Insights from the Newborn Screening Program for Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency in Kuwait †
Abstract
:1. Introduction
2. Materials and Methods
2.1. NBS Registry
2.2. Initial DBS Collection Protocol
2.3. Analytical Methods
2.3.1. Acylcarnitine Measurement in First (Initial) DBS
2.3.2. Acylcarnitine Measurement in Second DBS (Confirmatory DBS)
2.4. Molecular Testing
3. Results
3.1. NBS Registry
3.2. DBS with Elevated C14:1
3.3. Evaluation of the C14:1/C2 Ratio as a Potential Strategy for Screening for VLCADD in Kuwait
3.4. Molecular Genetic Testing Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saudubray, J.M.; van den Berghe, G.; Walter, J.H. Inborn Metabolic Diseases: Diagnosis and Treatment; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–657. [Google Scholar] [CrossRef]
- Wilcken, B. Fatty acid oxidation disorders: Outcome and long-term prognosis. J. Inherit. Metab. Dis. 2010, 33, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Nyhan, W.L.; Hoffmann, G.; Barshop, B.A.; Al-Aqeel, A.I. Atlas of Inherited Metabolic Diseases, 3rd ed.; CRC Press: London, UK, 2012; p. 874. [Google Scholar]
- Alhashem, A.; Mohamed, S.; Abdelraheem, M.; AlGufaydi, B.; Al-Aqeel, A. Molecular and clinical characteristics of very long-chain acyl-CoA dehydrogenase deficiency: A single-center experience in Saudi Arabia. Saudi Med. J. 2020, 41, 590. [Google Scholar] [CrossRef] [PubMed]
- Leslie, N.; Saenz-Ayala, S. Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency—GeneReviews®—NCBI Bookshelf. In GeneReviews®; University of Washington: Seattle, WA, USA, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6816/ (accessed on 3 January 2025).
- Tucci, S. Very long-chain acyl-CoA dehydrogenase (VLCAD-) deficiency-studies on treatment effects and long-term outcomes in mouse models. J. Inherit. Metab. Dis. 2017, 40, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Alsharhan, H.; Ahmed, A.A.; Ali, N.M.; Alahmad, A.; Albash, B.; Elshafie, R.M.; Alkanderi, S.; Elkazzaz, U.M.; Cyril, P.X.; Abdelrahman, R.M.; et al. Early Diagnosis of Classic Homocystinuria in Kuwait Through Newborn Screening: A 6-Year Experience. Int. J. Neonatal Screen. 2021, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Hoffmann, G.F.; Matern, D. Newborn screening for disorders of fatty-acid oxidation: Experience and recommendations from an expert meeting. J. Inherit. Metab. Dis. 2010, 33, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Alabdulrazzaq, F.; AlSharhan, H.; Ahmed, A.; Marafie, M.; Sulaiman, I.; Alshafie, R.; AlAhmad, A.; AlBash, B.; Ali, N.; Cyril, P.; et al. eP001: Newborn screening experience for very long chain Acyl-CoA Dehydrogenase (VLCAD) deficiency in Kuwait. Genet. Med. 2022, 24, S1. [Google Scholar] [CrossRef]
- Wilcken, B.; Wiley, V.; Hammond, J.; Carpenter, K. Screening Newborns for Inborn Errors of Metabolism by Tandem Mass Spectrometry. N. Engl. J. Med. 2003, 348, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Lindner, M.; Kohlmüller, D.; Olgemöller, K.; Mayatepek, E.; Hoffmann, G.F. