliman, D.; Marshall, J. Policy-making and implementation for newborn bloodspot screening in Europe: A comparison between EURORDIS principles and UK practice. Lancet Reg. Health–Eur. 2023, 33, 100714. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, S.; Dondorp, W. The case for screening in early life for ‘non-treatable’ disorders: Ethics, evidence and proportionality. A report from the Health Council of the Netherlands. Eur. J. Hum. Genet. 2022, 30, 1155–1158. [Google Scholar] [CrossRef]
- Bick, D.; Ahmed, A.; Deen, D.; Ferlini, A.; Garnier, N.; Kasperaviciute, D.; Leblond, M.; Pichini, A.; Rendon, A.; Satija, A.; et al. Newborn Screening by Genomic Sequencing: Opportunities and Challenges. Int. J. Neonatal Screen. 2022, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.E.; Klein, A.W.; Buitenhuis, E.C.; Rodenburg, W.; Cornel, M.C. Expanded Neonatal Bloodspot Screening Programmes: An Evaluation Framework to Discuss New Conditions With Stakeholders. Front. Pediatr. 2021, 9, 635353. [Google Scholar] [CrossRef] [PubMed]
- Veldman, A.; Kiewiet, M.B.G.; Westra, D.; Bosch, A.M.; Brands, M.M.G.; de Coo, R.I.F.M.; Derks, T.G.J.; Fuchs, S.A.; Hout, J.M.P.v.D.; Huidekoper, H.H.; et al. A Delphi Survey Study to Formulate Statements on the Treatability of Inherited Metabolic Disorders to Decide on Eligibility for Newborn Screening. Int. J. Neonatal Screen. 2023, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.S.; Mann, M.Y.; Lloyd-Puryear, M.A.; Rinaldo, P.; Howell, R.R. Newborn Screening: Toward a Uniform Screening Panel and System—Executive Summary. Pediatrics 2006, 117 (Suppl. S3), S296–S307. [Google Scholar] [CrossRef]
- Kemper, A.R.; Green, N.S.; Calonge, N.; Lam, W.K.; Comeau, A.M.; Goldenberg, A.J.; Ojodu, J.; Prosser, L.A.; Tanksley, S.; Bocchini, J.A., Jr. Decision-making process for conditions nominated to the Recommended Uniform Screening Panel: Statement of the US Department of Health and Human Services Secretary’s Advisory Committee on Heritable Disorders in Newborns and Children. Genet. Med. 2014, 16, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Milko, L.V.; O’Daniel, J.M.; DeCristo, D.M.; Crowley, S.B.; Foreman, A.K.M.; Wallace, K.E.; Mollison, L.F.; Strande, N.T.; Girnary, Z.S.; Boshe, L.J.; et al. An Age-Based Framework for Evaluating Genome-Scale Sequencing Results in Newborn Screening. J. Pediatr. 2019, 209, 68–76. [Google Scholar] [CrossRef]
- Children ACoHDiNa. Recommended Uniform Screening Panel; (HHS) DoHaHS, Ed.; Health Resources & Services Administration: Rockville, MD, USA, 2018.
- Clinical Principal Committee, Standing Committee on Screening. In Population-Based Screening Framework; Australian Government Department of Health: Canberra, Australia, 2018.
- Australian Health Ministers’ Advisory Council. Newborn Bloodspot Screening National Policy Framework; 2018 DoH, Ed.; Australian government Department of Health: Canberra, Australia, 2018.
