On Secret Sharing with Newton’s Polynomial for Multi-Factor Authentication
Abstract
:1. Introduction
2. Overview of Interpolation Polynomials
2.1. Newton’s Interpolation Formula
2.2. Lagrange Interpolation Formula
- ;
- ;
- .
3. Interpolation Formulas Relation
3.1. Derivation of Lagrange’s Formula from Newton’s Formula
3.2. Derivation of Newton’s Formula from Lagrange’s Formula
3.3. Additional Notes on the Comparison of the Polynomials
4. Shamir’s Secret Sharing Scheme
- D is easily calculated if k or more of its shares are known;
- D cannot be calculated if or fewer of its parts are known.
4.1. Secret Sharing
4.2. Recovering a Secret
- Polynomial degree n;
- ;
- if .
5. Newton’s Polynomial in Secret Sharing Schemes
6. Utilization Examples
6.1. Use Case Description
6.2. Lagrange Interpolation Example
x | ||
−1 | 0 | |
4 | 2 |
x | |||
−1 | 0 | 1 | |
4 | 2 | −2 |
6.3. Newton Interpolation Example
x | ||
−1 | 0 | |
4 | 2 |
x | |||
−1 | 0 | 1 | |
4 | 2 | −2 |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, D.; Wang, P.; Wang, C. Efficient Multi-Factor User Authentication Protocol with Forward Secrecy for Real-Time Data Access in WSNs. ACM Trans. Cyber Phys. Syst. 2020, 4, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Ometov, A.; Petrov, V.; Bezzateev, S.; Andreev, S.; Koucheryavy, Y.; Gerla, M. Challenges of Multi-Factor Authentication for Securing Advanced IoT Applications. IEEE Netw. 2019, 33, 82–88. [Google Scholar] [CrossRef]
- Das, S.; Wang, B.; Tingle, Z.; Camp, L.J. Evaluating User Perception of Multi-Factor Authentication: A Systematic Review. arXiv 2019, arXiv:1908.05901. [Google Scholar]
- Ometov, A.; Bezzateev, S.; Mäkitalo, N.; Andreev, S.; Mikkonen, T.; Koucheryavy, Y. Multi-Factor Authentication: A Survey. Cryptography 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Farik, M. A Review of Multimodal Biometric Authentication Systems. Int. J. Sci. Technol. Res. 2016, 5, 5–9. [Google Scholar] [CrossRef]
- Genovese, A.; Munoz, E.; Piuri, V.; Scotti, F. Advanced Biometric Technologies: Emerging Scenarios and Research Trends. In From Database to Cyber Security; Springer: Berlin/Heidelberg, Germany, 2018; pp. 324–352. [Google Scholar]
- Park, S.H.; Kim, J.H.; Jun, M.S. A Design of Secure Authentication Method with Bio-Information in the Car Sharing Environment. In Advances in Computer Science and Ubiquitous Computing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 205–210. [Google Scholar]
- Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613. [Google Scholar] [CrossRef]
- Alotaibi, S.; Alruban, A.; Furnell, S.; Clarke, N.L. A Novel Behaviour Profiling Approach to Continuous Authentication for Mobile Applications. In Proceedings of the International Conference on Information Systems Security and Privacy, Prague, Czech Republic, 23–25 February 2019; pp. 246–251. [Google Scholar]
- Kogan, N.; Tassa, T. Improved Efficiency for Revocation Schemes via Newton Interpolation. ACM Trans. Inf. Syst. Secur. (TISSEC) 2006, 9, 461–486. [Google Scholar] [CrossRef] [Green Version]
- Stavros, D.; Iraklis, S. Complexity Comparison of Lagrange and Newton Polynomial based Revocation Schemes. In Proceedings of the 2nd Conference on European Computing Conference, Athens, Greece, 25–27 September 2007; World Scientific and Engineering Academy and Society (WSEAS): Athens, Greece, 2008; pp. 44–53. [Google Scholar]
- Meijering, E. A Chronology of Interpolation: From Ancient Astronomy to Modern Signal and Image Processing. Proc. IEEE 2002, 90, 319–342. [Google Scholar] [CrossRef] [Green Version]
- Sebah, P.; Gourdon, X. Newton’s Method and High Order Iterations. Numbers Comput. 2001, 1, 10. [Google Scholar]
- Werner, W. Polynomial Interpolation: Lagrange versus Newton. Math. Comput. 1984, 43, 205–217. [Google Scholar] [CrossRef]
- Naor, M.; Pinkas, B. Efficient Trace and Revoke Schemes. In Proceedings of the International Conference on Financial Cryptography, Anguilla, UK, 21–24 February 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–20. [Google Scholar]
- O’Gorman, L. Comparing Passwords, Tokens, and Biometrics for User Authentication. Proc. IEEE 2003, 91, 2021–2040. [Google Scholar] [CrossRef]
- Blakley, G.R. Safeguarding Cryptographic Keys. In Proceedings of the International Workshop on Managing Requirements Knowledge (MARK), New York, NY, USA, 4–7 June 1979; IEEE: Piscataway, NJ, USA, 1979; pp. 313–318. [Google Scholar]
- Kaya, K.; Selçuk, A.A. Secret Sharing Extensions based on the Chinese Remainder Theorem. IACR Cryptol. ePrint Arch. 2010, 2010, 96. [Google Scholar]
- Mignotte, M. How to Share a Secret. In Workshop on Cryptography; Springer: Berlin/Heidelberg, Germany, 1982; pp. 371–375. [Google Scholar]
- Asmuth, C.; Bloom, J. A Modular Approach to Key Safeguarding. IEEE Trans. Inf. Theory 1983, 29, 208–210. [Google Scholar] [CrossRef]
- McEliece, R.J.; Sarwate, D.V. On Sharing Secrets and Reed-Solomon Codes. Commun. ACM 1981, 24, 583–584. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezzateev, S.; Davydov, V.; Ometov, A. On Secret Sharing with Newton’s Polynomial for Multi-Factor Authentication. Cryptography 2020, 4, 34. https://doi.org/10.3390/cryptography4040034
Bezzateev S, Davydov V, Ometov A. On Secret Sharing with Newton’s Polynomial for Multi-Factor Authentication. Cryptography. 2020; 4(4):34. https://doi.org/10.3390/cryptography4040034
Chicago/Turabian StyleBezzateev, Sergey, Vadim Davydov, and Aleksandr Ometov. 2020. "On Secret Sharing with Newton’s Polynomial for Multi-Factor Authentication" Cryptography 4, no. 4: 34. https://doi.org/10.3390/cryptography4040034
APA StyleBezzateev, S., Davydov, V., & Ometov, A. (2020). On Secret Sharing with Newton’s Polynomial for Multi-Factor Authentication. Cryptography, 4(4), 34. https://doi.org/10.3390/cryptography4040034