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: Results, outcome, and implications. Pediatrics 2003, 111, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Vreken, P.; Van Lint, A.E.M.; Bootsma, A.H.; Overmars, H.; Wanders, R.J.A.; Van Gennip, A.H. Quantitative plasma acylcarnitine analysis using electrospray tandem mass spectrometry for the diagnosis of organic acidaemias and fatty acid oxidation defects. J. Inherit. Metab. Dis. 1999, 22, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Leslie, N.D.; Valencia, C.A.; Strauss, A.W.; Zhang, K. Very Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Spiekerkoetter, U.; Haussmann, U.; Mueller, M.; ter Veld, F.; Stehn, M.; Santer, R.; Lukacs, Z. Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: The value of second-tier enzyme testing. J. Pediatr. 2010, 157, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Schymik, I.; Liebig, M.; Mueller, M.; Wendel, U.; Mayatepek, E.; Strauss, A.W.; Wanders, R.J.; Spiekerkoetter, U. Pitfalls of neonatal screening for very-long-chain Acyl-CoA dehydrogenase deficiency using tandem mass spectrometry. J. Pediatr. 2006, 149, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Hesse, J.; Braun, C.; Behringer, S.; Matysiak, U.; Spiekerkoetter, U.; Tucci, S. The diagnostic challenge in very-long chain acyl-CoA dehydrogenase deficiency (VLCADD). J. Inherit. Metab. Dis. 2018, 41, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Boneh, A.; Andresen, B.S.; Gregersen, N.; Ibrahim, M.; Tzanakos, N.; Peters, H.; Yaplito-Lee, J.; Pitt, J.J. VLCAD deficiency: Pitfalls in newborn screening and confirmation of diagnosis by mutation analysis. Mol. Genet. Metab. 2006, 88, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Merritt, J.L.; Vedal, S.; Abdenur, J.E.; Au, S.M.; Barshop, B.A.; Feuchtbaum, L.; Harding, C.O.; Hermerath, C.; Lorey, F.; Sesser, D.E.; et al. Infants suspected to have very-long chain acyl-CoA dehydrogenase deficiency from newborn screening. Mol. Genet. Metab. 2014, 111, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Diekman, E.; de Sain-Van Der Velden, M.; Waterham, H.; Kluijtmans, L.; Schielen, P.; van Veen, E.B.; Ferdinandusse, S.; Wijburg, F.; Visser, G. The Newborn Screening Paradox: Sensitivity vs. Overdiagnosis in VLCAD Deficiency. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2015; Volume 27, pp. 101–106. [Google Scholar] [CrossRef]
- McHugh, D.M.S.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Åhlman, H.; Allen, J.J.; Antonozzi, I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [Google Scholar] [CrossRef] [PubMed]
- Hisahara, S.; Matsushita, T.; Furuyama, H.; Tajima, G.; Shigematsu, Y.; Imai, T.; Shimohama, S. A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis. Tohoku J. Exp. Med. 2015, 235, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.J.; Burrage, L.C.; Gibson, J.B.; Strenk, M.E.; Lose, E.J.; Bick, D.P.; Elsea, S.H.; Sutton, V.R.; Sun, Q.; Graham, B.H.; et al. Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-CoA Dehydrogenase (VLCAD) deficiency in the United States. Mol. Genet. Metab. 2015, 116, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Alfadhel, M.; Benmeakel, M.; Hossain, M.A.; Al Mutairi, F.; Al Othaim, A.; Alfares, A.A.; Al Balwi, M.; Alzaben, A.; Eyaid, W. Thirteen year retrospective review of the spectrum of inborn errors of metabolism presenting in a tertiary center in Saudi Arabia. Orphanet J. Rare Dis. 2016, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Obaid, A.; Nashabat, M.; Alfadhel, M.; Alasmari, A.; Al Mutairi, F.; Alswaid, A.; Faqeih, E.; Mushiba, A.; Albanyan, M.; Alalwan, M.; et al. Clinical, Biochemical, and Molecular Features in 37 Saudi Patients with Very Long Chain Acyl-CoA Dehydrogenase Deficiency. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2018; Volume 40, p. 47. [Google Scholar] [CrossRef]