- Van Karnebeek, C.D.M.; Shevell, M.; Zschocke, J.; Moeschler, J.B.; Stockler, S. The metabolic evaluation of the child with an intellectual developmental disorder: Diagnostic algorithm for identification of treatable causes and new digital resource. Mol. Genet. Metab. 2014, 111, 428–438. [Google Scholar] [CrossRef] [PubMed]
- van Konijnenburg, E.M.M.H.; Wortmann, S.B.; Koelewijn, M.J.; Tseng, L.A.; Houben, R.; Stöckler-Ipsiroglu, S.; Ferreira, C.R.; van Karnebeek, C.D.M. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J. Rare Diseases. 2021, 16, 170. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Rahman, S.; Keller, M.; Zschocke, J.; ICIMD Advisory Group. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 2021, 44, 164. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Van Karnebeek, C.D.M.; Vockley, J.; Blau, N. A proposed nosology of inborn errors of metabolism. Genet. Med. 2019, 21, 102–106. [Google Scholar] [CrossRef]
- VSOP Patient Alliance for Rare and Genetic Diseases. Letter to the State Secretary in Response to the Health Council’s Report ‘Screening for Non-Treatable Disorders Early in Life’. 2020. Available online: https://vsopnl/actueel/de-vsop-pleit-voor-een-aangepast-besliskader-voor-de-hielprik/ (accessed on 30 June 2024).
- van Dijk, T.; Kater, A.; Jansen, M.; Dondorp, W.J.; Blom, M.; Kemp, S.; Langeveld, M.; Cornel, M.C.; van der Pal, S.M.; Henneman, L. Expanding Neonatal Bloodspot Screening: A Multi-Stakeholder Perspective. Front. Pediatr. 2021, 9, 706394. [Google Scholar] [CrossRef] [PubMed]
- Plass, A.M.C.; van El, C.G.; Pieters, T.; Cornel, M.C. Neonatal Screening for Treatable and Untreatable Disorders: Prospective Parents’ Opinions. Pediatrics 2010, 125, e99–e106. [Google Scholar] [CrossRef]
- EURORDIS—Rare Diseases Europe. Key Principles for Newborn Screening Eurordis.org/ Newbornscreening. 2021. Available online: https://www.eurordis.org/publications/key-principles-for-newborn-screening/ (accessed on 10 September 2024).
- Zhou, L.; Deng, J.; Stenton, S.L.; Zhou, J.; Li, H.; Chen, C.; Prokisch, H.; Fang, F. Case Report: Rapid Treatment of Uridine-Responsive Epileptic En-cephalopathy Caused by CAD Deficiency. Front. Pharmacol. 2020, 11, 608737. [Google Scholar] [CrossRef] [PubMed]
- Jager, E.A.; Kuijpers, M.M.; Bosch, A.M.; Mulder, M.F.; Gozalbo, E.R.; Visser, G.; de Vries, M.; Williams, M.; Waterham, H.R.; van Spronsen, F.J.; et al. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. J. Inherit. Metab. Dis. 2019, 42, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Jennions, E.; Hedberg-Oldfors, C.; Berglund, A.; Kollberg, G.; Törnhage, C.; Eklund, E.A.; Oldfors, A.; Verloo, P.; Vanlander, A.V.; De Meirleir, L.; et al. TANGO2 deficiency as a cause of neurodevelopmental delay with indirect effects on mitochondrial energy metabolism. J. Inherit. Metab. Dis. 2019, 42, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Cavicchi, C.; Oussalah, A.; Falliano, S.; Ferri, L.; Gozzini, A.; Gasperini, S.; Motta, S.; Rigoldi, M.; Parenti, G.; Tummolo, A.; et al. PRDX1 gene-related epi-cblC disease is a common type of inborn error of cobalamin metabolism with mono- or bi-allelic MMACHC epimutations. Clin. Epigenet. 2021, 13, 137. [Google Scholar] [CrossRef]
