Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report
Abstract
:1. Introduction
2. MPS I Newborn Screening Using Digital Microfluidics
2.1. Platform Overview
2.2. Development and Commercialization of the DMF Platform
2.3. Procedure for Specimen Analysis on the DMF Platform
2.4. Practical Considerations of Digital Microfluidics as a Platform for NBS
2.4.1. Advantages
2.4.2. Limitations
3. Prospective Screening Results from States Using DMF
3.1. Overview of Survey Design and Distribution
3.2. Results and Discussion
3.2.1. Summary of Responses from Laboratories Using DMF for MPS I NBS
3.2.2. Review of Results and Comparison with Published Data
3.2.3. Proposed Techniques to Minimize MPS I Screen Positive Rates
4. Expansion of DMF for NBS of Other MPS Disorders
Funding
Acknowledgments
Conflicts of Interest
References
- Chamoles, N.A.; Blanco, M.; Gaggioli, D. Diagnosis of α-L-iduronidase deficiency in dried blood spots on filter paper: The possibility of newborn diagnosis. Clin. Chem. 2001, 47, 780–781. [Google Scholar] [PubMed]
- Chamoles, N.A.; Niizawa, G.; Blanco, M.; Gaggioli, D.; Casentini, C. Glycogen storage disease type II: Enzymatic screening in dried blood spots on filter paper. Clin. Chim. Acta 2004, 347, 97–102. [Google Scholar] [CrossRef]
- Li, Y.; Brockmann, K.; Turecek, F.; Scott, C.R.; Gelb, M.H. Tandem Mass Spectrometry for the Direct Assay of Enzymes in Dried Blood Spots: Application to Newborn Screening for Krabbe Disease. Clin. Chem. 2004, 50, 638–640. [Google Scholar]
- Li, Y.; Scott, C.R.; Chamoles, N.A.; Ghavami, A.; Pinto, B.M.; Turecek, F.; Gelb, M.H. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin. Chem. 2004, 50, 1785–1796. [Google Scholar]
- Wang, D.; Eadala, B.; Sadilek, M.; Chamoles, N.A.; Turecek, F.; Scott, C.R.; Gelb, M.H. Tandem mass spectrometric analysis of dried blood spots for screening of mucopolysaccharidosis I in newborns. Clin. Chem. 2005, 51, 898–900. [Google Scholar]
- Marsden, D.; Levy, H. Newborn Screening of Lysosomal Storage Disorders. Clin. Chem. 2010, 56, 1071–1079. [Google Scholar] [PubMed]
- Nakamura, K.; Hattori, K.; Endo, F. Newborn screening for lysosomal storage disorders. Am. J. Med. Genet. Part C Semin. Med. Genet. 2011, 157, 63–71. [Google Scholar]
- Choi, K.; Ng, A.H.C.; Fobel, R.; Wheeler, A.R. Digital Microfluidics. Annu. Rev. Anal. Chem. 2012, 5, 413–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollack, M.G.; Pamula, V.K.; Srinivasan, V.; Eckhardt, A.E. Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev. Mol. Diagn. 2011, 11, 393–407. [Google Scholar]
- Millington, D.S.; Sista, R.; Eckhardt, A.; Rouse, J.; Bali, D.; Goldberg, R.; Cotten, M.; Buckley, R.; Pamula, V. Digital Microfluidics: A Future Technology in the Newborn Screening Laboratory? Semin. Perinatol. 2010, 34, 163–169. [Google Scholar] [PubMed] [Green Version]
- Sista, R.S.; Eckhardt, A.E.; Wang, T.; Graham, C.; Rouse, J.L.; Norton, S.M.; Srinivasan, V.; Pollack, M.G.; Tolun, A.A.; Bali, D.; et al. Digital microfluidic platform for multiplexing enzyme assays: Implications for lysosomal storage disease screening in newborns. Clin. Chem. 2011, 57, 1444–1451. [Google Scholar] [PubMed]
- Burton, B.; Charrow, J.; Angle, B.; Widera, S.; Waggoner, D. A pilot newborn screening program for lysosomal storage disorders (LSD) in Illinois. Mol. Genet. Metab. 2012, 105, S23–S24. [Google Scholar] [CrossRef]
- Sista, R.S.; Wang, T.; Wu, N.; Graham, C.; Eckhardt, A.; Winger, T.; Srinivasan, V.; Bali, D.; Millington, D.S.; Pamula, V.K. Multiplex newborn screening for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital microfluidic platform. Clin. Chim. Acta 2013, 424, 12–18. [Google Scholar]
- Watson, M.S.; Mann, M.Y.; Lloyd-Puryear, M.A.; Rinaldo, P.; Howell, R.R. Newborn Screening: Toward a Uniform Screening Panel and System—Executive Summary. Pediatrics 2006, 117, S296–S307. [Google Scholar]
- Advisory Committee on Heritable Disorders in Newborns and Children. Official Web Site of the U.S. Health Resources & Services Administration. Available online: https://www.hrsa.gov/advisory-committees/heritable-disorders/index.html (accessed on 10 September 2020).