2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | Total | |
---|---|---|---|---|---|---|---|---|
Total sample received in the NBS laboratory | 57,600 | 56,441 | 56,333 | 55,210 | 59,655 | 57,951 | 52,789 | 395,979 |
Total newborns screened | 51,585 | 52,463 | 50,916 | 48,501 | 53,689 | 52,155 | 47,510 | 356,819 |
No. of all newborns in Kuwait per CSB | 51,585 | 52,463 | 53,565 | 56,121 | 59,172 | 58,797 | 59,271 | 390,974 |
No. of Kuwaiti newborns per CSB | 34,610 | 31,766 | 32,263 | 33,168 | 33,680 | 33,431 | 33,581 | 232,499 |
No. of Non-Kuwaiti newborns per CSB | 16,975 | 20,697 | 21,302 | 22,953 | 25,492 | 25,366 | 25,690 | 158,475 |
Screened Kuwaiti newborns | 32,657 | 30,444 | 30,145 | 28,645 | 29,074 | 28,733 | 24,859 | 204,557 |
Screened non-Kuwaiti newborns | 18,928 | 22,019 | 20,771 | 19,856 | 24,615 | 23,422 | 22,651 | 152,262 |
Newborns not screened under the national NBS program | 0 | 0 | 2649 | 7620 | 5483 | 6642 | 11,761 | 34,155 |
Percent of coverage of national NBS program | 100% | 100% | 95.1% | 86.4% | 90.7% | 88.7% | 80.1% | - |
Ethnicity | Date of Birth (Month.Year) | Gender | First DBS | Confirmatory DBS C14:1 Cutoff ≥ 1 μmol/L | Age at DBS Collection (Days) | Age at NBS Result (Days) | Age at Start of Treatment (Days) | ¥ DNA Variant ACADVL | Protein Variant | CK (RR < 250 IU/L) | Outcome | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C14:1 (Cutoff 0.29 μmol/L) | C14:1/C2 (Cutoff 0.03) | ||||||||||||
1 | K | 04.2015 | F | 2.48 | 0.19 | 3.44 | 1 | 8 | 8 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
2 | IND | 07.2015 | F | 3.57 | NA | NP | 1 | - | - | - | - | - | Died at age 1 day |
3 | K | 10.2015 | F | 2.6 | 0.42 | 2.587 | 1 | 6 | 6 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
4 | K | 04.2016 | M | 1.8 | 0.10 | 4.649 | 1 | 5 | 5 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
5 | K | 06.2016 | M | 2.9 | 0.34 | 3.899 | <1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 9031 | Uneventful |
6 | KSA | 06.2016 | F | 5.65 | 0.31 | 4.6 | 3 | 7 | 7 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1267 | Uneventful |
7 | K | 07.2016 | F | 3.66 | 0.33 | NP | NA | missed | 90 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Loss of follow-up |
8 | K * | 09.2016 | M | 2.48 | 0.38 | NP | 1 | 4 | - | - | - | - | Died at age 3 days |
9 | K | 10.2016 | F | 3.56 | 0.29 | 4.55 | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
10 | K | 12.2016 | M | 3.35 | 0.21 | 3.97 | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
11 | K | 03.2017 | M | 2.7 | 0.28 | 4.24 | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
12 | K # | 09.2017 | F | 1.6 | 0.2 | 0.25 (N) # | 1 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
13 | K | 11.2017 | M | 0.39 | 0.04 | 1.63 | 3 | 5 | 5 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 260 | Uneventful |
14 | K | 12.2017 | M | 1.56 | 0.12 | 4.86 | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 5662 | Uneventful |
15 | K | 12.2017 | M | 2.6 | 0.23 | 3.88 | 2 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
16 | K ** | 12.2017 | F | 2.1 | 0.22 | 5.884 | 1 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1506 | Uneventful |