- Guéant, J.-L.; Chéry, C.; Oussalah, A.; Nadaf, J.; Coelho, D.; Josse, T.; Flayac, J.; Robert, A.; Koscinski, I.; Gastin, I.; et al. A PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat. Commun. 2018, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Gold, N.B.; Adelson, S.M.; Shah, N.; Williams, S.; Bick, S.L.; Zoltick, E.S.; Gold, J.I.; Strong, A.; Ganetzky, R.; Roberts, A.E.; et al. Perspectives of Rare Disease Experts on Newborn Genome Sequencing. JAMA Netw. Open 2023, 6, e2312231. [Google Scholar] [CrossRef]
- Minten, T.; Gold, N.B.; Bick, S.; Adelson, S.; Gehlenborg, N.; Amendola, L.M.; Boemer, F.; Coffey, A.J.; Encina, N.; Ferlini, A.; et al. Data-driven prioritization of genetic disorders for global genomic newborn screening programs. medRxiv 2024. [Google Scholar] [CrossRef]
- Ziegler, A.; Koval-Burt, C.; Kay, D.M.; Suchy, S.F.; Begtrup, A.; Langley, K.G.; Hernan, R.; Amendola, L.M.; Boyd, B.M.; Bradley, J.; et al. Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions. JAMA 2024. [Google Scholar] [CrossRef]
- Milko, L.V.; Berg, J.S. Age-Based Genomic Screening during Childhood: Ethical and Practical Considerations in Public Health Genomics Implementation. Int. J. Neonatal Screen. 2023, 9, 36. [Google Scholar] [CrossRef]
- Burlina, A.; Jones, S.A.; Chakrapani, A.; Church, H.J.; Heales, S.; Wu, T.H.Y.; Morton, G.; Roberts, P.; Sluys, E.F.; Cheillan, D. A New Approach to Objectively Evaluate Inherited Metabolic Diseases for Inclusion on Newborn Screening Programmes. Int. J. Neonatal Screen. 2022, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N.; Makarem, D.C.; Wasserstein, M.P. Screening of Newborns for Disorders with High Benefit-Risk Ratios Should Be Mandatory. J. Law Med. Ethics 2016, 44, 231–240. [Google Scholar] [CrossRef]
- Zaidman, C.M.; Crockett, C.D.; Wedge, E.; Tabatabai, G.; Goedeker, N. Newborn Screening for Spinal Muscular Atrophy: Variations in Practice and Early Management of Infants with Spinal Muscular Atrophy in the United States. Int. J. Neonatal Screen. 2024, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, D.; Yaghootfam, C.; Matthes, F.; Reßing, A.; Gieselmann, V.; Matzner, U. Brain cell type-specific endocytosis of arylsulfatase A identifies limitations of enzyme-based therapies for metachromatic leukodystrophy. Hum. Mol. Genet. 2021, 29, 3807–3817. [Google Scholar] [CrossRef]
- Hohenfellner, K.; Rauch, F.; Ariceta, G.; Awan, A.; Bacchetta, J.; Bergmann, C.; Bechtold, S.; Cassidy, N.; Deschenes, G.; Elenberg, E.; et al. Management of bone disease in cystinosis: Statement from an international conference. J. Inherit. Metab. Dis. 2019, 42, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Roetto, A.; Totaro, A.; Cazzola, M.; Cicilano, M.; Bosio, S.; D’Ascola, G.; Carella, M.; Zelante, L.; Kelly, A.; Cox, T.; et al. Juvenile Hemochromatosis Locus Maps to Chromosome 1q. Am. J. Hum. Genet. 1999, 64, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- La Marca, G.; Canessa, C.; Giocaliere, E.; Romano, F.; Malvagia, S.; Funghini, S.; Moriondo, M.; Valleriani, C.; Lippi, F.; Ombrone, D.; et al. Diagnosis of immunodeficiency caused by a purine nucleoside phosphorylase defect by using tandem mass spectrometry on dried blood spots. J. Allergy Clin. Immunol. 2014, 134, 155–159.e3. [Google Scholar] [CrossRef]
