Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DBS | Dried blood spot |
IEM | Inborn errors of metabolism |
MS/MS | Tandem mass spectrometry |
NBS | Newborn bloodspot screening |
References
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J. Inherit. Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of Tandem Mass Spectrometry for Multianalyte Screening of Dried Blood Specimens from Newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef]
- McHugh, D.M.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Åhlman, H.; Allen, J.J.; Antonozzi, I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef]
- Rothwell, E.; Johnson, E.P.; Riches, N.; Botkin, J.R. Secondary research uses of residual newborn screening dried bloodspots: A scoping review. Genet. Med. 2018, 21, 1469–1475. [Google Scholar] [CrossRef]
- Programmacommissie Neonatale Hielprikscreening. Draaiboek Hielprikscreening. Available online: https://draaiboekhielprikscreening.rivm.nl (accessed on 18 May 2020).
- Van Rijt, W.J.; Koolhaas, G.D.; Bekhof, J.; Fokkema, M.R.H.; De Koning, T.J.; Visser, G.; Schielen, P.C.J.I.; Van Spronsen, F.J.; Derks, T.G.J. Inborn Errors of Metabolism That Cause Sudden Infant Death: A Systematic Review with Implications for Population Neonatal Screening Programmes. Neonatology 2016, 109, 297–302. [Google Scholar] [CrossRef]
- Boles, R.G.; Buck, E.A.; Blitzer, M.G.; Platt, M.S.; Cowan, T.M.; Martin, S.K.; Yoon, H.-R.; Madsen, J.A.; Reyes-Mugica, M.; Rinaldo, P. Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life. J. Pediatr. 1998, 132, 924–933. [Google Scholar] [CrossRef]
- Chace, D.H.; DiPerna, J.C.; Mitchell, B.L.; Sgroi, B.; Hofman, L.F.; Naylor, E.W. Electrospray Tandem Mass Spectrometry for Analysis of Acylcarnitines in Dried Postmortem Blood Specimens Collected at Autopsy from Infants with Unexplained Cause of Death. Clin. Chem. 2001, 47, 1166–1182. [Google Scholar] [CrossRef]
- Green, A.; Preece, M.A.; Hardy, D. More on the Metabolic Autopsy. Clin. Chem. 2002, 48, 964–965. [Google Scholar] [CrossRef]
- Barendsen, R.W.; Dijkstra, I.M.E.; Visser, W.F.; Alders, M.; Bliek, J.; Boelen, A.; Bouva, M.J.; Van Der Crabben, S.N.; Elsinghorst, E.; Van Gorp, A.G.M.; et al. Adrenoleukodystrophy Newborn Screening in the Netherlands (SCAN Study): The X-Factor. Front. Cell Dev. Biol. 2020, 8. [Google Scholar] [CrossRef]
- Johnson, D.W.; Trinh, M.-U. Stability of malonylcarnitine and glutarylcarnitine in stored blood spots. J. Inherit. Metab. Dis. 2004, 27, 789–790. [Google Scholar] [CrossRef]
- Fingerhut, R.; Ensenauer, R.; Röschinger, W.; Arnecke, R.; Olgemöller, B.; Roscher, A.A. Stability of Acylcarnitines and Free Carnitine in Dried Blood Samples: Implications for Retrospective Diagnosis of Inborn Errors of Metabolism and Neonatal Screening for Carnitine Transporter Deficiency. Anal. Chem. 2009, 81, 3571–3575. [Google Scholar] [CrossRef]
- Santer, R.; Fingerhut, R.; Lässker, U.; Wightman, P.J.; Fitzpatrick, D.R.; Olgemöller, B.; Roscher, A.A. Tandem Mass Spectrometric Determination of Malonylcarnitine: Diagnosis and Neonatal Screening of Malonyl-CoA Decarboxylase Deficiency. Clin. Chem. 2003, 49, 660–662. [Google Scholar] [CrossRef]
- Strnadová, K.A.; Holub, M.; Mühl, A.; Heinze, G.; Ratschmann, R.; Mascher, H.; Stöckler-Ipsiroglu, S.; Waldhauser, F.; Votava, F.; Lebl, J.; et al. Long-Term Stability of Amino Acids and Acylcarnitines in Dried Blood Spots. Clin. Chem. 2007, 53, 717–722. [Google Scholar] [CrossRef]