- FDA Permits Marketing of First Newborn Screening System for Detection of Four, Rare Metabolic Disorders; FDA: Montgomery and Prince Georges Counties, MD, USA, 2017. Available online: https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-first-newborn-screening-system-detection-four-rare-metabolic-disorders (accessed on 10 September 2020).
- Hopkins, P.V.; Campbell, C.; Klug, T.; Rogers, S.; Raburn-Miller, J.; Kiesling, J. Lysosomal storage disorder screening implementation: Findings from the first six months of full population pilot testing in Missouri. J. Pediatr. 2015, 166, 172–177. [Google Scholar] [PubMed]
- Hopkins, P.V.; Klug, T.; Vermette, L.; Raburn-Miller, J.; Kiesling, J.; Rogers, S. Incidence of 4 lysosomal storage disorders from 4 years of newborn screening. JAMA Pediatr. 2018, 172, 696–697. [Google Scholar] [PubMed] [Green Version]
- Millington, D.; Norton, S.; Singh, R.; Sista, R.; Srinivasan, V.; Pamula, V. Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev. Mol. Diagn. 2018, 18, 701–712. [Google Scholar] [PubMed]
- Millington, D.; Bali, D. Current State of the Art of Newborn Screening for Lysosomal Storage Disorders. Int. J. Neonatal Screen. 2018, 4, 24. [Google Scholar]
- Martin, J.A.; Brady, M.P.H.; Hamilton, E.; Ventura, S.J.; Michelle, M.A.; Osterman, J.K.; Wilson, E.C.; Mathews, T.J. National Vital Statistics Reports Births: Final Data for 2010; National Center for Biotechnology Information: Bethesda, MD, USA, 2010; Volume 61. [Google Scholar]
- Kemper, A.R.; Brosco, J.; Comeau, A.M.; Green, N.S.; Prosser, L.A.; Ojodu, J.; Tanksley, S.; Jones, E.; Lam, K.K. Newborn Screening for Mucopolysaccharidosis Type 1 (MPS I): A Systematic Review of Evidence Report of Final Findings Final Version 1.1 The Condition Review Workgroup; Association of Public Health Laboratories: Silver Spring, MD, USA, 2015. [Google Scholar]
- de Ruijter, J.; de Ru, M.H.; Wagemans, T.; Ijlst, L.; Lund, A.M.; Orchard, P.J.; Schaefer, G.B.; Wijburg, F.A.; van Vlies, N. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol. Genet. Metab. 2012, 107, 705–710. [Google Scholar] [PubMed]
- Herbst, Z.M.; Urdaneta, L.; Klein, T.; Fuller, M.; Gelb, M.H. Evaluation of Multiple Methods for Quantification of Glycosaminoglycan Biomarkers in Newborn Dried Blood Spots from Patients with Severe and Attenuated Mucopolysaccharidosis-I. Int. J. Neonatal Screen. 2020, 6, 69. [Google Scholar]
- Ames, E.G.; Fisher, R.; Kleyn, M.; Ahmad, A. Current Practices for U.S. Newborn Screening of Pompe Disease and MPSI. Int. J. Neonatal Screen. 2020, 6, 72. [Google Scholar]
- Burton, B.K.; Charrow, J.; Hoganson, G.E.; Waggoner, D.; Tinkle, B.; Braddock, S.R.; Schneider, M.; Grange, D.K.; Nash, C.; Shryock, H.; et al. Newborn Screening for Lysosomal Storage Disorders in Illinois: The Initial 15-Month Experience. J. Pediatr. 2017, 190, 130–135. [Google Scholar]