- Hoffmann, G.F.; Assmann, B.; Dionisi-Vici, C.; De Klerk, J.B.C.; Naumann, M.; Steenbergen-Spanjers, G.C.H.; Strassburg, H.-M.; Wevers, R.A.; Bräutigam, C.; Häussler, M. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann. Neurol. 2003, 54 (Suppl. S6), S56–S65. [Google Scholar] [CrossRef]
- De Lonlay, P.; Nassogne, M.C.; van Gennip, A.H.; van Cruchten, A.C.; de Villemeur, T.B.; Cretz, M.; Stoll, C.; Launay, J.M.; Steenberger-Spante, G.C.V.; Heuvel, L.P.W.v.D.; et al. Tyrosine hydroxylase deficiency unresponsive to L-dopa treatment with unusual clinical and biochemical presentation. J. Inherit. Metab. Dis. 2000, 23, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, M.A.; Verbeek, M.M.; Kamsteeg, E.J.; de Rijk-van Andel, J.F.; Aeby, A.; Blau, N.; Burlina, A.; Donati, M.A.; Geurtz, B.; Grattan-Smith, P.J.; et al. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis. Brain 2010, 133, 1810–1822. [Google Scholar] [CrossRef]
- Marcé-Grau, A.; Martí-Sánchez, L.; Baide-Mairena, H.; Ortigoza-Escobar, J.D.; Pérez-Dueñas, B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J. Inherit. Metab. Dis. 2019, 42, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Ørstavik, K.; Arntzen, K.A.; Mathisen, P.; Backe, P.H.; Tangeraas, T.; Rasmussen, M.; Kristensen, E.; Van Ghelue, M.; Jonsrud, C.; Bliksrud, Y.T. Novel mutations in the HADHB gene causing a mild phenotype of mitochondrial trifunctional protein MTP deficiency. JIMD Rep. 2022, 63, 193–198. [Google Scholar] [CrossRef] [PubMed]
IMD in the Dutch Newborn Screening | Associated Gene(s) | MIM | Secondary Findings IMD Due to Abnormal Biomarkers | Associated Gene(s) | MIM |
---|---|---|---|---|---|
| ADA * | *608958 #102700 |
| GCH1 | *600225 #128230 #233910 |
| ABCD1 | *300371 #300100 |
| QDPR | *612676 #261630 |
| BTD | *609019 #253260 |
| DNAJC12 | *606060 #617384 |
| CPT1A | *600528 #255120 |
| FLAD1 *** | *610595 #255100 |
| GALK1 | *604313 #230200 |
| GSTZ1 *** | *603758 #617596 |
| GALT | *606999 #230400 |
| LMBRD1 *** SUCLA2 ***, SUCLG1 ***, MLYCD ***, ACSF3 *** | *612625 #277380, *603921 #612073, *611224 #245400, *606761 #248360 *614245 #614265 |
| GCDH | *608801 #231670 |
| PRDX1 ***, ABCD4 ***, HCFC1 ***, THAP11 (interacts with HCFC1) ***, TCN2, CD320 ***, CBLIF ***, CUBN ***, AMN, ZNF143 *** | *176763 #277400 *603214 #614857, *300019 #309541, *609119, *613441 #275350, *606475 #613646, *609342 #261000, *602997 #261100 #618884, *605799 #618882, *603433 |
| HMGCL | *613898 #246450 |
| ACAT1 | *607809 #203750 |
| IVD | *607036 #243500 |
| ETFA, ETFB, ETFDH | *608053 #231680, *130410 #231680, *231675 #231680 |
| DBT, BCKDHA, BCKDHB | *248610 #620699, *608348 #248600, *248611 #620698 |
| SLC22A5 | *603377 #212140 |
| ACADM | *607008 #201450 |
| PCBD1 | *126090 #264070 |
| MMUT, MMAA, MMAB ***, MMACHC, MMADHC, MCEE | *609058 #251000, *607481 #251100, *607568 #251110, *609831 #277400, *611935 #277410, *608419 #251120 |
| SLC52A1 ***, SLC52A2, SLC52A3 | *607883 #615026, *607882 #614707, *613350 #211500 #211530 |