- Prentice, P.; Turner, C.; Wong, M.C.; Dalton, R.N. Stability of metabolites in dried blood spots stored at different temperatures over a 2-year period. Bioanalysis 2013, 5, 1507–1514. [Google Scholar] [CrossRef]
- Reed, A.H.; Henry, R.J.; Mason, W.B. Influence of Statistical Method Used on the Resulting Estimate of Normal Range. Clin. Chem. 1971, 17, 275–284. [Google Scholar] [CrossRef]
- Wayne, P.A. CLSI Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; CLSI Document EP28-A3C. In Approved Guideline, 3rd ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2010; p. 72. [Google Scholar]
- Derks, T.G.J.; Boer, T.S.; Van Assen, A.; Bos, T.; Ruiter, J.H.; Waterham, H.R.; Niezen-Koning, K.E.; Wanders, R.J.A.; Rondeel, J.M.M.; Loeber, J.G.; et al. Neonatal screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in The Netherlands: The importance of enzyme analysis to ascertain true MCAD deficiency. J. Inherit. Metab. Dis. 2008, 31, 88–96. [Google Scholar] [CrossRef]
- Adam, B.W.; Hall, E.; Sternberg, M.; Lim, T.; Flores, S.; O’Brien, S.; Simms, D.; Li, L.; De Jesus, V.; Hannon, W. The stability of markers in dried-blood spots for recommended newborn screening disorders in the United States. Clin. Biochem. 2011, 44, 1445–1450. [Google Scholar] [CrossRef]
- Golbahar, J.; Altayab, D.D.; Carreon, E. Short-Term Stability of Amino acids and Acylcarnitines in the Dried Blood Spots Used to Screen Newborns for Metabolic Disorders. J. Med. Screen. 2014, 21, 5–9. [Google Scholar] [CrossRef]
- Han, J.; Higgins, R.; Lim, M.D.; Lin, K.; Yang, J.; Borchers, C.H. Short-Term Stabilities of 21 Amino Acids in Dried Blood Spots. Clin. Chem. 2018, 64, 400–402. [Google Scholar] [CrossRef]
- Michopoulos, F.; Theodoridis, G.; Smith, C.J.; Wilson, I.D. Metabolite profiles from dried blood spots for metabonomic studies using UPLC combined with orthogonal acceleration ToF-MS: Effects of different papers and sample storage stability. Bioanalysis 2011, 3, 2757–2767. [Google Scholar] [CrossRef]
- Van Rijt, W.J.; Van Der Ende, R.M.; Volker-Touw, C.M.; Van Spronsen, F.; Derks, T.G.; Heiner-Fokkema, M.R. Changes in pediatric plasma acylcarnitines upon fasting for refined interpretation of metabolic stress. Mol. Genet. Metab. 2019, 127, 327–335. [Google Scholar] [CrossRef]
- George, R.S.; Moat, S.J. Effect of Dried Blood Spot Quality on Newborn Screening Analyte Concentrations and Recommendations for Minimum Acceptance Criteria for Sample Analysis. Clin. Chem. 2016, 62, 466–475. [Google Scholar] [CrossRef]
Parameter | Disorder | Retrospective Analysis of IEMs | Validation Studies for NBS Programs |
---|---|---|---|
Risk Category | Potential Effect on Cutoff Target | ||
C0 (low) | CUD | False-negative | Too high |
C0 (high) | CPT-I | False-positive | Too high |
C2 (low) | CUD, CPT-II | False-positive | Too low |
C3 (low) | CUD | False-positive | Too low |
C3 (high) | PROP, MUT, Cbl A-D | False-negative | Too low |
C4 | SCAD, EE, IBG, FIGLU a, MADD | False-negative | Too low |
C5 | IVA, MADD, 2MBG, EE | False-negative | Too low |
C6 | MCAD, MADD | False-negative | Too low |
C8 | MCAD, MADD | False-negative | Too low |
C10:1 | MCAD | False-negative | Too low |
C10 | MADD, MCAD | False-negative | Too low |
C12:1 | MADD, VLCAD | False-negative | Too low |
C12 | MADD, CPT-II, CACT, VLCAD | False-negative | Too low |
C14:1 | VLCAD, MADD, LCHAD/TFP | False-negative | Too low |