- Taylor, J.L.; Clinard, K.; Powell, C.M.; Rehder, C.; Young, S.P.; Bali, D.; Beckloff, S.E.; Gehtland, L.M.; Kemper, A.R.; Lee, S.; et al. The North Carolina Experience with Mucopolysaccharidosis Type I Newborn Screening. J. Pediatr. 2019, 211, 193–200. [Google Scholar]
- Chan, M.J.; Liao, H.C.; Gelb, M.H.; Chuang, C.K.; Liu, M.Y.; Chen, H.J.; Kao, S.M.; Lin, H.Y.; Huang, Y.H.; Kumar, A.B.; et al. Taiwan national newborn screening program by tandem mass spectrometry for mucopolysaccharidoses types I, II, and VI. J. Pediatr. 2019, 205, 176–182. [Google Scholar] [PubMed]
- Chuang, C.-K.; Lin, H.-Y.; Wang, T.-J.; Huang, Y.-H.; Chan, M.-J.; Liao, H.-C.; Lo, Y.-T.; Wang, L.-Y.; Tu, R.-Y.; Fang, Y.-Y.; et al. Status of newborn screening and follow up investigations for Mucopolysaccharidoses I and II in Taiwan. Orphanet J. Rare Dis. 2018, 13, 84. [Google Scholar] [PubMed] [Green Version]
- Chiang, S.-C.; Chen, P.-W.; Hwu, W.-L.; Lee, A.-J.; Chen, L.-C.; Lee, N.-C.; Chiou, L.-Y.; Chien, Y.-H. Performance of the Four-Plex Tandem Mass Spectrometry Lysosomal Storage Disease Newborn Screening Test: The Necessity of Adding a 2nd Tier Test for Pompe Disease. Int. J. Neonatal Screen. 2018, 4, 41. [Google Scholar]
- Burlina, A.B.; Polo, G.; Rubert, L.; Gueraldi, D.; Cazzorla, C.; Duro, G.; Salviati, L.; Burlina, A.P. Implementation of Second-Tier Tests in Newborn Screening for Lysosomal Disorders in North Eastern Italy. Int. J. Neonatal Screen. 2019, 5, 24. [Google Scholar]
- Clarke, L.A.; Atherton, A.M.; Burton, B.K.; Day-Salvatore, D.L.; Kaplan, P.; Leslie, N.D.; Scott, C.R.; Stockton, D.W.; Thomas, J.A.; Muenzer, J. Mucopolysaccharidosis Type I Newborn Screening: Best Practices for Diagnosis and Management. J. Pediatr. 2017, 182, 363–370. [Google Scholar] [PubMed] [Green Version]
- Donati, M.A.; Pasquini, E.; Spada, M.; Polo, G.; Burlina, A. Newborn screening in mucopolysaccharidoses. Ital. J. Pediatr. 2018, 44, 126. [Google Scholar]
- Ombrone, D.; Giocaliere, E.; Forni, G.; Malvagia, S.; la Marca, G. Expanded newborn screening by mass spectrometry: New tests, future perspectives. Mass Spectrom. Rev. 2016, 35, 71–84. [Google Scholar] [PubMed]
- Minter-Baerg, M.M.; Stoway, S.D.; Hart, J.; Mott, L.; Peck, D.S.; Nett, S.L.; Eckerman, J.S.; Lacey, J.M.; Turgeon, C.T.; Gavrilov, D.; et al. Precision newborn screening for lysosomal disorders. Genet. Med. 2018, 20, 847–854. [Google Scholar]
- Sanders, K.A.; Gavrilov, D.K.; Oglesbee, D.; Raymond, K.M.; Tortorelli, S.; Hopwood, J.J.; Lorey, F.; Majumdar, R.; Kroll, C.A.; McDonald, A.M.; et al. A comparative effectiveness study of newborn screening methods for four lysosomal storage disorders. Int. J. Neonatal Screen. 2020, 6, 44. [Google Scholar] [CrossRef]
- Hall, P.L.; Wittenauer, A.; Hagar, A. Post-Analytical Tools for the Triage of Newborn Screening Results in Follow-up Can Reduce Confirmatory Testing and Guide Performance Improvement. Int. J. Neonatal Screen. 2020, 6, 20. [Google Scholar]