| HLCS | *609018 #253270 |
| HSD17B10 *** | *300256 #300438 |
| PAH | *612349 #261600 |
| AUH *** | *600529 #250950 |
| PCCA, PCCB | *232000 #606054, *232050 #606054 |
| PTS | *612719 #261640 |
| HADHA, HADHB *** | *600890 #609016 #609015, *143450 #620300 | |||
| FAH | *613871 #276700 | |||
| ACADVL | *609575 #201475 | |||
| IDUA | *252800 #607014 #607015 #607016 | |||
| MCCC1, MCCC2 | *609010 #210200, *609014 #210210 |
ABCD1 * | BAAT | FBP1 | IDUA * | PTS ** |
ACADM * | BCKDHA * | FOLR1 | IVD * | QDPR ** |
ACADVL * | BCKDHB * | G6PC | LPL | SI |
ACAT1 ** | BCKDK | GALK1 * | MCCC1 * | SLC19A3 |
ADA * | BTD * | GALT * | MCCC2 * | SLC22A5 ** |
AGL | CA5A | GAMT | MCEE ** | SLC25A15 |
AGXT | CAD | GATM | MMAA * | SLC25A20 |
AHCY | CBS | GBA | MMACHC * | SLC2A1 |
AKR1D1 | CPS1 | GCDH * | MMADHC * | SLC2A2 |
AKT2 | CPT1A * | GCH1 ** | MMUT * | SLC37A4 |
ALDH7A1 | CPT2 | GCK | NAGS | SLC40A1 |
ALDOB | CTNS | GLUD1 | OAT | SLC46A1 |
AMN ** | CTPS1 | GPIHBP1 | OTC | SLC52A2 ** |
APOC2 | CYP27A1 | GYS2 | OXCT1 | SLC52A3 ** |
APOE | DBT * | HADHA * | PAH * | SLC5A1 |
ARG1 | DNAJC12 ** | HJV | PCBD1 ** | TAT |
ARSA | ETFA ** | HLCS * | PCCA * | TCN2 ** |
ASL | ETFB ** | HMGCL * | PCCB * | TH |
ASS1 | ETFDH ** | HMGCS2 | PGM1 | TPK1 |
ATP7B | FAH * | HSD3B7 | PNP | TTPA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veldman, A.; Sikkema-Raddatz, B.; Derks, T.G.J.; van Karnebeek, C.D.M.; Kiewiet, M.B.G.; Mulder, M.F.; Nelen, M.R.; Rubio-Gozalbo, M.E.; Sinke, R.J.; de Sain-van der Velden, M.G.; et al. Newborn Screening by DNA-First: Systematic Evaluation of the Eligibility of Inherited Metabolic Disorders Based on Treatability. Int. J. Neonatal Screen. 2025, 11, 1. https://doi.org/10.3390/ijns11010001
Veldman A, Sikkema-Raddatz B, Derks TGJ, van Karnebeek CDM, Kiewiet MBG, Mulder MF, Nelen MR, Rubio-Gozalbo ME, Sinke RJ, de Sain-van der Velden MG, et al. Newborn Screening by DNA-First: Systematic Evaluation of the Eligibility of Inherited Metabolic Disorders Based on Treatability. International Journal of Neonatal Screening. 2025; 11(1):1. https://doi.org/10.3390/ijns11010001
Chicago/Turabian StyleVeldman, Abigail, Birgit Sikkema-Raddatz, Terry G. J. Derks, Clara D. M. van Karnebeek, M. B. Gea Kiewiet, Margaretha F. Mulder, Marcel R. Nelen, M. Estela Rubio-Gozalbo, Richard J. Sinke, Monique G. de Sain-van der Velden, and et al. 2025. "Newborn Screening by DNA-First: Systematic Evaluation of the Eligibility of Inherited Metabolic Disorders Based on Treatability" International Journal of Neonatal Screening 11, no. 1: 1. https://doi.org/10.3390/ijns11010001
APA StyleVeldman, A., Sikkema-Raddatz, B., Derks, T. G. J., van Karnebeek, C. D. M., Kiewiet, M. B. G., Mulder, M. F., Nelen, M. R., Rubio-Gozalbo, M. E., Sinke, R. J., de Sain-van der Velden, M. G., Visser, G., de Vries, M. C., Westra, D., Williams, M., Wevers, R. A., Heiner-Fokkema, M. R., & van Spronsen, F. J. (2025). Newborn Screening by DNA-First: Systematic Evaluation of the Eligibility of Inherited Metabolic Disorders Based on Treatability. International Journal of Neonatal Screening, 11(1), 1. https://doi.org/10.3390/ijns11010001