17 | K * | 02.2018 | M | 0.8 | 0.15 | 1.6 | 1 | 2 | 2 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 3000 | Uneventful |
18 | IND | 02.2018 | F | 1.6 | 0.14 | NP | 2 | 5 | - | - | - | - | Died at age 2 days |
19 | IND ‡ | 04.2018 | M | 1.7 | 0.18 | 0.7 (N) ‡ | <1 | 4 | 0 | c.1269+1G>A (Homo) | - | NA | Mild ventricular hypertrophy, EF 50% |
20 | K | 04.2018 | M | 4.2 | 0.59 | 4.85 | 3 | 6 | 6 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
21 | K | 04.2018 | M | 1.5 | 0.34 | 2.3 | 2 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
22 | K | 07.2018 | M | 2.5 | 0.66 | 4.319 | 8 | 9 | 9 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
23 | K | 08.2018 | F | 1.9 | 0.86 | 6.1 | 1 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1521 | Uneventful |
24 | K | 10.2018 | F | 1.44 | 0.18 | 2.9 | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
25 | K | 10.2018 | M | 1.9 | 0.16 | 3.1 | 1 | 2 | 2 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
26 | K ¢ | 10.2018 | F | 2.5 | 0.23 | 0.419 (N) ¢ | 1 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
27 | KSA | 01.2019 | M | 2.66 | 0.19 | NP | 2 | 5 | - | - | - | NA | Died at age 4 days |
28 | K ^ | 04.2019 | F | 2.2 | 0.13 | 5.49 | 2 | 6 | 6 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 3000 | Uneventful |
29 | K | 08.2019 | M | 0.97 | 0.15 | NP | 2 | 4 | - | - | - | NA | Died at age 3 days |
30 | K Œ | 09.2019 | F | 1.3 | 0.17 | 0.46 (N) Œ | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
31 | K | 09.2019 | M | 4.12 | 0.24 | 4.92 | 3 | 6 | 6 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
32 | K | 10.2019 | F | 3.73 | 0.22 | 5.96 | 3 | 5 | 5 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1813 | Uneventful |
33 | K | 06.2020 | M | 2.01 | 0.33 | 4.69 | 1 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1418 | Uneventful |
34 | K | 06.2020 | M | 2.01 | 0.50 | 2.7 | 5 | 7 | 7 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 591 | Uneventful |
35 | K | 07.2020 | M | 1.99 | 0.24 | 5.25 | 3 | 5 | 5 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
36 | K | 08.2020 | F | 2.03 | 0.31 | 1.07 | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
37 | K ** | 09.2020 | F | 2.17 | 0.26 | 3.99 | 2 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1440 | Uneventful |
38 | K | 10.2020 | F | 0.83 | 0.10 | NA | 2 | 5 | 5 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
39 | K § | 11.2020 | F | 1.57 | 0.19 | 0.54 (N) § | 1 | 3 | 3 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 12,000 | Uneventful |
40 | K | 03.2021 | M | 1.21 | 0.26 | 3.253 | 2 | 6 | 6 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
41 | K | 04.2021 | F | 2.01 | 0.49 | 3.824 | 1 | 6 | 6 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
42 | K ^ | 06.2021 | M | 1.78 | 0.5 | 3.85 | 3 | 4 | 4 | c.65C>A (Homo) | p.Ser22Ter (Homo) | NA | Uneventful |
43 | K | 08.2021 | M | 1.99 | 0.21 | 1.59 | 2 | 5 | 5 | c.65C>A (Homo) | p.Ser22Ter (Homo) | 1800 | Uneventful |
Cutoff | No. (%) of Positives | False Negative | True Positive | PPV % | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|
C14:1 > 0.29 μmol/L | 178 | 0 | 43 | 27 | 100 | 99.96 |
C14:1 > 0.29 μmol/L + C14:1/C2 >0.03 | 113 | 0 | 43 | 42 | 100 | 99.97 |
C14:1 > 0.29 μmol/L + C14:1/C2 >0.05 | 85 | 3 | 40 | 60 | 93 | 99.98 |
C14:1 > 0.29 μmol/L + C14:1/C2 >0.08 | 74 | 3 | 40 | 61 | 93 | 99.98 |