- Burton, B.K.; Hoganson, G.E.; Fleischer, J.; Grange, D.K.; Braddock, S.R.; Hickey, R.; Hitchins, L.; Groepper, D.; Christensen, K.M.; Kirby, A.; et al. Population-Based Newborn Screening for Mucopolysaccharidosis Type II in Illinois: The First Year Experience. J. Pediatr. 2019, 214, 165–167. [Google Scholar] [PubMed]
- Tolun, A.A.; Graham, C.; Shi, Q.; Sista, R.S.; Wang, T.; Eckhardt, A.E.; Pamula, V.K.; Millington, D.S.; Bali, D.S. A novel fluorometric enzyme analysis method for Hunter syndrome using dried blood spots. Mol. Genet. Metab. 2012, 105, 519–521. [Google Scholar] [PubMed]
- Singh, R.; Chopra, S.; Norton, S.; Pamula, V. Demonstration of a Digital Microfluidic Platform for the High Throughput Analysis of 12 Discrete Fluorimetric Enzyme Assays Using a Single Newborn Dried Blood Spot Punch. Available online: https://worldsymposia.org/wp-content/uploads/WORLDSymposium-2018-Poster-List.pdf (accessed on 5 October 2020).
- Sista, R.S.; Ng, R.; Nuffer, M.; Basmajian, M.; Coyne, J.; Elderbroom, J.; Hull, D.; Kay, K.; Krishnamurthy, M.; Roberts, C.; et al. Digital Microfluidic Platform to Maximize Diagnostic Tests with Low Sample Volumes from Newborns and Pediatric Patients. Diagnostics 2020, 10, 21. [Google Scholar]
State: | Oregon | Kansas | Maryland | Michigan | Missouri | Washington | Virginia |
---|---|---|---|---|---|---|---|
Start Date | 1 October 2018 | 14 May 2020 | 17 June 2019 | August 2017 | 11 January 2013 | 25 October 2019 | 1 January 2019 |
Number of Births | 80,200 | 14,100 | 85,000 | 315,000 | 585,000 | 63,816 | 163,000 α |
Positives | 2 β | 0 | 0 | 2 γ | 2 δ | 0 | 2 |
2TT | Molecular, tNGS | Molecular, tNGS | None | Biochemical, DBS GAGs φ | Biochemical, DBS GAGs ∂ | Molecular, tNGS | Molecular, Sanger |
Screen Positives | 58/80,200 births | 13/14,100 births | 250/85,000 births | 780/315,000 births | 306/585,000 births | 35/63,816 births | 652/163,000 births |
Screen Positive rate (%) ξ | 0.072% | 0.092% | 0.294% | 0.248% | 0.052% | 0.055% | 0.400% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Washburn, J.; Millington, D.S. Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report. Int. J. Neonatal Screen. 2020, 6, 78. https://doi.org/10.3390/ijns6040078
Washburn J, Millington DS. Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report. International Journal of Neonatal Screening. 2020; 6(4):78. https://doi.org/10.3390/ijns6040078
Chicago/Turabian StyleWashburn, Jon, and David S. Millington. 2020. "Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report" International Journal of Neonatal Screening 6, no. 4: 78. https://doi.org/10.3390/ijns6040078
APA StyleWashburn, J., & Millington, D. S. (2020). Digital Microfluidics in Newborn Screening for Mucopolysaccharidoses: A Progress Report. International Journal of Neonatal Screening, 6(4), 78. https://doi.org/10.3390/ijns6040078