C14 | MADD, CPT-II, VLCAD, CACT, LCHAD/TFP | False-negative | Too low |
C16:1 | VLCAD, LCHAD/TFP, CACT, CPT-II | False-negative | Too low |
C16 (low) | CPT-I, CUD | False-positive | Too low |
C16 (high) | CACT, CPT-II | False-negative | Too low |
C18:2 (low) | CPT-I | False-positive | Too low |
C18:2 (high) | CPT-II, CACT | False-negative | Too low |
C18:1 (low) | CPT-I, CUD | False-positive | Too low |
C18:1 (high) | CPT-II, CACT | False-negative | Too low |
C18 (low) | CPT-I, CUD | False-positive | Too low |
C18 (high) | CPT-II, CACT | False-negative | Too low |
C5OH + C4DC | 3MCC, HMG, MCD, 3MGA, BTD, BKT, 2M3HBA | False-negative | Too low |
C18:1OH | LCHAD/TFP | False-negative | Too low |
C16DC | PBD | False-negative | Too low |
Molar Ratio | Disorder a | Retrospective Analysis of IEMs | Validation Studies for NBS Programs |
---|---|---|---|
Risk Category | Potential Effect on Cutoff Target | ||
C0/(C16 + C18) (low) | CPT-II, CACT | False-negative | Too high |
C0/(C16 + C18) (high) | CPT-I | False-positive | Too high |
C3/C2 | PROP, MUT, Cbl A-D, MCD | False-positive | Too high |
C3/C16 | PROP, MUT, Cbl A-D, CPT-I, MCD | False-negative | Too low |
C4/C2 | SCAD, MADD, IBG, EE, FIGLU b | False-positive | Too high |
C4/C3 (low) | MCD, Cbl A-D, PROP | False-negative | Too high |
C4/C3 (high) | EE, IBG, FIGLU b, MADD, SCAD | False-positive | Too high |
C4/C8 | IBG, SCAD, EE, FIGLU b | None, similar percent decay of the involved acylcarnitine species | |
C5/C2 | IVA, MADD, 2MBG, EE | False-positive | Too high |
C5/C3 (low) | MCD, MUT, Cbl A-B, PROP | False-negative | Too high |
C5/C3 (high) | IVA, MADD, EE, 2MBG | False-positive | Too high |
C8/C2 | MCAD, MADD | False-positive | Too high |
C8/C10 | MCAD | None, similar percent decay of the involved acylcarnitine species | |
C14:1/C2 | VLCAD, MADD, LCHAD/TFP | False-positive | Too high |
C14:1/C10 | VLCAD | Appears negligible, negative statistical trend, but no visual trend and similar percent decay of the involved acylcarnitine species | |
C14:1/C16 | VLCAD, MADD, LCHAD/TFP | None, similar percent decay of the involved acylcarnitine species | |
(C16 + C18:1)/C2 (low) | CPT-I | False-negative | Too high |
(C16 + C18:1)/C2 (high) | CPT-II, CACT | False-positive | Too high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Rijt, W.J.; Schielen, P.C.J.I.; Özer, Y.; Bijsterveld, K.; van der Sluijs, F.H.; Derks, T.G.J.; Heiner-Fokkema, M.R. Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. Int. J. Neonatal Screen. 2020, 6, 83. https://doi.org/10.3390/ijns6040083
van Rijt WJ, Schielen PCJI, Özer Y, Bijsterveld K, van der Sluijs FH, Derks TGJ, Heiner-Fokkema MR. Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. International Journal of Neonatal Screening. 2020; 6(4):83. https://doi.org/10.3390/ijns6040083
Chicago/Turabian Stylevan Rijt, Willemijn J., Peter C. J. I. Schielen, Yasemin Özer, Klaas Bijsterveld, Fjodor H. van der Sluijs, Terry G. J. Derks, and M. Rebecca Heiner-Fokkema. 2020. "Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism" International Journal of Neonatal Screening 6, no. 4: 83. https://doi.org/10.3390/ijns6040083
APA Stylevan Rijt, W. J., Schielen, P. C. J. I., Özer, Y., Bijsterveld, K., van der Sluijs, F. H., Derks, T. G. J., & Heiner-Fokkema, M. R. (2020). Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. International Journal of Neonatal Screening, 6(4), 83. https://doi.org/10.3390/ijns6040083