Drake-like Calculations for the Frequency of Life in the Universe
Abstract
:1. Historical Background
2. Criticism of the Drake Equation
3. Previous Modifications to the Drake Equation
4. A Modified Drake Equation as Motivation to Pursue Astrobiology
5. Data Situation of
6. The Data Situation of and
7. The Data Situation of L
8. First Evaluation and Extension to Moons
Funding
Conflicts of Interest
References
- Cocconi, G.; Morrison, P. Searching for Interstellar Communications. Nat. Cell Biol. 1959, 184, 844–846. [Google Scholar] [CrossRef]
- Drake, F. The Drake-Equation revisited, Part 1. Astrobiol. Mag. 2003. Available online: https://www.astrobio.net/alien-life/the-drake-equation-revisited-part-i/ (accessed on 8 June 2021).
- Glade, N.; Ballet, P.; Bastien, O. A stochastic process approach of the drake equation parameters. Int. J. Astrobiol. 2012, 11, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.M. Where is everybody? An Account of Fermi’s Question; Los Alamos National Laboratory: Los Alamos, NM, USA, 1985. [Google Scholar]
- Walters, C.; Hoover, R.A.; Kotra, R. Interstellar colonization: A new parameter for the Drake equation? Icarus 1980, 41, 193–197. [Google Scholar] [CrossRef]
- Brin, G.D. The Great Silence, The Controversy Concerning Extraterrestrial Intelligent Life. Q. J. R. Astron. Soc. 1983, 24, 283–309. [Google Scholar]
- Zaitsev, A. The Drake Equation: Adding a METI Factor; SETI League: Little Ferry, NJ, USA, 20 April 2013. [Google Scholar]
- Benford, J. A Drake Equation for Alien Artifacts. Astrobiology 2021, 21. [Google Scholar] [CrossRef]
- Maccone, C. A Statical Drake Equation. Acta Astronaut. 2010, 67, 1366–1383. [Google Scholar] [CrossRef]
- Lingam, M.; Loeb, A. Relative Likelihood of Success in the Search for Primitive versus Intelligent Extraterrestrial Life. Astrobiology 2019, 19, 28–39. [Google Scholar] [CrossRef]
- Kennicutt, R.; Evans, N. Star Formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 2012, 50, 531–608. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P.; Weidner, C. Galactic-Field Initial Mass Functions of Massive Stars. Astrophys. J. 2003, 598, 1076–1078. [Google Scholar] [CrossRef]
- Miller, G.; Scalo, J.M. The initial mass function and stellar birthrate in the solar neighborhood. Astrophys. J. Suppl. Ser. 1979, 41, 513–547. [Google Scholar] [CrossRef]
- Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 2001, 322, 231–246. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763–795. [Google Scholar] [CrossRef] [Green Version]
- Cassan, A.; Kubas, D.; Beaulieu, J.P.; Dominik, M.; Horne, K.; Greenhill, J.; Pietrzyński, G. One or more bound planets per Milky Way star form microlensing observations. Nature 2012, 481, 167–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Microlensing Observations in Astrophysics (MOA) Collaboration; The Optical Gravitational Lensing Experiment (OGLE) Collaboration; Sumi, T.; Kamiya, K.; Bennett, D.P.; Bond, I.A.; Abe, F.; Botzler, C.S.; Fukui, A.; Furusawa, K.; et al. Unbound or distant planetary mass population detected by gravitational microlensing. Nat. Cell Biol. 2011, 473, 349–352. [Google Scholar]
- NASA. Exoplanet Exploration. Available online: https://exoplanets.nasa.gov/ (accessed on 25 May 2021).
- Petigura, E.; Howard, A.; Marcy, G. Prevalence of Earth-size Planets orbiting Sun-like stars. Proc. Natl. Am. Sci. USA 2013, 110, 19273–19278. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Subo, D. Exoplanet Statistics and Theoretical Implications. arXiv 2021, arXiv:2103.02127. [Google Scholar]
- Kaltenegger, L. How to Characterize Habitable Worlds and Signs of Life. Annu. Rev. Astron. Astrophys. 2017, 55, 433–485. [Google Scholar] [CrossRef] [Green Version]
- Richmond, M. Stellar Evolution on the Main Sequence. Available online: http://spiff.rit.edu/classes/phys230/lectures/star_age/star_age.htm (accessed on 8 June 2021).
- Carter, B.; McCrea, W.H. The anthropic principle and its implications for biological evolution. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1983, 310, 347–363. [Google Scholar]
- Snyder-Beattie, A.E.; Sandberg, A.; Drexler, K.E.; Bonsall, M.B. The Timing of Evolutionary Transitions Suggests Intelligent Life is Rare. Astrobiology 2021, 21, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Canup, R.; Ward, W. A common mass scaling for satellite system of gaseous planets. Nat. Cell Biol. 2006, 441, 834–839. [Google Scholar] [CrossRef]
- Heller, R.; Barnes, R. Exomoon Habitability Constrained by Illumination and Tidal Heating. Astrobiology 2013, 13, 18–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Jiang, J.; Fahy, K.; Yung, Y. A Statistical Estimation of the Occurrence of Extraterrestrial Intelligence in the Milky Way Galaxy. Galaxies 2021, 9, 5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platt, K.-F. Drake-like Calculations for the Frequency of Life in the Universe. Philosophies 2021, 6, 49. https://doi.org/10.3390/philosophies6020049
Platt K-F. Drake-like Calculations for the Frequency of Life in the Universe. Philosophies. 2021; 6(2):49. https://doi.org/10.3390/philosophies6020049
Chicago/Turabian StylePlatt, Karl-Florian. 2021. "Drake-like Calculations for the Frequency of Life in the Universe" Philosophies 6, no. 2: 49. https://doi.org/10.3390/philosophies6020049
APA StylePlatt, K. -F. (2021). Drake-like Calculations for the Frequency of Life in the Universe. Philosophies, 6(2), 49. https://doi.org/10.3390/philosophies6020049