C14:1 > 0.29 μmol/L + C14:1/C2 >0.1 | 69 | 3 | 40 | 65 | 93 | 99.98 |
Ethnicity | Date of Birth (Month.Year) | Gender | DBS | Confirmatory DBS C14:1 Cut-off ≥ 1 mmol/L | Age at NBS Result (Days) | DNA Variant | Protein Variant | CK (RR < 250 IU/L) | |
---|---|---|---|---|---|---|---|---|---|
C14:1 (Cutoff 0.29 nmol/mL) | C14:1/C2 (Cutoff 0.03) | ||||||||
K | 11.2018 | M | 0.39 | 0.02 | normal | 3 | c.65C>A (Het) | p.(Ser22Ter) (Het) | NA |
K | 11.2019 | F | 0.43 | 0.02 | normal | 3 | c.65C>A (Het) | p.(Ser22Ter) (Het) | 358 |
K | 08.2020 | M | 1.61 | 0.17 | 4.1 | 5 | c.65C>A (Het) | p.(Ser22Ter) (Het) | 1351 |
Afghani | 09.2020 | M | 0.35 | 0.03 | normal | 4 | c.1615G>A (Het) | p.(Ala539Thr) (Het) | 144 |
K | 03.2021 | M | 0.47 | 0.05 | normal | 3 | c.65C>A (Het) | p.(Ser22Ter) (Het) | 1354 |
K | 03.2021 | M | 0.3 | Normal | 0.27 (normal) | c.65C>A (Het) | p.(Ser22Ter) (Het) | NA | |
K | 0.6.2021 | M | 0.36 | 0.04 | normal | 3 | c.65C>A (Het) | p.(Ser22Ter) (Het) | 398 |
Ethnicity | Date of Birth (Month.Year) | Gender | DBS | DBS C14:1 Cutoff ≥ 1 μmol/L | DNA Variant | Protein Variant | CK (RR < 250 IU/L) | Symptoms | |
---|---|---|---|---|---|---|---|---|---|
C14:1 (Cutoff 0.29 μmol/L) | C14:1/C2 (Cutoff 0.03) | ||||||||
Afghani | 0.9.2020 | M | 0.35 | 0.03 | 0.22 | c.1615G>A (Het) | p.Ala539Thr (Het) | NA | Asymptomatic |
K | 09.2021 | F | 0.32 | 0.04 | 0.18 | c.896_898delAGA | p.Lys299del | NA | Asymptomatic |
K | 08.2020 | F | 0.44 | normal | 0.86 | c.65C>A (Het) | p.Ser22Ter (Het) | NA | Asymptomatic |
K | 08.2020 | F | 0.44 | 0.02 | 0.86 | c.65C>A (Het) | p.Ser22Ter (Het) | 1351 | Asymptomatic |
K | 0.3.2021 | M | 0.3 | normal | 0.271 | c.62G>A (Het) | p.Ser21Asn (Het) | NA | Asymptomatic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharhan, H.; Ahmed, A.A.; Abdullah, M.; Almaie, M.; Marafie, M.J.; Sulaiman, I.; Elshafie, R.M.; Alahmad, A.; Alshammari, A.; Cyril, P.X.; et al. Insights from the Newborn Screening Program for Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency in Kuwait. Int. J. Neonatal Screen. 2025, 11, 19. https://doi.org/10.3390/ijns11010019
Alsharhan H, Ahmed AA, Abdullah M, Almaie M, Marafie MJ, Sulaiman I, Elshafie RM, Alahmad A, Alshammari A, Cyril PX, et al. Insights from the Newborn Screening Program for Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency in Kuwait. International Journal of Neonatal Screening. 2025; 11(1):19. https://doi.org/10.3390/ijns11010019
Chicago/Turabian StyleAlsharhan, Hind, Amir A. Ahmed, Marwa Abdullah, Moudhi Almaie, Makia J. Marafie, Ibrahim Sulaiman, Reem M. Elshafie, Ahmad Alahmad, Asma Alshammari, Parakkal Xavier Cyril, and et al. 2025. "Insights from the Newborn Screening Program for Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency in Kuwait" International Journal of Neonatal Screening 11, no. 1: 19. https://doi.org/10.3390/ijns11010019
APA StyleAlsharhan, H., Ahmed, A. A., Abdullah, M., Almaie, M., Marafie, M. J., Sulaiman, I., Elshafie, R. M., Alahmad, A., Alshammari, A., Cyril, P. X., Elkazzaz, U. M., Ibrahim, S. M., Elghitany, M., Salloum, A. M., Yassen, F., Alsafi, R., Bastaki, L., & Albash, B. (2025). Insights from the Newborn Screening Program for Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency in Kuwait. International Journal of Neonatal Screening, 11(1), 19. https://doi.org/10.3390/ijns11010019